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Abstract

A new dynamic vector approach for the selection and 

management of the configuration of a reconfigurable 

superscalar processor is proposed. This new method 
improves on previous work that used steering vectors to 

guide the selection of functional units to be loaded into 

the processor. Dependencies among instructions in the 
instruction buffer are analyzed to enable a new scoring 

method. The dynamic vector technique is shown to reduce 

the amount of reconfiguration required while preserving 
execution resources. Simulation results reveal that, given 

enough configurable space, the configuration of the 

processor approaches a stable state.  

1. Introduction and Related Work 

This paper builds on work presented in [1] where a 

configuration management controller for a reconfigurable 

superscalar processor is proposed. A main goal of the 

extensions proposed and studied in this paper is to 

optimize the usage of the reconfigurable resources 

available in the processor proposed in [1]. 

The architecture assumed in this paper is similar to that 

presented in [1] and originally proposed in [2]. This 

architecture is partially run-time reconfigurable at the 

level of reconfigurable functional unit (RFU) “slots”. The 

architecture of [1] provides eight RFU “slots” and a 

number of fixed functional units (FFUs) that cannot be 

reconfigured. As a program is executed, the configuration 

manager loads execution units into the RFU slots, as 

needed. Each type of execution unit that can be loaded 

requires one or more RFU slots. Five types of execution 

units are included: (1) integer arithmetic/logic units (Int-

ALUs), (2) integer multiply/divide units (Int-MDUs), (3) 

load-store units (LSUs), (4) floating-point arithmetic/logic 

units (FP-ALUs), and (5) floating-point multiply/divide 

units (FP-MDUs) [1]. Table 1 lists the number of slots 

required to support each type of execution unit. 

The main contribution of [1] is a configuration 

management system that determines when the processor 

should be reconfigured, by RFU type and quantity. The 

method proposed in [1] uses a “Configuration Selection 

Unit” that chooses between one of four possible pre-

defined configurations (referred to as “steering vectors”). 

The RFUs defined by the chosen steering vector are 

configured into idle RFU slots provided in the processor 

[1]. 

The Configuration Selection Unit determines which 

steering vector to use based on a “configuration error 

metric” (CEM) that compares the needs of the instructions 

in the instruction buffer with that of three pre-defined 

steering vectors (shown in Table 1 as Configurations 1 – 

3) as well as the current configuration. The steering 

vector, or the current configuration, that is closest (i.e., 

that has the smallest CEM value) to the needs of the 

instructions in the instruction buffer is chosen and loaded 

into available RFU slots. If a configured RFU is currently 

busy executing an instruction, it is not reconfigured. Thus, 

at any point in time, the current configuration of the RFUs 

contains a mixture of the execution unit combinations 

specified by the three steering vectors [1]. 

The number of execution units of each type that are 

specified by the steering vectors is provided in Table 1. 

Note that in [1], the steering vectors not only specify the 

types and quantities of execution units that can be loaded 

into the RFU slots, but also specify where they can be 

loaded into the RFU slots. Additionally, to prevent 

stalling, in the case where a required execution unit is 

never loaded, a set of five fixed functional units (FFUs) 

consisting of one of each type of execution units is 

provided in the architecture of [1]. 

The CEM calculation of [1] considers all instructions 

in the instruction buffer regardless of instruction status 

(unassigned and ready for execution, assigned and 

executing, waiting on dependencies, or independent). 

Thus, priority is not given to those instructions whose  
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Table 1. Number of each type of functional unit provided in [1] and the number of RFU slots 
required for each type, derived from [1]. 

