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Abstract

Self-stabilization is a theoretical framework of non-
masking fault-tolerant distributed algorithms. A self-
stabilizing system tolerates any kind and any finite number
of transient faults, such as message loss, memory corrup-
tion, and topology change. Because such transient faults
occur so frequently in mobile ad hoc networks, distributed
algorithms on them should tolerate such events. In this
paper, we propose a self-stabilizing distributed approxima-
tion algorithm for the minimum connected dominating set,
which can be used, for example, as a virtual backbone or
routing in mobile ad hoc networks. The size of the solu-
tion by our algorithm is at most 8|Dopt |+1, where Dopt is a
minimum connected dominating set. The time complexity is
O(n2) steps.

1. Introduction

1.1. Self-stabilization

A distributed system is a set of processes and a set
of communication links between the processes. The dis-
tributed systems are subject to fail by their very nature.
Therefore, fault-tolerance is a major concern in the study
of distributed computing.

Self-stabilization [5] is a theoretical framework of non-
masking fault-tolerant distributed algorithms proposed by
Dijkstra in 1974. Self-stabilizing algorithms can start exe-
cution from an arbitrary (illegitimate) system configuration,
and eventually reach a legitimate configuration. That is to
say, they do not need all initializations of states of each pro-
cess and each link. By this property, they tolerate any kind
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and any finite number of transient faults, such as message
loss, memory corruption, and topology change, and can ad-
just to dynamic changes of the system [6]. In addition, a
self-stabilizing system does not need a global and synchro-
nized initialization of each process at all when a system is
started, because we can consider that such a starting con-
figuration is a configuration just after transient faults occur.
However, by these properties, design of a self-stabilizing
algorithm is difficult.

1.2. Connected dominating set

In 1979, Sampathkumar et al. introduced the connected
dominating set (CDS) problem in graph theory [13]. Let
G = (V,E) be an undirected connected graph, where V is a
set of nodes and E is a set of edges. A dominating set of G is
a subset D ⊆ V such that each member of V \D is adjacent
to at least one member of D. A set D′ ⊆V is a CDS of G if
and only if D′ is a dominating set and the induced subgraph
by D′ is connected. The minimum CDS problem is finding
a CDS of the minimum size.

A CDS is useful in the computation of message routing
and other network problems for mobile ad hoc networks.
Ad hoc networks are collection of wireless mobile nodes,
and have no physical backbone infrastructure and no cen-
tralized administration. Therefore, a CDS formed by pro-
cesses can be used for virtual backbone, which plays an im-
portant role for routing and connectivity management etc.
However, it is known that this problem is NP-hard [4] in
unit disk graph model that is one of models of mobile ad
hoc networks. In a unit disk graph, there is a link between
two nodes if and only if their geographical distance is at
most one unit. In mobile ad hoc networks, message loss
and topology change occur frequently. Thus, distributed al-
gorithms for mobile ad hoc networks should tolerate such
events.



We propose a self-stabilizing distributed approximation
algorithm to compute a minimum CDS of an underlying
network G assuming that a BFS (i.e., breadth-first spanning)
tree T of G rooted at a process Pr is given. An approxima-
tion algorithm for the minimization problem is an algorithm
which guarantees the approximation ratio Dalg/Dopt , where
Dalg is the size of the solution of the approximation algo-
rithm in the worst case and Dopt is the size of the optimal
solution.

1.3. Related works

Because a CDS can be used for virtual backbone for rout-
ing messages in ad hoc networks, many algorithms for the
CDS have been proposed. The literature [2] is a good sur-
vey for this problem in ad hoc networks.

In [8], Guha et al. propose a centralized approximation
algorithm for the minimum CDS in unit disk graphs, and its
approximation ratio is O(H(∆)), where ∆ is the maximum
degree and H() is the harmonic function. In [12], Marathe
et al. propose a heuristic approximation algorithm for the
minimum CDS in unit disk graphs, and the size of the solu-
tion by their algorithm is at most 8|Dopt |+ 1. .

In [1], Bharghavan et al. propose a distributed approxi-
mation algorithm based on the centralized algorithm in [8].
Its approximation ratio is O(H(∆)), and both its message
complexity and time complexity are O(n2). In [17], Wu et
al. propose a different distributed approximation algorithm
in unit disk graphs. Its approximation ratio is O(n), and
its message complexity and time complexity are Θ(m) and
O(n3), respectively, where m is the number of the edges in
the unit-disk graph.

