
Abstract 
Modern FPGA platforms provide the hardware and 

software infrastructure for building a bus-based System 
on Chip (SoC) that meet the applications requirements. 
The designer can customize the hardware by selecting 
from a large number of pre-defined peripherals and fixed 
IP functions and by providing new hardware, typically 
expressed using RTL. Hardware accelerators that provide 
application-specific extensions to the computational 
capabilities of a system is an efficient mechanism to 
enhance the performance and reduce the power 
dissipation. What is missing is an integrated approach to 
identify the computationally critical parts of the 
application and to create accelerators starting from a high 
level representation with a minimal design effort.  

In this paper, we present an automation methodology 
and a tool that generates accelerators. We apply the 
methodology on an FPGA-based license plate 
recognition (LPR) system used in law enforcement. The 
accelerators process streaming data and support a 
programming model which can naturally express a large 
number of embedded applications resulting in efficient 
hardware implementations. We show that we can achieve 
an overall LPR application speed up from 1.2x to 2.6x, 
thus enabling real-time functionality under realistic road 
scenes.  

1. Introduction 
Embedded systems require designers to work under 

tight time-to-market, power dissipation, area, 
performance and cost constraints. The continuously 
increasing NRE and mask set costs for smaller transistor 
geometries make an ASIC standard-cell design 
applicable only to high volume products with a well-
defined functionality that is not expected to vary 
considerably during the product life span. 
Reconfigurable computing using FPGAs has emerged in 
the last few years as a potential replacement technology 
in many cases. At the same time, there has been intensive 
research and commercial activity in tools that abstract 
out the hardware design process to the algorithmic level 
in order to further reduce the time to market. An 
architectural automation tool should be able to combine 
interactive architectural exploration, automatic hardware-
software partition and an efficient mapping of one or  

multiple kernels to the reconfigurable fabric.  
Typically, scalar processors like the PPC405 in the 

Virtex family of FPGAs, or the Nios synthesizable 
processor in Altera FPGAs are reasonably efficient in 
handling non-frequently executed or conditional code 
with a low degree of instruction and data level 
parallelism, even more efficient than mapping the same 
code into gates [14]. However, scalar processors are very 
inefficient for high throughput, parallelizable code due to 
limited support for parallelism (instruction, data, and 
task) and because of limited memory bandwidth from the 
memory hierarchy to the narrow pipes of the main core. 

We have developed an automation process which maps 
streaming data flow graphs (sDFG) to accelerators of the 
main scalar core. An sDFG expresses computation 
kernels that process streams of data with a relatively 
limited lifetime and deterministic memory access pattern. 
The access patterns can be described independently from 
the computations of the sDFG. The streaming model 
decouples the description of the memory access 
sequences from the computation, thus making the 
customization of each of these two components easier 
and more re-usable. An example figure of an sDFG is 
given later when we discuss the LPR application.  

 To show the applicability of the streaming model in 
embedded systems, we describe how the process is used 
in the design of an Automatic License Plate Recognition 
(LPR) system. This is a stand-alone “smart camera” 
running an RTOS implemented using a SoC design 
methodology on a Virtex-II Pro FPGA [19]. Although 
the application at hand is LPR, the “smart camera” can 
be used in a variety of applications like automotive, 
security, home monitoring and control, etc. The aim is to 
offload the scalar PPC processor from the computational 
kernels that can be mapped into gates. Our methodology 
generates hardware accelerators from a large space of 
designs that follow a predefined template.  

The application speed up, the required bandwidth and 
the size of the generated accelerators can be adjusted 
depending on application requirements, area constraints 
and user preferences. The contributions of the paper are 
the following: 

•we propose the usage of the streaming paradigm in 
generating coprocessors in a reconfigurable fabric and 
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we outline a framework-based methodology that 
evaluates the set of potential solutions, and  

•we detail how this approach is used in an autonomous 
LPR system. 

The rest of the paper is organized as follows: Section 2 
gives brief background information on the streaming 
programming paradigm and explains how it exploits 
technology trends that favor computation over 
communication. Section 3 explains our tool 
methodology, and Section 4 discusses the license plate 
recognition application and platform. Section 5 presents 
the experimental evaluation of the method, Section 6 
gives a summary of previous work on the relative areas, 
and Section 7 presents the conclusion. 

2. Streaming Programming Model 

Our method produces coprocessors that process and 
produce data streams [1]. The streaming programming 
model exploits the “arithmetic intensity” [6] of VLSI 
technology by clustering execution units together and 
exposing data movement and staging to the programmer. 
Under the streaming model, the data fetching and storing 
units are decoupled from the computation unit, so that 
each one can be optimized separately and more 
efficiently.  

