
Abstract
Modern FPGA platforms provide the hardware and

software infrastructure for building a bus-based System
on Chip (SoC) that meet the applications requirements.
The designer can customize the hardware by selecting
from a large number of pre-defined peripherals and fixed
IP functions and by providing new hardware, typically
expressed using RTL. Hardware accelerators that provide
application-specific extensions to the computational
capabilities of a system is an efficient mechanism to
enhance the performance and reduce the power
dissipation. What is missing is an integrated approach to
identify the computationally critical parts of the
application and to create accelerators starting from a high
level representation with a minimal design effort.

In this paper, we present an automation methodology
and a tool that generates accelerators. We apply the
methodology on an FPGA-based license plate
recognition (LPR) system used in law enforcement. The
accelerators process streaming data and support a
programming model which can naturally express a large
number of embedded applications resulting in efficient
hardware implementations. We show that we can achieve
an overall LPR application speed up from 1.2x to 2.6x,
thus enabling real-time functionality under realistic road
scenes.

1. Introduction
Embedded systems require designers to work under

tight time-to-market, power dissipation, area,
performance and cost constraints. The continuously
increasing NRE and mask set costs for smaller transistor
geometries make an ASIC standard-cell design
applicable only to high volume products with a well-
defined functionality that is not expected to vary
considerably during the product life span.
Reconfigurable computing using FPGAs has emerged in
the last few years as a potential replacement technology
in many cases. At the same time, there has been intensive
research and commercial activity in tools that abstract
out the hardware design process to the algorithmic level
in order to further reduce the time to market. An
architectural automation tool should be able to combine
interactive architectural exploration, automatic hardware-
software partition and an efficient mapping of one or

multiple kernels to the reconfigurable fabric.
Typically, scalar processors like the PPC405 in the

Virtex family of FPGAs, or the Nios synthesizable
processor in Altera FPGAs are reasonably efficient in
handling non-frequently executed or conditional code
with a low degree of instruction and data level
parallelism, even more efficient than mapping the same
code into gates [14]. However, scalar processors are very
inefficient for high throughput, parallelizable code due to
limited support for parallelism (instruction, data, and
task) and because of limited memory bandwidth from the
memory hierarchy to the narrow pipes of the main core.

We have developed an automation process which maps
streaming data flow graphs (sDFG) to accelerators of the
main scalar core. An sDFG expresses computation
kernels that process streams of data with a relatively
limited lifetime and deterministic memory access pattern.
The access patterns can be described independently from
the computations of the sDFG. The streaming model
decouples the description of the memory access
sequences from the computation, thus making the
customization of each of these two components easier
and more re-usable. An example figure of an sDFG is
given later when we discuss the LPR application.

 To show the applicability of the streaming model in
embedded systems, we describe how the process is used
in the design of an Automatic License Plate Recognition
(LPR) system. This is a stand-alone “smart camera”
running an RTOS implemented using a SoC design
methodology on a Virtex-II Pro FPGA [19]. Although
the application at hand is LPR, the “smart camera” can
be used in a variety of applications like automotive,
security, home monitoring and control, etc. The aim is to
offload the scalar PPC processor from the computational
kernels that can be mapped into gates. Our methodology
generates hardware accelerators from a large space of
designs that follow a predefined template.

The application speed up, the required bandwidth and
the size of the generated accelerators can be adjusted
depending on application requirements, area constraints
and user preferences. The contributions of the paper are
the following:

•we propose the usage of the streaming paradigm in
generating coprocessors in a reconfigurable fabric and

FPGA implementation of a license plate recognition SoC using
automatically generated streaming accelerators

Nikolaos Bellas, Sek M. Chai, Malcolm Dwyer, Dan Linzmeier
Embedded Systems Research

Motorola, Inc.
{bellas@labs.mot.com}

1-4244-0054-6/06/$20.00 ©2006 IEEE

we outline a framework-based methodology that
evaluates the set of potential solutions, and

•we detail how this approach is used in an autonomous
LPR system.