There exist some distributed approximation algorithms
each of which approximation ratio is a constant. In [3],
Cheng et al. propose a distributed approximation algorithm
in unit disk graphs. The approximation ratio is 8, respec-
tively. Message complexity and time complexity of the
both algorithms are O(n) and O(n∆), respectively. In [16],
Wan et al. propose a distributed approximation in unit disk
graphs. The approximation ratio is 8, and message com-
plexity and time complexity are O(n logn) and O(n), re-
spectively. In[18], Wu et al. propose a distributed approx-
imation with approximation ratio O(1) in unit disk graphs.
In [7], Gao et al. also propose a distributed approximation
in unit disk graphs. Its approximation ratio is O(1), and
both its message complexity and time complexity are O(n).
However, it is not easy to convert these algorithms into self-
stabilizing distributed algorithms. Unfortunately, none of
these algorithms are self-stabilizing.

In [11], Jain et al. propose a self-stabilizing algorithm
for finding a CDS in O(n2) steps. However, their algorithm

Marathe et al. proved the approximation ratio of their algorithm was
10 in [12]. However, we proof that later.

is not approximation algorithm, i.e., their algorithm does
not guarantee its approximation ratio.

Therefore, our algorithm is the first self-stabilizing dis-
tributed approximation algorithm for the minimum CDS.
Because our algorithm is based on the algorithm in [12] in
unit disk graphs, the size of the solution by proposed al-
gorithm is at most 8|Dopt |+ 1, and the time complexity is
O(n2) steps.

1.4. Organization of this paper

This paper is organized as follows. In section 2, we for-
mally describe system model and the self-stabilizing dis-
tributed minimum CDS problem. In section 3, we present
an outline of a heuristic algorithm of Marathe et al. [12]
on which our algorithm is based. In section 4, we propose
a self-stabilizing approximation algorithm for the minimum
CDS. We assume that a BFS tree is given. In section 5, we
show proof of correctness of the proposed algorithm, and
show performance analysis. In section 6, we give conclu-
sion of this paper and discuss future works.

2. Preliminary

2.1. System model

Let V = (P1,P2, ...,Pn) be a set of processes (nodes) and
E ⊆V ×V be a set of bidirectional communication links in
a distributed system. The number of processes is denoted
by n. Then, the topology of the distributed system is repre-
sented as an undirected graph G = (V,E). We assume that
the graph is connected and simple. In this paper, we use
“graphs” and “distributed systems”, interchangeably. By
Ni, we denote a set of neighbor processes of Pi. For each
process Pi, process identifier and a set Ni are given as con-
stants. Let the distance between Pi and Pj be the number of
the edges on the shortest path between them.

As communication model, we assume that each process
can read local state of neighbor processes without delay.
This model is called the state reading model. Each process
can update its own local state only, but each process can
read local state of neighbor processes.

A set of local variables defines local state of a process.
By Qi, we denote local state of each process Pi ∈ V . A
tuple of local state of each process (Q1,Q2, ...,Qn) forms a
configuration of a distributed system. Let Γ be a set of all
configurations.

An algorithm of each process Pi is given as a set of
guarded commands:

∗[ Grd1 → Act1 � Grd2 → Act2 · · · ]
Each Grd j ( j = 1,2, ...) is called a guard, and it is a predi-

cate on Pi’s local state and local states of its neighbors. Each



Act j is called an action, and it updates local state of Pi; next
local state is computed from current local states of Pi and its
neighbors. We say that Pi is privileged in a configuration γ
if and only if at least one guard of Pi is true in γ . An atomic
step of each process Pi consists of the following three sub-
steps: (1) read local states of neighbor processes and eval-
uate guards, (2) execute a command that is associated to a
true guard, and (3) update its local state.

Executions of processes are scheduled by an external
(virtual) scheduler. A scheduler decides which process to
execute in the next step. At each step, a scheduler selects
only one privileged process arbitrarily, and a selected pro-
cess executes an atomic step. This type of scheduler is
known as the central daemon. A scheduler is fair if priv-
ileged process is eventually selected to execute by a sched-
uler, otherwise, it is unfair. We assume the unfair central-
ized daemon in this paper. Because a privileged process
may not be executed forever under an unfair scheduler, an
algorithm must be correct with respect to every execution
scheduling. Thus, a scheduler is an adversary against an
algorithm.

