
Applying Single Processor Algorithms to Schedule Tasks on
Reconfigurable Devices Respecting Reconfiguration Times∗

Florian Dittmann and Marcelo Götz
Heinz Nixdorf Institute, University Paderborn, Germany

Fuerstenallee 11, 33102 Paderborn, Germany, {roichen, mgoetz}@upb.de

Abstract

In the single machine environment, several schedul-
ing algorithms exist that allow to quantify schedules
with respect to feasibility, optimality, etc. In contrast,
reconfigurable devices execute tasks in parallel, which
intentionally collides with the single machine princi-
ple and seems to require new methods and evaluation
strategies for scheduling. However, the reconfiguration
phases of adaptable architectures usually take place se-
quentially. Run-time adaptation is realized using an
exclusive port, which is occupied for some reasonable
time during reconfiguration. Thus, we can find an anal-
ogy to the single machine environment. In this paper,
we investigate the appliance of single processor schedul-
ing algorithms to task reconfiguration on reconfigurable
systems. We determine necessary adaptations and pro-
pose methods to evaluate the scheduling algorithms.

1 Introduction

Recently in the reconfigurable computing field, sev-
eral authors have proposed similar architectural con-
cepts for fine-grained run-time reconfigurable systems.
The architectures comprise a specific number of slots,
in which tasks are dynamically allocated and executed.
In addition, the inherent parallelism of fine-grained de-
vices enables the implementation of tasks executing in
space, i. e., mostly faster than in software. All together,
flexibility and performance are merged in a sophisti-
cated run-time environment implemented as a Recon-
figurable System-on-a-Chip (RSoC).

Efficient executing of tasks on such devices is proved
to be not a trivial problem. Apart from area assign-
ment, de-fragmentation and communication problems,
which are extensively studied on the above mentioned

∗This work was partially supported by SFB 614 and SPP 1148
of the DFG (German Research Foundation).

platforms, the reconfiguration itself demands further
investigation. Despite the possibility to execute several
tasks on this chip in parallel, the reconfiguration of the
slots is sequential. There exists one reconfiguration
port only, which must be used exclusively. Further-
more, the reconfiguration time cannot be neglected.

Those two characteristics (exclusiveness and recon-
figuration time) enable the appliance of methods of
the single processor domain to the reconfigurable run-
time environments. Scheduling algorithms of the sin-
gle machine domain sequentially assign a set of tasks
to the processor. Similar, reconfiguration phases must
be assigned sequentially to the exclusive reconfigura-
tion port. We investigate several scheduling strate-
gies known from single processor real-time systems and
adapt them for our scenario. We rely on independent
tasks and propose a novel approach where a task may
be preempted in its reconfiguration phase. Addition-
ally, we explain how guarantee tests can be realized.

The rest of the paper is organized as follows. After
summarizing related work, we abstract the scenario.
Then, we investigate a set of independent tasks having
synchronous arrival time and subsequently enhance the
scenario to tasks having arbitrary arrival times. We
show the analogy and limitation to the single environ-
ment schedule. We conclude and give an outlook.

2 Related Work

Significant amount of work has already been done in
online scheduling of real-time tasks on reconfigurable
architectures. Most works distinguish two main prob-
lems: task scheduling and task placement.

In the work presented in [2], the area occupied is
optimized, respecting the task time constraints, where
tasks are not allowed to be preempted. Similarly, the
authors of [8] and [6] analyze the effect of overall re-
sponse time and guarantee-base scheduling when tasks
comprise different shapes. When task preemption is al-

1-4244-0054-6/06/$20.00 ©2006 IEEE

Figure 1. Exemplary architectural concept.

lowed [1, 9], the task acceptance rate is improved. How-
ever, hardware task preemption represents additional
costs due to still non-efficient techniques and methods
available. All those concepts are based on partially re-
configurable devices such as Xilinx FPGAs. However,
we seldom find concepts that respect the reconfigura-
tion time or even the sequential reconfiguration. Usu-
ally, both are neglected due to the assumption that the
execution time is much higher than the reconfiguration
time [9]. In our paper, we propose the inclusion of the
reconfiguration phase into the scheduling of real-time
tasks on reconfigurable devices.

