
Design Space Exploration for Low-Power
Reconfigurable Fabrics

Gayatri Mehta, Raymond R. Hoare, Justin Stander∗, and Alex K. Jones
{gmehta,hoare,akjones}@ece.pitt.edu, ∗jns36@pitt.edu
Department of Electrical and Computer Engineering
University of Pittsburgh, Pittsburgh, PA 15261 USA

Abstract— This paper presents a parameterizable, coarse-
grained, reconfigurable fabric model that attempts to maintain
Field Programmable Gate Array (FPGA)-like programmability
and Computer Aided Design (CAD), with Application Specific
Integrated Circuit (ASIC)-like power characteristics for Digital
Signal Processing (DSP) style applications. Using this model,
architectural design space decisions are explored in order to
define an energy-efficient fabric. The impact on energy and
performance due to the variation of different parameters such
as datawidth and interconnection flexibility has been studied.
The multiplexer cardinality usage has also been studied by
mapping some of the signal processing applications onto the
fabric. The results point to the use of power optimized 32-bit
width computational elements interconnected by low cardinality
multiplexers like 4:1 multiplexers.

I. INTRODUCTION

Hardware acceleration using Field Programmable Gate Ar-
rays (FPGAs) has become increasingly popular for compu-
tationally intensive Digital Signal Processing (DSP) applica-
tions. Unfortunately, while FPGAs have a reasonably tractable
Computer Aided Design (CAD) flow and performance, they
have poor power characteristics when compared to direct
Application Specific Integrated Circuit (ASIC) fabrication.
However, ASICs require more complex CAD than FPGAs and
large Non-Recurring Engineering (NRE) costs.

A reconfigurable device that exhibits ASIC-like power qual-
ities and FPGA-like costs and tool support is desirable to
fill this void. Several coarse-grained fabric architectures have
been proposed during the last decade such as MATRIX [1],
RaPiD [2], PipeRench [3]. Most of these have been focused
on performance and area-efficient architectural techniques with
the notable exception of reduced power consumption.

This paper proposes an approach to reconfigurable fabric
architectural space exploration with an emphasis on both per-
formance and energy efficiency. A parameterizable reconfig-
urable fabric model is presented that allows design parameters
to be adjusted within the architecture. The impact of varying
different design parameters such as the width of functional
units, and the granularity of interconnect are studied for their
implications on power and performance.

The remainder of this paper is organized as follows: Sec-
tion II describes relevant previous work particularly concen-
trating on the design space exploration of the reconfigurable
computational fabrics. The fabric architecture and configurable
parameters are described in Section III. Results for design

space exploration are presented in Section IV. Conclusions
and future work are discussed in Section V.

II. RELATED WORK

Several methods have been proposed in the past few years
for design space exploration of reconfigurable architectures
[4–6]. However, these methods are either too technology-
dependent or too architecture-dependent. Due to this draw-
back, these methods can not explore a large domain of the
design space. In order to overcome this limitation, Bossuet
et al [7] proposed a design space exploration method which
can be used to cover a wide domain of reconfigurable fab-
rics, from fine-grained to coarse-grained fabrics, as well as
heterogeneous fabrics. They used the architectural processing
use rate and the communication hierarchical distribution as
metrics to investigate a power-efficient architecture. However,
our work is focused on the study of the impact of varying
different design parameters such as the data width of the basic
functional units, and the granularity of interconnect on power
as well as performance of the reconfigurable architectures.

The proposed low-power fabric was designed to operate
within the SuperCISC processor architecture. The SuperCISC
processor was developed with a 4-way very long instruction
word (VLIW) core with a shared register file [8]. The idea
is to accelerate the high incidence code segments (e.g. loops)
that require large portions of the application runtime, called
kernels, while also accelerating the remaining non-kernel code
with the VLIW. These kernels are converted into entirely com-
binational hardware functions generated automatically from
the C using a design automation flow [8]. In order to create a
combinational hardware function, a technique called hardware
predication is employed to remove the need for sequential
logic. As a result, the Super Data Flow Graph (SDFG) can be
transformed into a combinational hardware implementation.