2.2. Self-stabilization

For any configuration γ , let γ ′ be any configuration
that follows γ . Then, we denote this transition relation by
γ → γ ′. For any configuration γ0, a computation E starting
from γ0 is a maximal (possibly infinite) sequence of config-
urations E = γ0,γ1,γ2, ... such that γt → γt+1 for each t ≥ 0.

Definition 1 (Self-Stabilization) Let Γ be a set of all con-
figurations. A system S is self-stabilizing with respect to Λ
such that Λ ⊆ Γ if and only if it satisfies the following two
conditions:

• Convergence: Starting from an arbitrary configura-
tion, a configuration eventually becomes one in Λ, and

• Closure: For any configuration λ ∈ Λ, any configura-
tion γ that follows λ is also in Λ as long as the system
does not fail.

Each γ ∈ Λ is called a legitimate configuration. �

2.3. Formal definition of the problems

Definition 2 A dominating set of a graph G = (V,E) is a
subset V ′ ⊆ V such that there exists v ∈ V ′ and (u,v) ∈ E
for any u ∈V\V ′. A dominating set V ′ of G is minimal if no
proper subset of V ′ is a dominating set of G. A dominating
set V ′ of G is minimum if |V ′| ≤ |V ′′| for any dominating set
V ′′ of G. �

Definition 3 An independent set of a graph G = (V,E) is
a subset V ′ ⊆ V such that (u,v) �∈ E for any u,v ∈ V ′. An
independent set V ′ of G is maximal if no proper superset of
V ′ is an independent set of G. �

We call maximal independent sets MISs. It is clear that
a subset of V is a minimal dominating set if it is an MIS.

Definition 4 A connected dominating set of a graph G =
(V,E) is a dominating set V ′ ⊆V such that an induced sub-
graph by V ′ is connected. A connected dominating set V ′ of
G is minimum if |V ′| ≤ |V ′′| for any connected dominating
set V ′′ of G.

We call the members of the CDS dominators, and others
dominatees. Each dominatee is dominated by a dominator.

We consider solving the minimum CDS problem in dis-
tributed systems in this paper. We assume that each process
Pi does not know global information of the network, and
they know local information Ni which is a set of neighbors
of Pi. Under such assumption, we defined the distributed
minimum CDS problem as follows.

Definition 5 Let G = (V,E) be a graph that represents a
distributed system, let dom(Pi) be a variable that represents
whether Pi is in a minimum connected dominating set. The
distributed minimum connected dominating set problem is
a problem defined as follows.

• Each process Pi ∈V must decide its decision dom(Pi)∈
{true, false} as output of Pi, and

• The set {Pi ∈ V | dom(Pi) = true} is a minimum con-
nected dominating set of G. �

We assume that each process Pi has a local variable
dom(Pi).

3. Marathe et al.’s algorithm

Marathe et al. proposed a sequential heuristic algorithm
for the minimum CDS in unit disk graphs [12], and we
present outline of their algorithm.

The outline is described more formally in Figure 1. By
G(C), we denote an induced subgraph of G by a subset C of
V .

Figure 2 illustrates an execution example of Marathe et
al.’s algorithm. First, their algorithm selects an arbitrary
node v from G, and constructs a BFS tree T of G rooted at v.
Figure 2(a) illustrates a BFS tree. For any node vi, let L(vi)
denote the distance from v to vi. Let k denote the depth of
T (i.e., the maximum distance) in G, and let Ld be the set of
nodes which have the distance d from the root (0 ≤ d ≤ k).
In Figure 2(a)-Figure 2(d), the number in each node vi is the



1 Arbitrarily pick a node v ∈V .
2 Construct a BFS tree T of G rooted at v.
3 Let k be the depth of T .
4 For each 0 ≤ d ≤ k, let Ld denote the set of nodes

at distance d from the root in T .
5 Set I0 := {v}; S0 := /0.
6 for d = 1 to k do begin
7 Dd := {u | u ∈ Ld and u is dominated

by some node in Id−1}.
8 Pick an MIS Id in G(Ld \Dd).
9 Sd := {u f | u f is the father in T of some vi ∈ Id}.
10 end
11 output (∪k

d=0Id)∪ (∪k
d=0Sd) as the CDS.