 Int-ALU Int-MDU LSU FP-ALU FP-MDU 

# of RFU Slots Required 2 2 1 3 3 

RFUs – Configuration 1 1 1 4 0 0 

RFUs – Configuration 2 0 0 2 1 1 

RFUs – Configuration 3 2 2 0 0 0 

RFUs – Configuration 0 (Current) 0 - 2 0 - 3 0 - 4 0 - 1 0 - 1 

FFUs 1 1 1 1 1 

dependencies have been met and have not been 

scheduled. This can result in the processor disregarding 

instructions that may be on a critical path of flow through 

the program, thereby degrading the processor 

performance. By contrast, the approach introduced in this 

paper proposes a new procedure based on dynamic vector 

construction (DVC) that prioritizes instructions such that 

satisfaction of their resource requirements is guaranteed, 

thereby eliminating the need for fixed units. Also, the 

proposed approach considers the effect of dependencies 

between instructions to make more effective use of 

reconfigurable resources. For example, a dependent chain 

of three instructions that all require the same type of RFU 

are recognized as needing only one RFU of that type, and 

not three. The scoring approach in [1] does not consider 

dependencies among instructions and thus would deduce 

that three instructions of the same type require three 

RFUs, even though the linear structure of the dependency 

chain may not admit the assumed parallelism. 

The remainder of the paper is organized as follows: 

Section 2 introduces formal developments related to 

reconfiguration complexity and the steering vector based 

approach of [1]; Section 3 proposes and evaluates 

extensions to the steering vector approach of [1]; Section 

4 reviews previous work related to the new DVC 

procedure; Section 5 details the DVC procedure; Section 

6 presents an experimental study of the new DVC 

procedure. 

2. Configuration Space Complexity 

For the static steering vector method of [1] it is 

important to assure that all possible combinations (or all 

desired combinations) of RFUs are achievable through 

proper selection of steering vectors. The analysis provided 

in this section provides results and conditions related to 

the satisfaction of this objective. 

For the purposes of our analysis, we assume a finite 

reconfigurable space of integer size, and we further 

assume that the size of the RFU’s is of integer 

measurement and, without loss of generality, that the size 

of the smallest RFU is unity. For a given collection of 

steering vectors, there exist a finite number of possible 

permutations of the RFUs that can ultimately populate the 

configurable space. Recall that the approach of [1] yields 

a current configuration that is generally a combination of 

the steering vector components. This is because a selected 

steering vector is generally only partially loaded, i.e., only 

those vector elements (RFUs) associated with available 

slots are loaded.  

Some of the resulting permutations are equivalent in 

the sense that they contain the same number of RFUs of 

each type. We will refer to each set of equivalent 

permutations as a unique combination. The number of 

unique combinations can be calculated directly from the 

size of the reconfigurable space and the size of each RFU 

considered. Let N denote the (integer) size of the 

reconfigurable space and let E be an n-tuple vector where 

each element e1, e2, e3,…, en designates the integer size of 

n possible RFU types. Finally, let the vector 

nkkkkK ,...,,, 321  represent the multiplicity of each 

RFU type present in a given combination. With these 

definitions, the number of unique combinations is equal to 

the number of nonnegative integer solutions to Equation 

(1), which is expressed in component form in Equation 

(2). As stated earlier, we assume a minimal RFU size of 

unity, which implies that all combinations are complete in 

the sense that “wasted space,” does not exist. 

NKE                              (1)

Nekekekek nn332211         (2)

The number of nonnegative integer solutions to 

Equation (2) may be found either iteratively or with the 

clever use of a power series representation, as illustrated 

by Example 1. 

Example 1. Calculation of the number of unique 

combinations with E = <1,2,2,3,3> and N = 8. 

Recall that k1, k2, k3, k4, and k5 are the multiplicity of 

each RFU type in a given combination. Then from 

Equation (2): 

83322 54321 kkkkk             (3)



The number of unique combinations is exactly equal to 

the number of nonnegative integer solutions to Equation 

(3). Although an iterative method for determining the 

solutions is possible, a more convenient way to count the 

number of solutions is to use a power series 

representation. The identity relation in Equation (4) can 

be used to derive Equation (5) [3]. 
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Consider the exponent, 2i, on the left hand side of 

Equation (5) to represent the amount of available 

reconfigurable space. Further, for the sake of discussion, 

assume we wish to fill this space with two different 

elements, each of size two, then the coefficient, i+1,

represents the number of unique ways that the space can 

be constructed. A power series representation of our 

specific example is shown in Equation (6). Si is the 

number of ways in which we can fill a space of size i
using one element of size one, two elements of size two, 

and two elements of size three. The goal is to find 8S , the 

coefficient proceeding x8 on the left hand side of Equation 

(7).  
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Use of Equation (4) reduces Equation (6) into a 

compact form given by Equation (7), where a=k1,

b=k2+k3, and c=k4+k5:
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Because there are many ways to obtain an exponent of 

eight using the exponents on the right hand side of 

Equation (7), we must iterate through them to determine 

the coefficients whose sum is 8S .