The rest of the paper is organized as follows: Section 2
gives brief background information on the streaming
programming paradigm and explains how it exploits
technology trends that favor computation over
communication. Section 3 explains our tool
methodology, and Section 4 discusses the license plate
recognition application and platform. Section 5 presents
the experimental evaluation of the method, Section 6
gives a summary of previous work on the relative areas,
and Section 7 presents the conclusion.

2. Streaming Programming Model

Our method produces coprocessors that process and
produce data streams [1]. The streaming programming
model exploits the “arithmetic intensity” [6] of VLSI
technology by clustering execution units together and
exposing data movement and staging to the programmer.
Under the streaming model, the data fetching and storing
units are decoupled from the computation unit, so that
each one can be optimized separately and more
efficiently.

The programmer describes the shape and location of
data in memory using stream descriptors, and the
computations using the sDFG. This decoupling allows
the stream interface units to take advantage of available
bandwidth to prefetch data before it is needed. The
memory accesses are not computed using sDFG
operations which allows for aggressive prefetching
before data are requested by the data path. The
architecture becomes dependent on average bandwidth of
the memory subsystem with less sensitivity to the peak
latency to access a data element. Data is transferred
though the stream interface units which are programmed
using stream descriptors (Figure 1). A stream descriptor
is represented by the tuple (Type, Start_Address, Stride,
Span Skip, Size)1 where:

•Type indicates how many bytes are in each element
(Type is 0 for bytes, 1 for 16-bit half-words, etc.)

•Start_Address represents the memory address of the
first stream element.

•Stride is the spacing, in number of elements, between
two consecutive stream elements.

• Span is the number of elements that are gathered
before applying the skip offset.

• Skip is the offset that is applied between groups of
span elements, after the stride has been applied.

1 We will limit our discussion in a single dimension of
stream descriptors, because the majority of applications are
covered by this model. Naturally, multidimensional or even
non-rectangular spaces can be used under well defined
semantics.

• Size is the number of elements in the stream.
 Separately from the stream descriptors, the kernel

computations are expressed using a streaming Data-flow
Graph (sDFG) language. An sDFG consists of nodes,
representing basic arithmetic, and logical operations and
directed edges representing the dependency of one
operation on the output of a previous operation [3]. Each
node of the graph describes the stream operation type,
the incoming inputs from the parent nodes, the size and
signedness of the output result.

The input operands are specified as relative references
to previous nodes rather than named registers. This
feature helps eliminate the unnecessary contention for
named registers as well as the overhead associated with
register re-naming. The edges of the graph represent
streaming data either between nodes or between an
external stream source/sink and the sDFG.

3. Template-based hardware

generation

3.1. Methodology
We have developed a framework to automatically

generate synthesizable streaming accelerators. Our
approach is to select designs from a well-engineered
framework, instead of generating the given hardware
from a generic representation of a high level language.
We generate highly optimized designs at various points
at the cost-performance space based on the given
application, the user requirements, and the capabilities of
the rest of the system. The main points of the tool flow
are the following:

• a common template based on a simple data flow
architecture that processes streaming data,

• an iteration engine that instantiates designs based on
system parameters that meet system and user
constraints to initiate the next iteration of space
search,

• a scheduler that performs sDFG scheduling and
hardware allocation based on the parameters set by
the iterator,

• an RTL constructor engine that produces optimized
Verilog code for the data path and the stream
interface modules, and

0

7

14

21

1 2

8 9

15 16

22 23

3 4

10 11

17 18

24 25

5 6

12 13

19 20

26 27

3
90

2-D Subarray with row-wise access

(Type, SA, Stride, Span, Skip, Size) =

(0, 3, 1, 7, 93, 28)

Figure 1: Stream descriptors for a row-wise rectangular
access pattern

• an evaluation phase that synthesizes the designs in
an FPGA and produces quality metrics such as area,
and clock speed

Each of the data path and the stream interface have
their own acceleration generation process. The rest of the
section details each one of these engines and their
interfaces. For brevity, we will only outline the main
points of the accelerator templates, without detailing the
hardware generation algorithms.