Figure 1. Marathe et al.’s Algorithm

distance L(vi) from the root on the BFS tree, and each arrow
represents a father of the node. Figure 2(b)(resp. 2(c), 2(d))
illustrates the configuration after execution of a for-loop of
Figure 1 with d = 1 (resp. 2, 3), and thick nodes represent
that the algorithm has processed the nodes.

The CDS by the heuristic is the union of two subsets of
nodes, i.e., (∪k

d=0Id)∪ (∪k
d=0Sd).

• The first subset ∪k
d=0Id is an MIS for G. The root v

definitely joins a set I0. Let Dd be a set of nodes vi ∈
Ld each of which is dominated by some node in Id−1.
For each 1 ≤ d ≤ k, a set Id is an MIS in an induced
subgraph by Ld \Dd . That is to say, the heuristic paves
the field dominated by the members of I in order of
increasing of L(vi) from v. (In Figure 2(a)-Figure 2(d),
black nodes are in I0 or I2.)

• The second subset is ∪k
d=0Sd , where a set Sd of nodes

which are fathers of the members of Id for each 1≤ d ≤
k. Note that Sd ⊆ Ld−1. (In Figure 2(c)-Figure 2(d),
gray nodes are in S2.)

We call the above way of construction of an MIS ∪k
d=0Id

“paving on a BFS tree”. For any set C ⊂ V and any node
vi �∈ C, let the distance between vi and C be the minimum
distance between vi and any v j ∈C. On the MIS constructed
by paving on a BFS tree, the set satisfies the following prop-
erty.

Theorem 1 Let I′ be the MIS constructed by paving on a
BFS tree T . For any vi in I′, the distance between vi and
I′ \ {vi} is exactly two hops.

The proof of this theorem is the same as one in [16]. Be-
cause of limitation of space, proof of this theorem is omit-
ted.

By Theorem 1, the connectivity of the CDS is ensured.
By the proof of Theorem 1, in the MIS constructed by
paving on T , each member vi ∈ Ld of the MIS has a fa-
ther on T which is neighbor to at least one member of MIS

in Ld−1 or Ld−2. Therefore, the union of the MIS and a set
of fathers of the members of the MIS are connected. Be-
cause the MIS is also a minimal dominating set, the union
is a CDS. It is clear that, if each member vi ∈ Ld of any MIS
has a father which is neighbor to at least one member of the
MIS in Ld−1 or Ld−2 on T , then it can be said that the MIS
is constructed by paving on T . The CDS is illustrated in
Figure 2(e).

We define such a CDS as CDS-tree formally as follows:

Definition 6 Let I′ be any MIS constructed by paving on a
BFS tree T for G. Let S′(�= /0) be a set of nodes each of
which is the father of a member in I′ on T . A set of nodes
I′ ∪S′ is a CDS-tree of T . �

Theorem 2 Let Dopt is the minimum CDS. Any CDS-tree
is an approximation for the minimum CDS which size is at
most 8|Dopt |+ 1 in unit disk graphs.

The proof of the approximation ratio is similar to the one
for Wan et al.’s algorithm in [16]. We give the proof follow.

Proof: We consider a CDS-tree I′ ∪ S′, where I′ be a max-
imal independent set constructed by paving on a BFS tree
and S′ be a set of nodes each of which is the father of a
member in I′ on a BFS tree. Let Dopt be any minimum
CDS.

First, we consider the size of I′. Let v1 be an arbitrary
node in Dopt . Let I′1 be the subset of I′ such that each mem-
ber of it is neighbor to v1. Then, the size of I′1 is at most 5.
After we count I′1, I

′
2, · · · , I′i−1, for 2≤ i≤ |Dopt |, let vi ∈Dopt

be an arbitrary neighbor of v1,v2, · · · ,vi−2 or vi−1. Let I′i be
a subset of I′ \{I′1∪I′2∪·· · I′i−1} such that each member of it
is neighbor to vi. Because vi is neighbor to a node v′ where
v′ is v1,v2, · · · ,vi−2 or vi−1, the members of I′i are in a part
of a unit cycle around vi such that it does not overlap with
a unit cycle around v′. That is, the members of I′i are only
in a field which is smaller than a 240 degree sectoral field
around vi. (See figure 3.) Therefore, the size of I′i is at most
4 for 2 ≤ i ≤ |Dopt |, let vi ∈ Dopt . Therefore, the size of I′ is

|I′| =
|Dopt |
∑
i=1

|I′i | = |I′1|+
|Dopt |
∑
i=2

|I′i |

≤ 5 +4(|Dopt |−1)
= 4|Dopt |+ 1.