For 2c , an exponent of size six is produced: 
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To obtain an exponent of size eight, we can either set 

b=1 and a=0, or b=0 and a=2. The results, respectively: 
8620 6)3)(2)(( xxxx (9) 

8602 3)3)()(( xxxx (10)

Now, with c=1, an exponent of size three is produced: 
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To obtain an exponent of size eight, we can either set 

b=2 and a=1, or b=1 and a=3, or b=0 and a=5. The results 

again, respectively: 
834 6)2)(3)(( xxxx (12)

8323 4)2)(2)(( xxxx (13)

8305 2)2)()(( xxxx (14) 

With c = 0 an exponent of size eight now becomes a 

full iteration through the variable b. The values are shown 

here along with the obtained coefficients from the right 

hand side of Equation (7). 
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For b = 4, a = 0:  
8080 5))(5)(( xxxx   (16) 

For b = 3, a = 2: 
8062 4))(4)(( xxxx   (17) 

For b = 2, a = 4: 
8044 3))(3)(( xxxx   (18) 

For b = 1, a = 6: 
8026 2))(2)(( xxxx   (19) 

For b = 0, a = 8: 
8008 ))()(( xxxx   (20) 

8S  is the sum of all the coefficients obtained in the 

construction of exponents of size eight on the right hand 

side of Equation (7) as shown in Equations (9, 10, 12-14, 

and 16-20). 

3612345246368S

In this specific example configuration space, thirty-six 

possible unique execution unit combinations are possible. 

If steering vectors are selected properly, then thirty-six 

unique configurations would be possible during run-time.

In order to develop a set of steering vectors that can 

reach all of the unique combinations of the RFU types, 

first observe that within the entire set of unique 

combinations there exists a subset of combinations in 

which only one type of RFU appears in each. The size of 

this subset is equal to the number of RFU types. This set 

of vectors forms a basis for reaching every unique 

combination. Other valid basis sets can be derived from 

this subset by interchanging RFUs among the steering 

vectors, provided that the slots inhabited by a given RFU 

type remain disjoint from slots inhabited by other RFU’s 

of the same type. 



3. Steering Vector Score Analysis 

The steering vector score as proposed in [1] can be 

improved by (1) simply scoring only those instructions 

that are ready for assignment. However, this may result in 

an overreaction to the instructions’ actual needs causing 

the machine to thrash about in a constant state of 

reconfiguration. There are other scoring methods possible, 

such as: (2) scoring only instructions that are unassigned, 

(3) scoring only instructions that are ready (dependencies 

met), and (4) scoring only instructions that are dependent. 

To study the steering vector scoring alternatives, the 

Susan benchmark from the Automotive and Industrial 

Control category of the MiBench set of embedded 

benchmarks was chosen. The Susan benchmark is an 

application that is used to detect corners and edges in 

images [4]. The benchmark is traced on a PowerPC based 

machine and the resulting trace is simulated using a 

software-based simulator of the scoring technique. This 

simulator determines when the RFUs of the processor 

should be reconfigured and when to issue instructions to 

the FFUs and RFUs. Various statistics are gathered by the 

simulator such as the total estimated clock cycles to 

complete the benchmark and the average usage of the 

FFUs and RFUs. 

Additionally, RFUs required in the first level of the 

directed acyclic graph (DAG) may also be required for 

levels further into the DAG; however, the score in [1] 

assumes the resource requirement should be the sum of all 

the resources needed by each level in the DAG. This is 

inaccurate since the resource needs are actually the 

maximum number of resources required by each level and 

type, calculated as the maximum of each resource type 

required by each level. An example of this calculation is 

shown in Figure 1. 