3.2. Architectural template
The architectural template consists of two parts: the

stream interface unit and the data path (Figure 2). The
stream interface unit consists of one or more input and
output stream modules, and can be generated to match
the characteristics of the stream descriptors, and the
characteristics of the bus-based system and the streaming
data path. The stream interface unit is used to transfer
data from a system memory or peripheral, through a
system bus and present them in-order to the data path,
and also to transfer processed data back to the memory.

The stream queue and the alignment unit store the
incoming stream data and present them to the data path
in-order. The number of storage elements, their size, and
their interconnect depend on the stream descriptors and
the requested bandwidth of the data path so that the
number of elements is at least equal to the peak stream

bandwidth requested by the data path. The bus line
buffer is used to temporarily hold the data accessed from
the system bus, and filter them to the stream queue when
there is enough space. The address generation unit
(AGU) is hardwired to generate the memory access
pattern of the stream descriptors.

 The data path can be generated to execute a given
sDFG to match user and system constraints in the
specification space. The data path template is an
interconnect of reconfigurable functional units that
produce and consume streaming data, and communicate
via reconfigurable links. The links are chained at the
output of a slice of a functional unit, and have a single
input and potentially multiple outputs. They implement
variable delay lines without the need of an explicitly
addressable register file. The template also allow for the
usage of a set of named registers that can be used by the
sDFG to pass values from one sDFG iteration to the next
and implement cross-iteration dependencies, and also to
pass parameters to the program. Furthermore, the
programming model allows for the use of accumulators
for reduction operations [3].

The control logic of the data path is distributed and
spatially close to the corresponding functional unit,
multiplexer or line queue. We avoid using a centralized
control unit, such as a VLIW control word, to reduce
interconnect delays.

 The type of the functional units (ALUs, multipliers,
shifters, etc.), the specific operation performed within a
type (e.g. only addition and subtraction for an ALU), the
width of the functional unit, the size and number of
storage elements of a FIFO, the interconnects between
functional units (via FIFOs), the bandwidth from and
towards the stream interface units, are some of the
reconfigurable parameters of the data path. The data path
requests data sourcing from the input stream interface
unit and data sinking from the output stream interface
unit. A simple, demand-driven protocol between the two
modules is used to implement the communication. Stall
signals from the stream interface unit to the data path
allow for a less than perfect memory system. A stall
signal from any stream interface will cause the stall of
the accelerator engine.

4. License Plate Recognition

4.1. Application
License plate recognition (LPR) is a form of intelligent

transportation technology that not only recognizes
vehicles, but distinguishes each as unique. An LPR
system is used for electronic toll or speeding ticket
collection, secure-access control, law enforcement
vehicle identification, etc. Each application has different
performance and accuracy requirements. For example, in
secure-access control, any character misprediction is
unacceptable because that could allow unauthorized
entry (false positive) or deny admission to an authorized
person (false negative). On the other hand, in an

Multiplexer Tree

FU

Streaming Data

C
o

n
tro

l

FU

C
o

n
tro

l

FU

C
o

n
tro

l

Reg

Reg

Constants

ACC

Data alignment

Bus Line Buffer

Stream Buffer

Address

 Buffer

Addr 1

Addr 2

Addr 3

Addr 4

V

I

V

V

Arbiter

System Bus (e.g. PLB)

Addr

Merge

AGU

Stream Interface

Template

Data Path

Template

Stream Buffer

to other

Input Stream

Interface

to

Output Stream

Interface

Figure 2: The accelerator template consists of the data
path and the stream interface unit templates. Different
optimizations criteria are used in each case.

inventory control application, a false recognition may be
acceptable in some circumstances if the error can be
corrected. The factors that influence the design of an
LPR system include:

• vehicle speed

• volume of traffic flow

• camera to license distance

• ambient illumination

• plate type and variety

• weather, etc.
An LPR algorithm consists of three processing stages:

license plate detection, character segmentation and
optical character recognition [8]. License plate detection
is the most challenging and crucial stage in the whole
system because a potential error will steer the system
away from any solution. The aim in this stage is to detect
the coordinates of the license plates under the typical
assumption that their shape is a rectangular bounding
box. Once this has been achieved, character
segmentation detects the location of the alphanumeric
characters in the box, and optical character recognition
(OCR) verifies the characters against a preloaded symbol
table.