Next, we consider the size of S′. Because each member
of I′ which is not the root of the BFS tree has a father in S′,
the size of S′ is at most 4|Dopt |.

Therefore, the size of the CDS-tree is

|I′ ∪S′| = |I′|+ |S′| ≤ 8|Dopt |+ 1.

�
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Figure 2. Outline of Marathe et al.’s algorithm
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I ′2

120 degree
I ′1

Figure 3. The relationship between I′1 and I′2.

4. Proposed algorithm

We propose a self-stabilizing algorithm SS-CDS to find
a CDS-tree. Our algorithm computes a BFS tree rooted at Pr

for G. Because algorithms for computing a BFS tree have
been proposed so far, for example [10, 15], we simply adopt
one of them. We assume, without loss of generality, that
each process Pi has the following two variables as output of
the BFS tree T , and as input of SS-CDS.

• F(Pi) — a process id of the father of Pi on T .

• L(Pi) — the distance from the root Pr to Pi on T .

The output of each process is

• dom(Pi) — a boolean if Pi is a member of the CDS.

First, SS-CDS computes an MIS. For constructing an
MIS, there exist many self-stabilizing algorithms, for ex-
ample [14, 9]. However, these algorithms do not ensure that
a computed MIS satisfies Theorem 1 on T .

Formal description of proposed algorithm SS-CDS is
shown in Figure 4. There are five guarded-commands
(GC1-GC5) in the algorithm.

• By GC1, the root Pr of T with L(Pr) = 0 joins both the
MIS and the CDS.

• By GC2 and GC3, process Pi (�= Pr) decides if Pi joins
the MIS.

– If each neighbor Pj ∈ Ni at which L(Pi) ≥ L(Pj)
holds is not a member of the MIS, then Pi joins
the MIS by GC2.

– If there exists a neighbor Pj such that L(Pi) ≥
L(Pj) holds and Pj is a member of the MIS, then
Pi leaves the MIS by GC3.



• By GC4 and GC5, process Pi (�= Pr) decides if Pi joins
the CDS.

– If Pi or its at least one child on T is a member of
the MIS, then Pi joins the CDS by GC4.

– Otherwise, Pi leaves the CDS by GC5.

By Γ, we denote a set of all configurations of SS-CDS.
A set of legitimate configurations is defined as follows.

Definition 7 A configuration γ is legitimate iff the follow-
ing three conditions are satisfied.

• Condition 1: γ is in ΓI , where ΓI ⊂ Γ is a set of con-
figurations such that a set of processes {Pi | ind(Pi) =
true} is an MIS of G which satisfies Theorem 1 on T ,

• Condition 2: ind(Pi) = true implies dom(Pi) = true
for each Pi, and

• Condition 3: a set {Pi | dom(Pi) = true} is a CDS-tree
of G.

By ΛC, we denote a set of legitimate configurations of SS-
CDS. �

5. Proof of correctness

Lemma 1 No process is privileged in configuration γ if and
only if γ ∈ ΛC.

Proof: Let γ be a configuration in which no process is priv-
ileged. Assume that γ �∈ ΛC.

• Suppose that Condition 1 is false, i.e., {Pi | ind(Pi) =
true} is not an MIS which satisfies Theorem 1 on T .
That is, the set {Pi | ind(Pi) = true} is not an indepen-
dent set, is not maximal, or does not satisfy Theorem 1
on T .

– We assume that the set is not an independent
set, i.e., there exists Pi and Pj in the set such
that they are neighbor each other. If L(Pi) =
L(Pj) �= 0, the guard of GC3 is true at Pi and
Pj because ind(Pi) = ind(Pj) = true. Similarly,
if 0 ≤ L(Pi) < L(Pj) (resp. L(Pi) > L(Pj) ≥ 0),
then the guard of GC3 is true at Pj (resp. Pi).
This is a contradiction for the assumption that
no process is privileged in γ . Therefore, the set
{Pi | ind(Pi) = true} is an independent set.

– We assume that the set is not maximal. That
is, there exists a process Pi with ind(Pi) = false
which has no neighbor Pj with ind(Pj) = true.
If L(Pi) = 0, then the guard of GC1 is true at

Constants— read only and automatically updated
Ni: The set of neighbors of Pi in underlying network G.
F(Pi) : A father of Pi in T .
L(Pi) : The distance from the root in T .