The simulation results shown in Table 2 suggest that 

the fixed RFU’s perform the bulk of the processing. It is 

also apparent that the configurable space is sparsely used, 

and therefore unable to impact the total execution time in 

any discernable manner with regard to the specific scoring 

method being employed. 

Table 2 also suggests that some RFUs are configured 

but never used. To overcome the deficiencies of these 

scoring methods, a new dynamic vector construction 

(DVC) procedure is developed in Section 5 that performs 

resource allocation according to a DAG level analysis. 

4. Related Work in Dynamic Vector 

Construction

The new DVC procedure presented in Section 5 

provides an improved scoring method using a level 

analysis of the DAG, the results of which are used by a 

dynamic vector update (DVU) procedure that configures a 

resource vector. The DVC method concerns the mapping 

of a sub-DAG contained within an instruction buffer onto 

a set of dynamically changing resources. In the past, a 

number of solutions have been proposed for the mapping 

of a DAG onto a set of fixed resources, where the 

resources have traditionally been a static set of 

heterogeneous processors [5-8]. 

Table 2. Simulation results with steering vectors and FFUs, varying score method, varying 
instruction buffer size, a reconfiguration time of eight clock cycles, and a reconfiguration space of 
eight RFU Slots. 

4 63335875 1.002042 0.283295

8 50585521 1.405507 0.207679

12 45410010 1.603518 0.204732

16 45911824 1.619694 0.18068

4 63483253 1.105618 0.177432

8 50349612 1.416548 0.198542

12 45860338 1.613274 0.178723

16 45964526 1.608275 0.188117

4 63191348 1.19228 0.100043

8 50423021 1.506096 0.109673

12 45860883 1.689452 0.091539

16 46277048 1.650722 0.115905

4 63868305 0.983803 0.288484

8 50379426 1.29472 0.320752

12 45847016 1.66918 0.109271

16 46802729 1.620023 0.12835
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Figure 1. Reconfigurable functional unit 
need calculation comparison.

Previously, DAG mapping is cast as a two part 

problem where the solution, usually either a priority based 

list [5] or a dynamically calculated heuristic [5, 6], 

encompasses both the mapping and the scheduling of 

instructions from the DAG onto a set of static resources 

[5-7]. For the case of static resources, mapping and 

scheduling are dependent and cannot be broken down into 

independent sub-problems [5]. However, when a set of 

instructions are to be scheduled and mapped onto a set of 

dynamically changing resources, as is the problem of 

concern in this paper, scheduling and mapping solutions 

can be considered independent. 

The work in [5] claims that mapping and scheduling 

are dependent since all instructions in a specific DAG 

level are forced to depend on all instructions in the 

previous DAG level. The advantage of using dynamically 

reconfigurable resources is that resource need of an 

instruction is a function of its position in the DAG. A 

level analysis procedure can be used to create a near 

optimal resource map that can be dynamically updated to 

correspond to the changing needs of incoming 

instructions. This resource map creation allows the DVC 

procedure to support instruction level parallelism (ILP) as 

well as resource allocation for the critical path.  

The work in [6] focuses on best matching of 

instructions to resources with the use of a generalized 

dynamic level (GDL) calculation; however, GDL does not 

prioritize based on dependencies and therefore no priority 

is given to ILP opportunities.  

In [7], ILP is exploited using either counting or bit 

vector algorithms that dynamically analyze the 

instructions in the DAG and place ready instructions into 

a processing queue. Since reconfiguration is not 

considered, there is no attempt to analyze the DAG by 

level and detect future ILP. 

5. DVC Procedure

This section proposes a new technique for the 

determination of resources required to support 

instructions that are in the instruction buffer. This 

technique analyzes the sub-DAG of the program being 

executed that consists of the instructions present in the 

instruction buffer. Section 5.1 discusses how each level of 

this sub-DAG is analyzed to identify the resources 

necessary to exploit the inherent ILP of each level. 

Section 5.2 presents the dynamic vector update procedure 

that uses the results of this analysis to prioritize RFUs, by 

level, in order to determine which RFUs should be loaded 

into or removed from the current configuration. 

5.1. Level Analysis Procedure 

The dependencies between instructions in the 

instruction buffer can be represented by the dependency 

matrix D. Note that D is of square dimension and is of 

size n×n, where n is equal to the number of instructions. 