3 Problem Abstraction

We rely on the above mentioned RSoCs and abstract
them first. If we have n tasks to be executed, each in
one of the m slots, and m < n, i. e., the number of slots
is smaller than the number of tasks to be executed, we
have to reuse the same slot for multiple tasks. More-
over, all tasks are loaded (by means of slot reconfig-
uration) through one single port. The tasks arrive at
the same or arbitrary time. In the scope of this paper,
all tasks are aperiodic and have no precedence con-
straints. Additionally, the tasks are not preemptive in
their execution phase. All tasks occupy a whole slot
and comprise the same size. There may be internal
fragmentation, which is out of scope of this paper. An
abstract view of the execution platform can be found in
Figure 1 (see also [7, 10]). Partial reconfiguration capa-
bilities enable a single slot to be reconfigured keeping
remaining ones in execution.

We model every task of our system with two differ-
ent phases. The reconfiguration phase (RT) represents
the configuration of the hardware itself. RT must pre-
cede the second phase, the execution phase (EX). Fig-
ure 2 shows these two phases. Horizontally, we display
the available slots and their occupation over time. RT
means that this slot is in reconfiguration, while EX de-
notes the execution of the task. As all tasks have the
same size, the RT phases are of the same duration. We
also display the motivation for partial reconfiguration.

Figure 2. RT and EX phase.

Figure 3. EDD scenario.

Partial reconfiguration results in an improved overall
response time of the task set, as RT can take place
during EX. Thus, we pipeline EX and RT of different
tasks, hiding the reconfiguration time.

Due to the exclusive usage of the reconfiguration
port, only one RT phases can be scheduled at the same
time. However, multiple tasks can execute at the same
time. Further resource conflicts (e. g., sharing of the
same bus) are out of the scope of this paper.

A Task ti has the computation or execution time
tEX,i, the reconfiguration time tRT and the deadline di.
We want to emphasize the maximum lateness, which is
a known metric for performance evaluation Lmax =
maxi(fi − di) (ref. to [3]). Furthermore, we define a
deadline d∗

i that is the deadline for the reconfiguration
phases. It is calculated using d∗

i = di − tEX,i.

4 Synchr. arrival of independent tasks

A set of n aperiodic tasks is executed in m slots
(m < n). The tasks have synchronous arrival time, but
different execution time tEX,i and deadline di. We do
not need preemption as no new tasks will enter the sys-
tem during run-time. The problem is solved in the sin-
gle processor environment w. r. t. minimizing the max.
lateness using earliest due date (EDD). The algorithm
executes the tasks in order of non-decreasing deadlines.
We apply EDD to our scenario, using d∗

i as deadlines.
We have to extend EDD due to the fact that the

seamless scheduling of RT phases can be blocked when
all slots are in EX phases, as displayed in Figure 3. We
may be forced to wait to start the next reconfiguration
due to full slot occupancy. A waiting period may be
enforced, which we denote as δi. In this case, the opti-
mality of EDD cannot be guaranteed. However, every
slot is executing, i. e., the FPGA is fully utilized and
does not waste free space. See Algorithm 1.

If we can guarantee at least one free slot at the be-
ginning of each RT, all results of EDD of the single
machine environment hold and EDD is optimal with

Algorithm 1 EDD for Reconf. Slot Architectures
1: if reconf. port is inactive (i. e., no RTactive) then
2: Find slot where no EX is active
3: if all slots are in EX phase then
4: Wait until at least one slot is available
5: end if
6: Reconf. slot r, (r = ind (min {z1, z2, . . . , zm}))
7: end if

respect to minimizing the maximum lateness. A suffi-
cient but not necessary condition to guarantee a free
slot is ∀i : tEX,i < tRT · (m − 1). Moreover, using this
formula, we can estimate the number of slots needed.