III. PARAMETERIZED RECONFIGURABLE FABRIC MODEL

SDFGs retain a data flow structure allowing computational
results to be computed in one ALU and flow onto others in the
system. The proposed reconfigurable fabric model is designed
to mimic this computational style. As shown in Figure 1,
ALUs are organized into rows or computational stripes within
which each functional unit operates independently. The results
of these ALU operations are then fed into interconnection
stripes constructed using multiplexers. The fabric model is

1-4244-0054-6/06/$20.00 ©2006 IEEE

ALU(1,1) ALU(1,2) ALU(1,3) ALU(1,W)

Interconnect

ALU(2,1) ALU(2,2) ALU(2,3) ALU(2,W)

Interconnect

ALU(H,1) ALU(H,2) ALU(H,3) ALU(H,W)

Fig. 1. The fabric model is comprised of Arithmetic Logic Units and a rec
onfigurable interconnect.

purely cominational. The fabric model was implemented in

TABLE I
PARAMETERS OF THE FABRIC MODEL. FOR THE DESIGN SPACE

EXPLORATION CONSIDERED HERE, FIXED OR LIMITED PARAMETERS ARE

INDICATED IN BOLD.

Global Parameters
ALU Datawidth DW = {8,16,32}
Fabric Parameters
Width of the fabric W
Height of the fabric H
Arithmetic and Logic Unit Parameters
Number of operands O= 2
Number of operations OP = 20
Interconnect Parameters
Multiplexer cardinality C= {2,4,8,16}

parameterized VHDL using the generic capability of the
VHDL language. Several parameters were included in the
fabric model and are listed in Table I.

The fabric size is determined with the parameters specifying
the width of the fabric W , height of the fabric H , and
datawidth DW . W dictates to the number of ALUs in each
computational stripe. The number of multiplexers in each
interconnection stripe is a function of both W and O as
each the input to each ALU operand is configurable. This is
shown in Figure 2. H determines the number of computational
and interconnection stripes in the fabric model. Thus, with
the parameterizable model, a fabric contains WxH DW -
wide ALUs segregated into H computational stripes. These
computational stripes are interconnected by H−1 stripes each
containing OxW DW -wide C : 1 multiplexers.

As the fabric model was designed for implementation of
SDFGs, in addition to the removal of need for internal
storage, one of the operations implemented within the ALU is

Mux1(R,0)

ALU(R-1,0) ALU(R-1,W)

Mux2(R,0)

ALU(R-1,0) ALU(R-1,W)

Mux1(R,W-1)

ALU(R-1,0) ALU(R-1,W)

Mux2(R,W-1)

ALU(R-1,0) ALU(R-1,W)

ALU(R+1,0) ALU(R+1,W)

Fig. 2. The multiplexer-based interconnection stripe structure.

hardware predication. This operation requires a third, single
bit operand to be included in the ALU. This bit specifies which
of the two input operands to propagate to the output, acting as
a selector. Thus, the interconnection stripe contains a third set
of single bit C : 1 multiplexers for controlling this operand.

IV. RESULTS

To begin studying the impact of various parameters of the
fabric, the ALU and multiplexer elements were studied indi-
vidually. The cardinality of the multiplexers was varied from
2 to 32 in powers of 2 and profiled for power consumption.
Different architectural techniques for implementation of the
ALU are also displayed including a study of varying the
width of ALU. A technique similar to [9] was used to power
profile various functional units and interconnect multiplexers
with different sets of values of average input signal probability
p, average transition density d and spatial correlation s. The
details of power modeling and analysis can be found in [10].
Finally, the study of multiplexer cardinality usage is done
based a set of core signal processing benchmarks, selected
from the MediaBench benchmark suite.

A. Multiplexer Cardinality Impact on Power

Mux Power Trends

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

3.50E-05

4.00E-05

4.50E-05

5.00E-05

0 5 10 15 20 25 30 35

Mux Cardinality

MAX

AVERAGE

MIN

Fig. 3. Power consumption in multiplexers of different cardinalities. Results
for a standard cell 160nm OKI ASIC process.

The power required in the interconnect depends heavily on
the cardinality of the multiplexers in the interconnection stripe.
To model this in part, the power impact of the cardinality of the

multiplexer is shown by the trends from Figure 3. As shown
in the figure, the maximum, minimum and average powers
consumed in the multiplexers increases linearly with the car-
dinality. While not shown explicitly, reducing the cardinality
also reduces the delay of the multiplexer. Thus, reducing the
multiplexer complexity is desirable if warranted by the needs
of the applications.

B. Architecture of the ALU

0

0.1

0.2

0.3

0.4

0.5

0.6

Add

Mult
ipl

y
Sub And Or

Nor Xor Not Ls
l

Ls
r

Rsl
Rsa Rsr

Cmp_
eq

Cmp_
gt

Cmp_
gte

Cmp_
lt

Cmp_
lte

Cmp_
ne

ALU operation

P
o

w
er

 (
m

W
)

Hardware ALU Optimized ALU

Fig. 4. Power results for several different functional unit implementation
techniques. Results for a standard cell 160nm OKI ASIC process.