Variables
ind(Pi) : True iff Pi is a member of an MIS.
dom(Pi) : True iff Pi is a member of a CDS.

Macro
Grdk(k = 2,3) : The guard of GCk

A Set of Guarded-Commands:
∗[

/* GC1: Root joins an MIS and a CDS. */
L(Pi) = 0∧{ind(Pi) = false∨dom(Pi) = false}

→ ind(Pi) := true; dom(Pi) := true;
/* GC2: Join an MIS. */
L(Pi) �= 0∧ ind(Pi) = false∧

∀Pj ∈ Ni[L(Pj) > L(Pi)∨ ind(Pj) = false]
→ ind(Pi) := true;

/* GC3: Leave an MIS. */
L(Pi) �= 0∧ ind(Pi) = true∧

∃Pj ∈ Ni[L(Pj) ≤ L(Pi)∧ ind(Pj) = true]
→ ind(Pi) := false;

/* GC4: Join a CDS. */
L(Pi) �= 0∧¬Grd2 ∧¬Grd3 ∧dom(Pi) = false∧

{∃Pj ∈ Ni[F(Pj) = Pi ∧ ind(Pj) = true]∨
ind(Pi) = true}

→ dom(Pi) := true;
/* GC5: Leave a CDS. */
L(Pi) �= 0∧¬Grd2 ∧¬Grd3 ∧dom(Pi) = true∧

{∀Pj ∈ Ni[F(Pj) �= Pi ∨ ind(Pj) = false]∧
ind(Pi) = false}

→ dom(Pi) := false;
]

Figure 4. SS-CDS: A self-stabilizing approxi-
mation algorithm for the minimum CDS

Pi. If L(Pi) �= 0, then ∀Pj ∈ Ni[L(Pj) > L(Pi)∨
ind(Pj) = false] holds at Pi, and the guard of
GC2 is true at Pi. This is a contradiction for
the assumption that no process is privileged in
γ . Therefore, the set {Pi | ind(Pi) = true} is an
MIS.

– We assume that the set does not satisfy The-
orem 1 on T . By proof of Theorem 1, this
assumption means that there exists a process
Pi �= Pr with ind(Pi) = true whose father Pf (=
F(Pi) ∈ Ni) with ind(Pf ) = false on T is not ad-
jacent to another process Pj with ind(Pj) = true
and L(Pj) ≤ L(Pf ). Because L(Pf ) = L(Pi)− 1,
this assumption implies that ∀Pj ∈ Nf [L(Pj) >
L(Pf ) ∨ ind(Pj) = false]. Then, the guard of
GC2 is true at Pf . This is a contradiction for
the assumption that no process is privileged in γ .



Therefore, the set {Pi | ind(Pi) = true} satisfies
Theorem 1 on T .

Therefore, the Condition 1 is true in γ .

• Suppose that Condition 2 is false, i.e., there exists a
process Pi with ind(Pi) = true, but dom(Pi) = false.
If L(Pi) = 0, then the guard of GC1 is true at Pi. If
L(Pi) �= 0, then the guard of GC4 is true at Pi. This
is a contradiction for the assumption that no process is
privileged in γ . Therefore, the Condition 2 is true in γ .

• Suppose that Condition 3 is false. That is, a set
{Pi | dom(Pi) = true} is not a CDS-tree of G.

– Assume that the set is not a CDS. By the Con-
dition 2, the set is a dominating set because it is
clear that an MIS is a dominating set. Therefore,
the set is not connected. By Definition 6, there
exists a process Pi with dom(Pi) = false which
is a father of Pj with ind(Pj) = true for the as-
sumption. Then, the guard of GC4 is true at Pi.
This is a contradiction for the assumption that no
process is privileged in γ . Therefore, the set is a
CDS.

– Assume that the set is a CDS, but not a CDS-
tree. Then, by Definition 6, there exists a pro-
cess Pi with dom(Pi) = true, but neither Pi nor its
children are the members of the MIS. Then, the
guard of GC5 is true at Pi. This is a contradiction
for the assumption that no process is privileged
in γ .

Therefore, the Condition 3 is true in γ .