The programmer describes the shape and location of 
data in memory using stream descriptors, and the 
computations using the sDFG. This decoupling allows 
the stream interface units to take advantage of available 
bandwidth to prefetch data before it is needed. The 
memory accesses are not computed using sDFG 
operations which allows for aggressive prefetching 
before data are requested by the data path. The 
architecture becomes dependent on average bandwidth of 
the memory subsystem with less sensitivity to the peak 
latency to access a data element. Data is transferred 
though the stream interface units which are programmed 
using stream descriptors (Figure 1). A stream descriptor 
is represented by the tuple (Type, Start_Address, Stride, 
Span Skip, Size)1 where: 

•Type indicates how many bytes are in each element 
(Type is 0 for bytes, 1 for 16-bit half-words, etc.) 

•Start_Address represents the memory address of the 
first stream element. 

•Stride is the spacing, in number of elements, between 
two consecutive stream elements. 

• Span is the number of elements that are gathered 
before applying the skip offset. 

• Skip is the offset that is applied between groups of 
span elements, after the stride has been applied. 

1 We will limit our discussion in a single dimension of 
stream descriptors, because the majority of applications are 
covered by this model. Naturally, multidimensional or even 
non-rectangular spaces can be used under well defined 
semantics.

• Size is the number of elements in the stream. 
 Separately from the stream descriptors, the kernel 

computations are expressed using a streaming Data-flow 
Graph (sDFG) language. An sDFG consists of nodes, 
representing basic arithmetic, and logical operations and 
directed edges representing the dependency of one 
operation on the output of a previous operation [3]. Each 
node of the graph describes the stream operation type, 
the incoming inputs from the parent nodes, the size and 
signedness of the output result. 

The input operands are specified as relative references 
to previous nodes rather than named registers. This 
feature helps eliminate the unnecessary contention for 
named registers as well as the overhead associated with 
register re-naming. The edges of the graph represent 
streaming data either between nodes or between an 
external stream source/sink and the sDFG. 

3. Template-based hardware 

generation 

3.1. Methodology 
We have developed a framework to automatically 

generate synthesizable streaming accelerators. Our 
approach is to select designs from a well-engineered 
framework, instead of generating the given hardware 
from a generic representation of a high level language. 
We generate highly optimized designs at various points 
at the cost-performance space based on the given 
application, the user requirements, and the capabilities of 
the rest of the system. The main points of the tool flow 
are the following: 

• a common template based on a simple data flow 
architecture that processes streaming data, 

• an iteration engine that instantiates designs based on 
system parameters that meet system and user 
constraints to initiate the next iteration of space 
search, 

• a scheduler that performs sDFG scheduling and 
hardware allocation based on the parameters set by 
the iterator, 

• an RTL constructor engine that produces optimized 
Verilog code for the data path and the stream 
interface modules, and 
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• an evaluation phase that synthesizes the designs in 
an FPGA and produces quality metrics such as area, 
and clock speed 

Each of the data path and the stream interface have 
their own acceleration generation process. The rest of the 
section details each one of these engines and their 
interfaces. For brevity, we will only outline the main 
points of the accelerator templates, without detailing the 
hardware generation algorithms. 

3.2. Architectural template 
The architectural template consists of two parts: the 

stream interface unit and the data path (Figure 2). The 
stream interface unit consists of one or more input and 
output stream modules, and can be generated to match 
the characteristics of the stream descriptors, and the 
characteristics of the bus-based system and the streaming 
data path. The stream interface unit is used to transfer 
data from a system memory or peripheral, through a 
system bus and present them in-order to the data path, 
and also to transfer processed data back to the memory.  

The stream queue and the alignment unit store the 
incoming stream data and present them to the data path 
in-order. The number of storage elements, their size, and 
their interconnect depend on the stream descriptors and 
the requested bandwidth of the data path so that the 
number of elements is at least equal to the peak stream 

bandwidth requested by the data path. The bus line 
buffer is used to temporarily hold the data accessed from 
the system bus, and filter them to the stream queue when 
there is enough space. The address generation unit 
(AGU) is hardwired to generate the memory access 
pattern of the stream descriptors.  

 The data path can be generated to execute a given 
sDFG to match user and system constraints in the 
specification space. The data path template is an 
interconnect of reconfigurable functional units that 
produce and consume streaming data, and communicate 
via reconfigurable links. The links are chained at the 
output of a slice of a functional unit, and have a single 
input and potentially multiple outputs. They implement 
variable delay lines without the need of an explicitly 
addressable register file. The template also allow for the 
usage of a set of named registers that can be used by the 
sDFG to pass values from one sDFG iteration to the next 
and implement cross-iteration dependencies, and also to 
pass parameters to the program. Furthermore, the 
programming model allows for the use of accumulators 
for reduction operations [3].  

The control logic of the data path is distributed and 
spatially close to the corresponding functional unit, 
multiplexer or line queue. We avoid using a centralized 
control unit, such as a VLIW control word, to reduce 
interconnect delays.  