The power consumed in the fabric is also heavily dependent
on the ALU power consumption. Several architectural tech-
niques for implementing computations in the functional units
were profiled including a high performance ALU, a power
optimized ALU and individual functional units directly. These
blocks were synthesized using 160nm OKI standard cells. The
results are shown in Figure 4.

The Hardware bar corresponds to the power results for
the blocks independently synthesized for each operation. The
ALU bar corresponds to a synthesizable ALU built struc-
turally from the Mentor Moduleware components. It exe-
cutes each function in parallel and selects the result using
a multiplexer after the computation completes. Finally, the
Optimized ALU represents a low-power ALU in which
latches are used at the input to each operation to avoid
unnecessary switching of the rest of the hardware blocks when
only a single operation is executed. The optimized ALUs are
used as computational elements of the fabric.

The datawidth of each functional unit has a significant
impact on power dissipation of the fabric. Thus, 8, 16 and
32-bit ALUs, which are candidates to be used as computa-
tional elements, have been power profiled for several ALU
operations.

The results shown in Figure 5 reveal that as datawidth
decreases by half, power dissipation also decreases by nearly
50% for all cases excepting multiplication. Because combi-
national multiplication has a stacking complexity it grows
faster than other functional units, and the power reflects that

0

2

4

6

8

10

12

14

Add

Mult
ipl

y
Sub And Or

Nor Xor Not Ls
l

Ls
r

Rsa Rsl Rsr

Cmp_
eq

Cmp_
gt

Cmp_
gte

Cmp_
lt

Cmp_
lte

Cmp_
ne

ALU operation

P
o

w
er

 (
m

W
)

bit ALU-32 bit ALU-16 bit ALU-8

Fig. 5. Power consumption of ALU for different datawidths.

0

1

2

3

4

5

6

7

8

Add

Mult
ipl

y
Sub And Or

Nor Xor Not Ls
l

Ls
r

Rsa Rsl Rsr

Cmp_
eq

Cmp_
gt

Cmp_
gte

Cmp_
lt

Cmp_
lte

Cmp_
ne

ALU operation

D
el

ay
 (

n
s)

bit ALU-32 bit ALU-16 bit ALU-8

Fig. 6. Delay results of ALU for different datawidths.

decreasing to about 30% of the 32-bit version. There is
a similar power trend between 16-bit and 8-bit operations.
Figure 6 describes the latency of each bit-width. While as
expected, the latency is lowest for the 8-bit ALU operations
the change is only a nominal decrease over a 16-bit ALU. Even
compared to a 32-bit ALU, the delay improvement is less than
50% at the cost of 3/4 of the bandwidth for the computation.

The energy results of ALUs of different datawidths are
shown in Figure 7. This chart includes the power consumption
of using a 32-bit wide ALU to compute both 16-bit and 8-bit
values in comparison to computing them directly on a 16-bit
or 8-bit wide ALU. This was done to calculate the energy
consumption overhead of a 32-bit ALU used for lower bit
width operations

Consider the dedicated width case (from left to right, the
first, second, and fourth bars of each operation), as datawidth
decreases by half, energy dissipation also decreases almost by
half for most of the ALU operations except multiplier. In the
case of multiplier, the energy is reduced to almost one-fourth
when datawidth decreases by half. However, the overhead in

0

10

20

30

40

50

60

70

80

90

100

Add

Mult
ipl

y
Sub And Or

Nor Xor Not Ls
l

Ls
r

Rsa Rsl Rsr

Cmp_
eq

Cmp_
gt

Cmp_
gte

Cmp_
lt

Cmp_
lte

Cmp_
ne

ALU operation

E
n

er
g

y
(p

J)

32-bit ALU 16-bit ALU 32-bit ALU (16-bit) 8-bit ALU 32-bit ALU (8-bit)

Fig. 7. Comparison of Energy consumption of 32-bit ALU, 16-bit ALU,
32-bit ALU used for 16-bit operations, 8-bit ALU and 32-bit ALU used for
8-bit operations.

using a 32-bit ALU for 16-bit operations as compared to
a 16-bit ALU is 2.5X on the average. The same trend is
observed if we compare the energy results of a 32-bit ALU
used for 8-bit operations and a 8-bit ALU. However, when
the multiplier is removed from consideration, the overheads
are much lower. While, it appears that the overhead actually
decreases for some of the logic operations, this is unlikely,
and the difference between the two calculations does not
exceed the estimated inaccuracy from using the PrimePower
simulation over a SPICE level simulation.