Any element of D, dij, having a logic value of one 

indicates that instruction i is dependent upon the 

completion of instruction j; otherwise, dij has a logic value 

of zero. A procedure is presented that transforms the 

instruction dependency matrix D into a level readiness 

matrix T, where any element, tij, having a logic value of 

one indicates that instruction j is a member of level i.
For convenience in transforming matrix D into matrix 

T, an intermediate matrix M is used, where each element 

in M, mij, having a logic value of one indicates that 

instruction j is a member of level less than or equal to i.

Observing that any instructions that depend solely on 

those that are members of level zero must be members of 

level one. Additionally, all instructions in level one must 

be dependent upon at least one instruction that is a 

member of level zero. Thus, it is apparent that if the 

projection of row i of D onto row j of M is equal to row i

of D, instruction i must depend on a level less than or 
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equal to j. Following this logic, matrix M is created, as 

specified in Equation (20). 
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Note that M defined by Equation (20) is complete. The 

final step in the transformation from D T is shown in 

Equation (21). This equation applies an XOR operation 

across the columns of M to separate the rows of M.
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The intermediate matrix, M, is not necessary for 

implementation, and T can be computed directly from D

using a combinational circuit.  

5.2. Dynamic Vector Update Procedure 

Given the results obtained through level analysis of the 

DAG and information on the specific resource 

requirements of any given instruction, the exact resources 

necessary for exploiting all of the ILP for any given sub-

DAG can be determined. A priority-based scheduling 

solution exists provided that the allocated resource space 

is at least as large as the largest RFU. We assume that 

RFU slots can be reconfigured as necessary if contiguous 

available space exists that is greater than or equal to the 

size of the RFU being configured. The goals of the 

dynamic vector update (DVU) procedure are to (1) avoid 

loading unnecessary resources, (2) avoid discarding 

valuable resources, and (3) guarantee efficient execution 

of instructions along the critical path when possible. 

Let R be a k element vector where each element is of 

size n2log , and each element, rj, represents the number 

of resources of type j necessary for satisfying instructions 

at the level currently being analyzed. Using R, the DVU 

procedure is shown in Figure 2. 

Note that only unassigned instructions are considered 

to have RFU needs, and the DVU procedure only 

analyzes unassigned instructions. 

To avoid loading of unnecessary resources, 

examination of resource needs by level guarantees that the 

possibility of reusing resources between levels is 

completely exploited. For example, if level zero requires 

two type A resources, and level three requires one type A 

resource, and no other levels require any type A 

resources, then the actual need for all levels is two type A 

resources. In contrast to the steering vector approach that 

would assume that three type A resources are necessary,  

Initialize Configured Resources Priority to level n 

Loop over levels 1,0 ni

R = Count of resources types required by level i 

While the resource configuration space contains 

resources required by R 

Set resource priority to level i 

Decrement requirement in R because the resource 
already exists 

Loop over R 1,0 kj

If R(j) > 0 

Load Resource Type (i, j) 

End Loop 
End Loop  

Load Resource Type 

Loop over resource configuration space 

If Contiguous space exists  

If unused space exists 
Load Type j at current location 

Else if space is unused and designated for level 

greater than or equal to i 

Load Type j at current location 

Else Fail 
End loop 

End Load Resource Type 

Figure 2. Dynamic vector update procedure.

the level dependency analysis procedure makes efficient 

use of resources, as this analysis can detect that multiple 

levels can utilize the same resources over time. 

To avoid discarding valuable resources, if there are 

unused RFU slots, the dynamic loading strategy will use 

those slots. Over time it becomes necessary to discard 

unused resources and load others. For example, if level 

one requires RFU type B and the RFU is not currently 

loaded into any slot, the procedure would allow a resource 

of type B to be loaded in any space that will not be used 

for levels zero or one. To guarantee that valuable 

resources are not discarded, any level being analyzed for 

resource loading can only discard resources that are not 

designated for use by a previous level, including the 

current level. This policy also has the effect of making the 

process of resource discarding priority-based. 