If we want to guarantee that a set of tasks can be
feasibly scheduled, we need to show that, in the worst
case, all tasks can complete before their deadlines. The
guarantee test for EDD in the single processor case
is ∀i = 1, . . . , n :

∑i
k=1 tEX,k ≤ di. In our scenario,

due to the possible delays when all slots are occupied
and the next RT phase is postponed, we must extend
every scheduled task by a possible additional δi. Thus,
it must hold ∀i = 1, . . . , n :

∑i
k=1 (tRT,k + δk) +

tEX,i ≤ di. The δk depend on the current occupation
of all slots of the system and are difficult to compute.
Therefore, our guarantee test avoids the explicit cal-
culation of the δk by computing the slot occupancies
iteratively. We sequentially run through the schedule
produced Algorithm 1 filling a vector z, whose entries
zl represent the slots of the reconfigurable fabric. The
vector is updated each time a new RT phase starts. Af-
ter the update, the vector’s entries display when (time)
their corresponding slots can be reconfigured next, also
concerning the global condition, i. e., the occupancy of
the reconfiguration port. Thus, by extracting the field
with the smallest value, we can determine the next slot
r for reconfiguration of the next task tj . We apply
r = ind (min {z1, z2, . . . , zm}), while ind is the index
function (see also Line 6 of Alg. 1). If multiple zl are
minimal, the selection is arbitrarily.

In detail, the entries of the vector are updated
(zr,old ⇒ zr,new) as follows: We add tRT and tEX,j

to the field of the selected slot (zr): zr,new = zr,old +
tRT +tEX,j . In order to update all other fields zl, l �= r,
we apply zl,new = max {zl,old, (zr,old + tRT)}. Thus, if
the finishing time of the RT phase of slot r is larger
than zl,old, slot l may be reconfigured, when the cur-
rently started reconfiguration has finished (zl,new =
zr,old + tRT). Otherwise, if slot l will still be in EX
phase when slot r has finished reconfiguration, we must
not select slot l for reconfiguration. Therefore, zl keeps
its value (zl,new = zl,old), which is larger than zr,new in-
dicating its next availability for reconfiguration.

Figure 4. EDD: feasible schedule problem.

Now, we can answer the question of feasibility of a
task tj , i. e., whether the deadline dj of task tj can be
met. After each update of the vector due to the dis-
patching of a task tj , it must hold zr,new ≤ dj . After
scheduling all tasks, we can calculate the overall finish-
ing time as the max {z1, z2, . . . , zm}.

As stated above, we cannot guarantee optimality. In
fact, EDD can fail to produce a feasible schedule due
to the possible additional δi of each task (see Figure 4).
Furthermore, we have to dissociate from the statement
that EDD also reduces the maximum lateness in our re-
configurable environment. To summarize, using EDD,
we can guarantee only to minimize the maximum late-
ness if no reconfiguration phase is delayed.

5 Asynchr. arrival of independent tasks

We now release the restriction of synchronous ar-
rival of all tasks, i. e., tasks can dynamically enter the
system. Now, preemption becomes an important fac-
tor. We find that when preemption is not allowed, the
problem of minimizing the max. lateness and the prob-
lem of finding a feasible schedule become NP-hard [5].
If preemption is allowed, Horn [4] found an algorithm,
called Earliest Deadline First (EDF), that minimizes
the maximum lateness. The algorithm dispatches at
any instance the task with the earliest absolute dead-
line. Preemption for tasks executing on hardware is
challenging and is not in the scope of this paper. How-
ever, we propose to preempt tasks during their RT
phase, when the calculation has not started and no
context saving, etc. is necessary.

In order to realize such a preemption, we divide the
area reconfigured during a RT phase into columns cj .
These columns are of equal size and comprise the equal
reconfiguration time t(cj). The reconfiguration process
then looks as follows: gradually all the cj of task tv
are loaded in slot sv of the reconfigurable fabric. If
a new task tw enters the system and has an earlier
deadline d∗

w, we preempt task tv, i. e., task tv frees the
reconfiguration port and task tw starts to reconfigure.

Depending on the current occupation of the fabric,
different scenarios for the slot assignment of task tw are

Figure 5. EDF schedule.