C. Multiplexer Cardinality Usage

%0

%01

%02

%03

%04

%05

%06

%07

%08

%09

%001

Ut
iliz

at
io

n
(%

)

egasU ytilanidraC rexelpitluM

xum 1:2 3939180849
xum 1:4 339012
xum 1:8 22554
xum 1:61 22550

ceD MCPDAcnE MCPDAloC TCDIwoR TCDIMSG

Fig. 8. Multiplexer cardinality usage.

In order to study the multiplexer cardinality usage, SD-
FGs of the benchmark circuits were mapped to the fabric
model by hand and through an automated mapping flow. The
multiplexers were then categorized based on whether they
would have been satisfied with a smaller multiplexer from

the group of 2:1, 4:1, 8:1 and 16:1 multiplexers. For this
analysis, the multiplexers are left justified, e.g. a 2:1 mux
can select from the value just overhead, or one element to
the right. A 4:1 mux selects from just overhead, and up to 3
values to the right, etc. As shown in Figure 8, the connections
satisfied with 2:1 multiplexers is significant, 88%. The need
for 16:1 multiplexers is only 3%. Since hardware predication
operation is done in some of the benchmarks, we can not use
2:1 multiplexers for 3-operand operations. So, our analysis
suggests that most of the connections can be justified using
lower cardinality multiplexers like 4:1 multiplexers. Due to
the trend of power consumption versus multiplexer cardinality
shown in Figure 3, it is desirable to utilize 4:1 multiplexers
wherever possible. Even though results suggested to use lower
cardinality multiplexers, fixing the multiplexer cardinality was
not possible due to the maturity of our tool flow, however, we
expect to pursue this in our future work.

V. CONCLUSION AND FUTURE WORK

In this paper, we described a generic and parameterized
fabric model that exhibits ASIC-like power characteristics
and FPGA-like programmability and tool support. The design
space exploration results suggested the use of power optimized
32-bit width computational elements interconnected by low
cardinality multiplexers like 4:1 multiplexers.

Our planned future work is to develop a mapper that can
handle limited cardinality routing. By doing so, we expect to
further improve power and performance results.

REFERENCES

[1] E. Mirsky and A. Dehon, “Matrix: A reconfigurable computing ar-
chitecture with configurable instruction distribution and deployable
resources,” in in Proceedings of the IEEE Workshop on FPGAs for
Custom Computing Machines, April 1996.

[2] C. Ebeling, D. C. Cronquist, and P. Franklin, “Rapid - reconfigurable
pipelined datapath,” in in the 6th International Workshop on Field-
Programmable Logic and Applications, 1996.

[3] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. R.
Taylor, “Piperench: A virtualized programmable datapath in 0.18 micron
technolog,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, 2002.

[4] P. Benoit, G. Sassatelli, L. Torres, D. Demigny, M. Robert, and
G. Cambon, “Metrics for reconfigurable architectures characterization:
Remanence and scalability,” in Reconfigurable Architecture Workshop,
2003.

[5] R. Enzler, T. Jeger, D.Cottet, and G. Troster, “High-level area and
performance estimation of hardware building blocks on fpgas,” in Field-
Programmable Logic and Applications Forum on Design Language,
2000.

[6] S. Bilavarn, G. Gogniat, J. L. Philippe, and L. Bossuet, “Fast prototyping
of reconfigurable architectures from a c program,” in IEEE Symposium
on Circuits and Systems, 2003.

[7] L. Bossuet, G. Gogniat, and J.-L. Philippe, “Generic design space explo-
ration for reconfigurable architectures,” in Proc. of the Reconfigurable
Architectures Workshop (RAW), 2005.

[8] R. Hoare, A. K. Jones, D. Kusic, J. Fazekas, J. Foster, S. Tung, and
M. McCloud, “Rapid vliw processor customization for signal processing
applications using combinational hardware functions,” EURASIP Jour-
nal on Applied Signal Processing, 2005, to appear.

[9] X. Liu and M. C. Papaefthymiou, “A markov chain sequence generator
for power macromodeling,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), July 2004.

[10] A. K. Jones, R. Hoare, D. Kusic, G. Mehta, J. Fazekas, and J. Foster,
“Reducing power while increasing performance with supercisc,” ACM
Transactions on Embedded Computing Systems (TECS), 2005, to appear.