The exploitation of ILP at level zero is limited by the 

size of the configuration space and the ability to locate 

contiguous available space for loading the required RFUs. 

Therefore, the instruction buffer and the configuration 

space should be carefully designed to ensure that the 

DVU procedure is able to utilize ILP. Example 2 shows 

the DVC level analysis procedure for the DAG given in 

Figure 1. 



Example 2. Calculating Matrix T from Matrix D 

begins with a complete dependency matrix D, 

obtained, in this example, by analyzing Figure 1. 
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D

The first row of matrix M is calculated using Equation 

(20), where i=0. Elements m0,0 and m0,5 are shown in 

Equations (22 and 23), respectively. Equation (24) shows 

row zero of M.
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The result obtained in Equation (22) shows that 

instruction zero is a member of level zero. Equation (23) 

shows that instruction number 5 is not a member of level 

zero. All other rows of M are calculated using the second 

part of Equation (20). Equation (25 - 27) show the 

calculation of m1,4.
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Calculating each element, shown in Equations (25-27) 

results in M, shown in Equation (28):  

                   

11111111

11111111

11111111

11111111

11111111

01111111

00011111
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M                (28) 

Matrix T is determined using Equation (21). 

Calculation of t1,3 and t1,6 are shown in Equations (29) and 

(30), respectively. 

13,03,13,1 mmt                 (29) 

           06,06,16,1 mmt                 (30) 

The result shown in Equation (29) indicates that 

instruction number 3 is a member of level one. The result 

shown in Equation (30) indicates that instruction number 

6 is not a member of level one. 

Examination of Figure 1 confirms the results obtained 

in Equations (29) an (30), as well as the final matrix T

shown below in Equation (31). 
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6. Experimental Results 

This section presents an experimental study of the 

DVC procedure proposed in Section 5. This study 

evaluates the procedure on the basis of execution time and 

RFU slot usage using a software simulator that simulates 

the Configuration Manager of [1] modified to use the 

DVC procedure instead of a steering vector based 

approach. This simulator permits the size of the 

configuration space, the time required to reconfigure an 

RFU slot, and the instruction buffer size to be specified 

by the user. 

The study presented in this section examines the 

performance of the DVC procedure on the same Susan 

benchmark [4], which was used in the evaluation of the 

steering vector scoring technique in Section 3. The 

simulator reads the Susan benchmark trace, reconfigures 

the processor and assigns instructions according to the 

DVC procedure. As a final output, for a given buffer size, 

the simulator identifies the optimal number of execution 

units by type and quantity. 

Figure 3 shows that as the configuration space size is 

increased, the reconfiguration time becomes less of a 

factor in the overall performance of the machine. When 

given enough configuration space, the DVC procedure 

converges to a near-optimal configuration and remains 

stable, thereby eliminating the need for further 

reconfiguration and reducing the time penalty incurred 

due to reconfiguration. 

Figure 4 shows that as the DVC converges to the 

optimal configuration, units (RFU slots) are no longer 

configured and not used, i.e., wasted. Note that units are 

wasted when there is not enough configurable space to 

load units in advance. This is due to the fact that if there is  
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Figure 4. Number of units wasted versus 
configuration space size, measured in slots, 
with an instruction buffer of size of eight.

not enough space, then some unit must be preempted 

when another unit of higher priority is chosen to be 

loaded. 

The results obtained through simulation suggest that 

when given enough configuration space, the DVC 

procedure causes the combination of RFU’s in the 

configuration space to converge to a stable and near-

optimal configuration. When the configurable space is in 

an optimal configuration, the number of units wasted 

approaches zero. Also, if the DVC procedure converges 

quickly, then the overall reconfiguration time is 

minimized. 

7. Conclusions

A new approach for the selection and management of 

the configurable space of a reconfigurable superscalar 

processor is proposed. This approach is based on a sub-

DAG level analysis of the instructions in the instruction 

buffer of the processor. This analysis determines the 

priority of functional units to be loaded into the 

configurable space according to their dependency level in 

the sub-DAG. The method is shown to provide efficient 

utilization of configurable resources resulting in a 

minimal amount of reconfiguration. 
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