The LPR system used in this paper is an extension of
the algorithms used in [8]. The algorithm is based on the
structural characteristics of a license place rather than the
color variations [10] and is more stable under different
lighting conditions. It is based on the observation that the
license plates are patterns composed of several characters
with a high contrast to their surrounding environment.

The LPR application, similar to a lot of computer
vision and pattern recognition applications, consists of a
series of low and intermediate (or high) level processing
steps. Low level processing is applied on pixels as a
series of imaging filters that eliminate unneeded visual
information and enhance important cues to facilitate
further semantic analysis. Intermediate and high level
analysis extracts and processes higher level objects, like
license plates, and attempts to analyze the scene further
in order to detect presence of particular types of objects,
to understand the meaning or content of an object, to
study object interactions, and so on. LPR follows a
similar processing pattern as shown in Figure 3.

 The processing steps of the LPR algorithm used in our
system are detailed in Figure 5 along with an example of
a processed image of a vehicle. Special grayscale image
sensors are typically used in automotive applications to
provide enhanced infrared (IR) sensitivity for weak
lighting conditions, global shutter for simultaneous total
pixel exposure, and high dynamic range.

The Open operation is defined as an erosion operation
on the whole image, followed by a dilation operation on

the whole image using the same mask, whereas the Close
operation is the inverse of the Open [7]. The erosion and
dilation on the pixel with coordinates (r,c) in image I are
defined as follows:

)],([MAXc)d(r,

)],([MINc)e(r,

D2,D1

D2,D1

jcirI

jcirI

ji

ji

++=
++=

∈∈

∈∈

where D1 and D2 define the window of the mask applied
on the pixel. The Open and Close are defined as follows:

c))(r,(de),(Close

c))(r,(ed),(Open

=
=

cr

cr

The basic effect of the Erosion operator on a binary
image is to erode foreground pixels close to large areas
of background pixels. Often, these pixels are noise that
should be eliminated before any subsequent processing.
Another effect of the operator is to filter out clusters of
foreground pixels that have a different shape than the
mask. The Dilation operation enhances foreground areas
that are close to background areas.

The Open and Close filters are a less destructive
version of Erosion and Dilation, respectively. For
example, the effects of the Open filter using a vertical
3x9 mask is shown in Figure 4, in which the aim is to
eliminate all non-horizontal foreground pixels.

A horizontal opening and a horizontal closing with an
Nx1 mask (N=7 in our case) and a subsequent image
differencing detects the vertical edges of the image,
including the vertical edges of the license plate and, at
the same time, it de-emphasizes the horizontal lines
(Figure 5).

The vertical edges in a license plate are adjacent to
each other, so that a subsequent closing operation with a
vertical 1xN mask connects them by propping up the
horizontal lines between adjacent vertical lines. All the
adjacent vertical lines form a connected region which
includes the license plate and noise from areas of high
visual contrast like the car periphery, trees, houses, road
texture, etc. As we will discuss later, the existence of
such noise in the picture creates large variations in
execution time of the application. A threshold function
transforms the image into black and white.

Connected components labeling scans the image and
classifies the pixels into components based on pixel
connectivity and intensity values, i.e. all white pixels that
are adjacent belong to the same strongly connected
component. The components correspond to regions that
are candidates for the location of the license plate.

This step concludes the image-based low-level
processing of LPR by producing the coordinates of the
bounding boxes (BBs) of the regions. The next step of
the plate location stage reduces the number of potential
license plate regions by eliminating regions that have a
small gross confidence value.