Figure 6. EDF schedule 2.

possible. If we have another free slot available (sfree �=
sv), we use this slot. After the RT phase of tw we can
resume the RT phase of tv at the interrupted point.
However, if no free slot is available, we can use slot
sv of the interrupted task. sv becomes the slot for tw
(sw ⇐ sv) and RTw overwrites all already configured
parts of tv. After finishing the reconfiguration of tw, we
cannot resume the RT phase (RTv) of the preempted
task. Instead, we have to restart RTv completely, as
already loaded parts of the bitstream are lost.

EDF in the uniprocessor domain minimizes the max-
imum lateness. Applying EDF for the reconfigurable
port scheduling, we cannot guarantee this minimiza-
tion. Again, if all slots are in EX phase, EDF cannot
load a dynamically arriving task as executing tasks are
assumed to be non-preemptive. We deal with an NP-
hard scenario in such a case. Furthermore, Figure 6
displays that a RT phase might have to be restarted

Algorithm 2 EDF for Reconf. Slot Architectures
1: if dnew < dc then
2: if all slots are in EX then
3: wait for next free slot
4: else if all other slots si �= slot(tc) in EX then
5: add tc completely to Q
6: reconfigure now free slot
7: else add rest of tc to Q
8: Reconfigure next free slot
9: end if

10: else Insert tnew in queue Q
11: end if

completely. This will increase the overall response time
and enforces a complex scheduling test to be done on-
line after each new task has entered the system.

6 Conclusion

In this paper, we have investigated scheduling
strategies known from the single machine environment
and applied them on reconfigurable devices. We fo-
cused on the reconfiguration process, as reconfigura-
tion phases are executed sequentially and thus are ap-
plicable for the uniprocessor scheduling algorithms. We
showed that the appliance of the scheduling algorithms
is possible and valuable for such scenarios, even though
some limitations have to be taken into account. More-
over, we discuss the possibility to allow task preemp-
tion during the reconfiguration phases instead of the
execution phases in order to improve the schedule fea-
sibility for tasks with asynchronous arrival time. We
plan to extend our scenario to aperiodic and periodic
real-time task sets also having precedence constraints.

References

[1] A. Ahmadinia, C. Bobda, D. Koch, M. Majer, and
J. Teich. Task scheduling for heterogeneous reconfig-
urable computers. In SBCCI, Brazil, 2004.

[2] A. Ahmadinia, C. Bobda, and J. Teich. A Dynamic
Scheduling and Placement Algorithm for Reconfig-
urable Hardware. In ARCS, Augsburg, Ger., 2004.

[3] G. C. Buttazzo. Hard Real Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
Kluwer Academic Publishers, 1997.

[4] W. Horn. Some simple scheduling algorithms. Naval
Reasearch Logistics Quarterly, 21, 1974.

[5] J. K. Lenstra, A. H. G. Rnnooy Kan, and P. Brucker.
Complexity of machine scheduling problems. Annals
of Discrete Mathematics, 1:343–362, 1977.

[6] C. Steiger. Operating systems for reconf. embedded
platforms: Online scheduling of real-time tasks. IEEE
Trans. Comput., 53(11):1393–1407, 2004.

[7] M. Ullmann, M. Hübner, B. Grimm, and J. Becker.
On-Demand FPGA Run-Time System for Dynam-
ical Reconfiguration with Adaptive Priorities. In
FPL2004, Antwerp, Belgium, 30 Aug. - 1 Sept. 2004.

[8] H. Walder and M. Platzner. Non-preemptive Multi-
tasking on FPGAs: Task Placement and Footprint
Transform. In ERSA, Las Vegas, June 2002.

[9] H. Walder and M. Platzner. Online Scheduling for
Block-partitioned Reconfigurable Devices. In Proc. of
DATE, Munich, Germany, March 2003.

[10] H. Walder and M. Platzner. A Runtime Environment
for Reconfigurable Hardware Operating Systems. In
Proceedings of the FPL 2004. Springer, August 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