Therefore, γ ∈ ΛC if no process is privileged.
It is clear that no process is privileged if the configuration

is legitimate. �

Lemma 2 For any configuration γ0 and any computation
starting from γ0, eventually no process is privileged.

Proof: First, the root process Pr with L(Pr) = 0 executes
GC1 at most once, and decides the values of ind(Pr) = true
and dom(Pr) = true. These values never change after that,
because they are not changed by other guarded-commands.
Therefore, we suppose below that the values of them are
correct at Pr.

By the definition of SS-CDS, at Pi �= Pr, the value of
ind(Pi) is decided by GC2 or GC3, and these guarded-
commands do not refer to the values of dom(Pj) of any pro-
cesses Pj. Therefore, the value of ind(Pi) is decided before
the value of dom(Pi) is decided at each process Pi.

Suppose that there exists an infinite (non-converging)
computation starting from γ0. Then, there is a process Pi

such that L(Pi) �= 0 which executes infinitely often.

• Suppose that Pi with L(Pi) = 1 changes the value
of ind(Pi) infinitely often, i.e., Pi executes GC2 and
GC3 alternately infinitely often. However, because
ind(Pr) = true holds at Pr and the value never change,
Pi cannot execute GC2 by the definition of algorithm.
That is, Pi executes GC3 at most once. Therefore, Pi

with L(Pi) = 1 cannot execute infinitely often.

• Suppose that Pi with L(Pi) = d (d > 1) changes the
value of ind(Pi) infinitely often, and suppose that Ph

with L(Ph) = d − 1 never execute. Then, Pj ∈ Ni

with L(Pj) = d must change the value of ind(Pj) in-
finitely often by the definition of GC2 and GC3. If
there exists a process Ph ∈ Ni with L(Ph) = d − 1 and
ind(Ph) = true, then Pi cannot execute GC2. Then,
Pi cannot execute GC3 infinitely often. Therefore,
there exist no process Ph ∈ Ni with L(Ph) = d − 1 and
ind(Ph) = true. However, Pi can change the value of
ind(Pi) from false to true by GC2 only when all its
neighbor Pj with L(Pj)≤ d hold ind(Pj) = false by the
definition of GC2. After Pi executes GC2, the guard of
GC2 cannot become true at all of its neighbor Pj with
L(Pj) = d. Therefore, Pj cannot change the value of
ind(Pj) infinitely often. This is a contradiction for the
assumption. Therefore, Pi and Pj cannot execute GC2
and GC3 infinitely often.

There is no process which executes GC2 and GC3 infinitely
often. We suppose below that the value of ind(Pi) of each Pi

is correct, and never change.
Suppose that Pi changes dom(Pi) infinitely often, i.e., Pi

executes GC4 and GC5 alternately infinitely often. How-
ever, by the definition of GC4 and GC5, each process Pi

decides the value of dom(Pi) based only on the values of
ind(Pi) and each ind(Pj) where Pj is a child of Pi on T .
This is a contradiction for the assumption that the value
of ind(Pi) of each process Pi never change. The value of
dom(Pi) changes at most once.

Therefore, Pi cannot execute infinitely often. �

Theorem 3 The algorithm SS-CDS is self-stabilizing with
respect to ΛC.

Proof: Clear from Lemmas 1 and 2. �

Theorem 4 Time complexity of SS-CDS is O(n2) steps.

Because of limitation of space, proof of this theorem is
omitted.

Theorem 5 SS-CDS is a self-stabilizing approximation
algorithm for the minimum CDS problem in unit disk
graphs. The size of the solution by SS-CDS is at most
8|Dopt |+ 1, where Dopt is a minimum CDS.



Proof: From Theorem 3, the set {Pi | dom(Pi) = true} is
a CDS-tree. From Theorem 2, the size of the solution by
SS-CDS is at most 8|Dopt |+ 1. �

6. Conclusion

In this paper, we proposed a self-stabilizing distributed
approximation algorithm for the minimum CDS in unit disk
graphs. As an application of the proposed algorithm, a min-
imum CDS is a virtual backbone or routing in mobile ad
hoc networks. Since our algorithm is self-stabilizing, it is
strongly desirable in mobile ad hoc networks.

The size of the solution by our algorithm is at most
8|Dopt |+1, where Dopt is a minimum CDS. The time com-
plexity is O(n2) steps. Development of a self-stabilizing
approximation algorithm with better approximation ratio is
left for future work.
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