Object based
low level
processing

Object based
intermediate level
processing

Image based
low level
processing

Figure 3: LPR processing features

We apply geometric criteria to compute the gross
confidence for a region as the weighted sum of
confidence components based on the properties of
license plates:

• The Area of the license plate must be between a
minimum and maximum value.

• The Width/Height aspect ratio must be within a
certain range. For example the aspect ratio for
European plates is about 5:1, whereas for US plates is
2:1.

• The number of foreground pixels in the region,
known as region density, must be larger than a
threshold because the region is mostly filled.

• The region must be close to the center of the
frame
In Figure 5 the license plate region has the highest

gross confidence and is marked with a red box.
The last stages apply filtering transformation to each

different region to extract and verify the characters.
The procedure attempts to minimize spurious noise

between characters and between the plate edges and the
characters by computing the horizontal projection of
each column in the region and setting as background all
the pixels in a column whose projection is less than a
threshold. Then, a labeling of connected components
follows to create character regions and eliminate
background noise. After character extraction, each
subregion is compared to a preloaded data base of
alphanumeric symbols for the final matching. The
matching is a pixel-wise comparison between the two
symbols, as well as comparison of the horizontal
projection of each column and the vertical projection of
each row of the symbols. If the differences are within a
threshold, the system declares a match and moves to the
next character. A number of filtering steps are also
included in the last few stages of the algorithm but are
not explained here because of limited space. Their role is
to eliminate noise in the license plate to make character
identification and separation easier, and to resize the
characters to the same size as the symbol table in the data
base.

4.2. Implementation using a stream
accelerator

Morphological filters have high degree of instruction
and data level parallelism, low control overhead and

operate on the whole frame in each invocation. We
manually allocate the execution of parallelizable code on
accelerators, and of sequential code with limited ILP to
the embedded processor.
Table 1 shows the computational complexity of the main
LPR processing steps for three input images in an ARM9
processor. The variation on execution time is due to the
large number of connected components in the image
because of ambient visual noise. For example, images
similar to the one shown in Figure 5 cause the
application to spend a large amount of time trying to
merge all the foreground pixels into increasingly larger
connected components through multiple passes in the
image.

Figure 4: The effect of an Open filter using a
vertical 3x9 mask. Only vertical lines with a height of
at least 9 and width of at least 3 are preserved.

Horizontal Opening
(7x1) mask

Horizontal Closing
(7x1) mask

Differencing

Vertical Closing
(1x7) mask

Connected Components
Labelling and BB

creation

BB confidence evaluation

P
la

te
L

o
ca

to
r

Sorted list of BBs
(License Plates)

LP region Binarization

Histogram-based
Noise reduction

Connected Components
Labelling and Character

Extraction

Match Symbols with dB

C
h
ar

ac
t e

r
E

x
tr

a
ct

io
n

Grayscale
image

Grayscale
image

F
o

r
ea

c
h

re
g

io
n

Image Binarization

Figure 5: The LPR algorithm detects the bounding box
(BB) coordinates of potential license plates. Then, it
applies character segmentation and OCR in each BB.

In all of our experiments, connected components outside
a 200 pixel radius from the center of the VGA (640x480)
image are assigned a lower confidence value and tend to
be eliminated from further merging with other regions.

We used our tool methodology to accelerate the
Opening and Closing morphological filters as well as the
image Differencing and Binarization. By merging all the
filters in a single sDFG (shown in Figure 6) we eliminate
wasted bandwidth to fetch processed frames back and
forth from the main memory.

In Figure 6 the vtunnel nodes use named registers (zi)

to provide a single cycle latency to reuse incoming pixel
values in the next sDFG iteration. The sDFG is invoked
twice during a frame, once for the horizontal filters
(Open, Close) and once for the vertical filters (Close),
using a horizontal and vertical image scan, respectively.
The vif (vector-if) node is used to select between the two
cases at the end.

A separate accelerator is used in the MatchSymbols
function to compute the horizontal and vertical
projections of each license plate symbol, as well as the
pixel-wise matching between a license plate symbol and
each one of the symbols in the symbol table data base.

 The connected components labeling and subsequent
confidence evaluation, and connected components
merging is not parallelized because it is mostly
sequential code with limited parallelism.

5. Experimental Evaluation

The LPR system was implemented as a stand-alone
platform based on a Virtex-II Pro FPGA [19] using the
Xilinx Platform studio 7.1 and the Xilinx ISE 7.1. The
Virtex FPGA is equipped with a PPC405 running the
sequential code and the OS, and with a selected
synthesized set of peripherals to communicate with the
image sensors, the Ethernet, the USB 2.0, and external
DDR memory. Two image sensors are used, one
grayscale as the image source of the LPR application,
and one color sensor as a backup for video replay.
Separately, we have developed, in C and C++, the
hardware accelerator generator which reads streaming
DFGs, schedules them under different template
configurations, and generates Verilog RTL for each case.
The accelerators are manually connected to the PLB bus
of the PPC processor to get a complete system, and the
ISE toolset is used for the back-end hardware
implementation. In the final design, the PPC core was
clocked at 350 Mhz, and the rest of the circuit at one
third of that.

For the results of Tables 1 and 2, we used a system-
level simulator, and not the actual board. The memory
system used in this simulation has the following
characteristics: 18 cycles are needed to open a new row
in the DRAM, and the first word is produced 21 cycles
after the memory request. After that, new 64-bit data are

255 vld (v1) 0

vmin vmax

vmin

vmin

vmin

vmin

vmax

vmax

vmax

vmax

vtunnel z0

vtunnel z1

vtunnel z2

vtunnel z3

vtunnel z4

vtunnel z16

vtunnel z17

vtunnel z18

vtunnel z19

vtunnel z20

vmin vmax

vminvmax

vmin

vmin

vmin

vmin

vmax

vmax

vmax

vmax

vtunnel z22

vtunnel z23

vtunnel z24

vtunnel z25

vtunnel z26

vtunnel z6

vtunnel z7

vtunnel z8

vtunnel z9

vtunnel z10

2550

vmin

vsub vge

vscalar z28

vif

vscalar z29

vscalar z30

vabs

vif

vst (v0)

vscalar z31

vmin vmaxvtunnel z5 vtunnel z21

vmax vtunnel z11 vtunnel z27

vmax vmin

Close
Open

Binarize

Subtract

Figure 6: The sDFG of the morphological filters

Table 1: Cycle distribution for three input images
% execution time

Number of
cycles (10^6)

Number of initial
connected

components

Morphological
Filters

Connected
components labeling

and confidence
evaluation

Character
extraction and

match

Image A 540 1029 21.2% 60.0% 18.7%

Image B 211 401 54.1% 23.1% 19.3%

Image C 147 219 77.3% 8.4% 10.2%

Table 2 Speed up of the LPR application and kernels

burst through the PLB bus every three core cycles, up to
a maximum of 256 bits, which is the burst size.

Table 3 shows synthesis and mapping results for the
sDFG of Figure 6 under six different configurations. The
ci parameter refers to user constraints to the generator
tool in terms of the maximum number of computational
resources that the tool can utilize to schedule the sDFG.
For this experiment, c1 corresponds to a minimal
configuration in which only one resource for each
operational type is provided (e.g. only one adder, one
port per input stream, etc.), c3 corresponds to a very wide
configuration with a large number of functional units and
c2 corresponds to an intermediate configuration, which is
the same as the RSVP™-II implementation [4]. The ui

parameters show the degree of unrolling of the sDFG to
achieve higher throughput. In wider configurations,
sDFG unrolling can be an effective means to use
resources that would otherwise remain unused, and
increase the effective bandwidth. However, a higher
degree of unrolling can strain the bus and memory
resources and may result in low or negligible speed up.
The results of Table 2 are obtained using a (c2,u1)
configuration.

The results enforce our premise that a template-based
approach can produce fast and area efficient designs.
Wider designs (c3 configuration) require more resources
mainly because a large number of queuing elements at
the output of each functional units is needed to
temporarily store all the live variables at each cycle. On
the other hand, wider configurations tend to be faster due
to the lack of large multiplexers at the inputs of
functional units. The last row refers to the throughput
requested by the data path to the stream interface. This

is an upper bound of the total bandwidth between the
memory system and the accelerator.

The main limiting factor of the streaming accelerators
is that a high bandwidth path to memory should exist to
be able to keep up with the available computational
power. The next step in our system integration is to
develop a memory hierarchy that understands the
semantics of the streaming model and is optimized for
stream data transfer. A streaming memory controller can
be used to optimize the scheduling of the DRAM
memory accesses using a variety of techniques such as
packing of streaming data, out of order accesses,
merging of multiple requests, priority-based accesses,
data buffering and staging and so on.

6. Related Work
There has been an intense interest in the research

community in the last decade to automate the
architectural process for ASIC of FPGA tool flows
starting from a high level representation like C, Java,
Matlab, DFGs etc. [5]. The PICO project from HP labs
incorporated a lot of concepts from earlier work on
VLIW machines, and described a methodology to
generate a VLIW engine along with an accelerator
optimized for a particular application [9]. Similar
projects include the OCAPI tool from IMEC [13], the
DEFACTO compiler from USC [15], the ASC streaming
compiler effort from the Imperial College [11], and the
CASH compiler from CMU that maps the complete the
C application onto asynchronous circuits [15]. The
Impulse-C [12] and Handel-C [17] languages are efforts
to utilize C with extensions as a high level RTL language
for FPGA design. At an even higher level of abstraction,
AccelChip [2] is commercializing a compiler to
automatically generate gates from Matlab code. The tool
targets mainly DSP kernels on FPGA platforms.

Most of the above mentioned approaches use C as a
more “user-friendly” hardware description language, and
they add constructs to enhance concurrency, variable
bitwidth, and so on in order to make C more amenable to
hardware design. We believe that a template-based

Speed Up

Application Kernel

Image A 1.2 5

Image B 1.76 5
Image C 2.62 5

Table 3: FPGA synthesis results for the LPR sDFG of Figure 6

 (c1,u1) (c1,u2) (c2,u1) (c2,u2) (c3,u1) (c3,u2)

Data path slices 1181 1252 1124 1672 1957 3393

Stream interface unit slices 1531 1531 1531 1557 1531 1777

Total accelerator slices 2712 2783 2655 3229 3488 5170

Max data path clock
frequency (Mhz) 165 163 156 126 203 204

Max stream interface clock
frequency 140 140 140 140 140 148

Requested throughput
(Bytes/cycle) 0.07 0.14 0.29 0.57 2 4

architectural automation that evaluates a large number of
potential designs and focus on the most “profitable” parts
of the code is able to offer both design efficiency in
terms of speed and cost, as well as programmability for
developers that are not well-versed in hardware design.

A number of companies have developed LPR
platforms for a variety of applications[16][18]. Their
approach is to either use high performance
microprocessors or platforms based on embedded
processors and FPGAs for the heavy duty tasks.

7. Conclusion

We presented a methodology and a prototype tool to
automate the construction of hardware accelerators that
process streaming data. In comparison to other
architectural synthesis tools, we utilize a framework-
based approach which is based on a well-engineered set
of implementations and allows fast convergence to an
area and speed efficient accelerator. This methodology
focuses on kernels that can be parallelized while leaving
the sequential code to be executed by the scalar
processor. The streaming programming model allows the
decoupling of data access and execution, and enables
separate optimizations of these two modules to match the
requirement of the application and the system.

We showed how this approach is used in a license
plate recognition SoC. This methodology facilitates the
field upgrade of such a system with new algorithms and
new accelerators without costly re-designs of the system.
Besides the license plate recognition system, our
approach can be used in a multitude of applications that
can naturally be expressed as a series of streaming filters
such as communications, DSP, multimedia, image
processing, etc.

References

[1] Amarasinghe S., Thies B. Architectures, Languages and
Compilers for the Streaming Domain. Tutorial at the 12th
Annual International Conference on Parallel Architectures and
Compilation Techniques, New Orleans, LA

[2] Banerjee P. et. al. A MATLAB compiler for distributed,
heterogeneous, reconfigurable computing systems. Proceedings
of the IEEE Symposium on Field Custom Computing Machines
(FCCM), April 17-19, 2000, pp. 39-48, Napa Valley, CA

 [3] Chirisescu S., et. al. The Reconfigurable Streaming

Vector Processor, RSVP™. Proceedings of the 36th

International Conference on Microarchitecture, December
2003, pp. 141-150, San Diego, CA

[4] Chirisescu S., et. al. RSVP II: A Next Generation
Automotive Vector Processor. IEEE International Vehicle
Symposium, June 2005

[5] Compton K., Hauck S.. Reconfigurable Computing: A
Survey of Systems and Software. ACM Computing Surveys,
vol. 34, No. 2, June 2002, pp. 171-210

[6] Dally W. J., Hanrahan P., Erez M., Knight T. J., Labonté

F., Ahn J.H., Jayasena N., Kapasi U. J., Das A., Gummaraju J.,
Buck I. Merrimac: Supercomputing with Streams. Proceedings
of the 2003 Supercomputing Conference, November 2003, pp-
35-42, Phoenix, AZ

[7] Lee J., Haralick R., Shapiro L. Morphological Edge
Detection. IEEE Journal of Robotics and Automation, vol. 3,
issue 2, April 1987

 [8] Jun-Wei Hsieh, Shih-Hao Yu, Yung-Sheng Chen.
Morphology-based License Plate Detection from Complex
Scenes. 16th International Conference on Pattern Recognition
(ICPR), vol. 3, pp 176-179, August 2002

[9] Kathail V., Aditya S., Schreiber R., Rau B.R., Cronquist
D., Sivaraman M. PICO: Automatically Designing Custom
Computers. IEEE Computer Magazine, vol. 35, no. 9,
September 2002, pp. 39-47

[10] K.K. Kim et. al. Learning based approach for License
Plate Recognition. IEEE Signal Processing Society Workshop
on Neural Networks for Signal Processing. Vol. 2, pp.614-623,
2000

[11] Mencer O., Pierce D. J., Howes L.W., Luk W. Design
Space Exploration with a Stream Compiler. Proceedings of the
IEEE International Conference on Field Programmable
Technology (FPT), December 2003, Tokyo, Japan

[12] Pellerin D., Thibault S. Practical FPGA Programming in
C. Prentice Hall, 2005

[13] Schaumont P., Vernalde S., Rijnders L., Engels M.,
Bolsen I. A programming environment for the design of

complex high speed ASICs. Proceedings of the 35th Design
Automation Conference (DAC), June 1998, pp. 315-320, San
Francisco, CA

 [14] Vidiu M., Venkataramani , Chelcea T., Goldstein S.C.

Spatial Computation. Proceedings of the 11th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 9-13,
2004, pp. 14- 26, Boston, MA

 [15] H. Ziegler H., Hall M. Evaluating Heuristics in
Automatically Mapping Multi-Loop Applications to FPGA
Proceedings of the 13th International Symposium on FPGAs,
February 2005, pp. 184-195, Monterey, CA

 [16] Atom Imaging Technologies, www.atomimaging.com

 [17] Celoxica Corporation, Handel-C language reference
manual, www.celoxica.com

[18] Citysync, http://www.citysync.co.uk/

[19] Virtex-2 FPGA handbook, www.xilinx.com

 A patent is pending that claims aspects of items and
methods described in this paper

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