 The type of the functional units (ALUs, multipliers, 
shifters, etc.), the specific operation performed within a 
type (e.g. only addition and subtraction for an ALU), the 
width of the functional unit, the size and number of 
storage elements of a FIFO, the interconnects between 
functional units (via FIFOs), the bandwidth from and 
towards the stream interface units, are some of the 
reconfigurable parameters of the data path. The data path 
requests data sourcing from the input stream interface 
unit and data sinking from the output stream interface 
unit. A simple, demand-driven protocol between the two 
modules is used to implement the communication. Stall 
signals from the stream interface unit to the data path 
allow for a less than perfect memory system. A stall 
signal from any stream interface will cause the stall of 
the accelerator engine.  

4. License Plate Recognition 

4.1. Application 
License plate recognition (LPR) is a form of intelligent 

transportation technology that not only recognizes 
vehicles, but distinguishes each as unique. An LPR 
system is used for electronic toll or speeding ticket 
collection, secure-access control, law enforcement 
vehicle identification, etc. Each application has different 
performance and accuracy requirements. For example, in 
secure-access control, any character misprediction is 
unacceptable because that could allow unauthorized 
entry (false positive) or deny admission to an authorized 
person (false negative). On the other hand, in an 
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inventory control application, a false recognition may be 
acceptable in some circumstances if the error can be 
corrected. The factors that influence the design of an 
LPR system include: 

• vehicle speed 

• volume of traffic flow 

• camera to license distance 

• ambient illumination 

• plate type and variety  

• weather, etc. 
An LPR algorithm consists of three processing stages: 

license plate detection, character segmentation and 
optical character recognition [8]. License plate detection 
is the most challenging and crucial stage in the whole 
system because a potential error will steer the system 
away from any solution. The aim in this stage is to detect 
the coordinates of the license plates under the typical 
assumption that their shape is a rectangular bounding 
box. Once this has been achieved, character 
segmentation detects the location of the alphanumeric 
characters in the box, and optical character recognition 
(OCR) verifies the characters against a preloaded symbol 
table.  

The LPR system used in this paper is an extension of 
the algorithms used in [8]. The algorithm is based on the 
structural characteristics of a license place rather than the 
color variations [10] and is more stable under different 
lighting conditions. It is based on the observation that the 
license plates are patterns composed of several characters 
with a high contrast to their surrounding environment. 

The LPR application, similar to a lot of computer 
vision and pattern recognition applications, consists of a 
series of low and intermediate (or high) level processing 
steps. Low level processing is applied on pixels as a 
series of imaging filters that eliminate unneeded visual 
information and enhance important cues to facilitate 
further semantic analysis. Intermediate and high level 
analysis extracts and processes higher level objects, like 
license plates, and attempts to analyze the scene further 
in order to detect presence of particular types of objects, 
to understand the meaning or content of an object, to 
study object interactions, and so on. LPR follows a 
similar processing pattern as shown in Figure 3. 

 The processing steps of the LPR algorithm used in our 
system are detailed in Figure 5 along with an example of 
a processed image of a vehicle. Special grayscale image 
sensors are typically used in automotive applications to 
provide enhanced infrared (IR) sensitivity for weak 
lighting conditions, global shutter for simultaneous total 
pixel exposure, and high dynamic range.  

The Open operation is defined as an erosion operation 
on the whole image, followed by a dilation operation on 

the whole image using the same mask, whereas the Close 
operation is the inverse of the Open [7]. The erosion and 
dilation on the pixel with coordinates (r,c) in image I are 
defined as follows:  
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where D1 and D2  define the window of the mask applied 
on the pixel. The Open and Close are defined as follows: 
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The basic effect of the Erosion operator on a binary 
image is to erode foreground pixels close to large areas 
of background pixels. Often, these pixels are noise that 
should be eliminated before any subsequent processing. 
Another effect of the operator is to filter out clusters of 
foreground pixels that have a different shape than the 
mask. The Dilation operation enhances foreground areas 
that are close to background areas.  

The Open and Close filters are a less destructive 
version of Erosion and Dilation, respectively. For 
example, the effects of the Open filter using a vertical 
3x9 mask is shown in Figure 4, in which the aim is to 
eliminate all non-horizontal foreground pixels.  

A horizontal opening and a horizontal closing with an 
Nx1 mask (N=7 in our case) and a subsequent image 
differencing detects the vertical edges of the image, 
including the vertical edges of the license plate and, at 
the same time, it de-emphasizes the horizontal lines 
(Figure 5).  

The vertical edges in a license plate are adjacent to 
each other, so that a subsequent closing operation with a 
vertical 1xN mask connects them by propping up the 
horizontal lines between adjacent vertical lines. All the 
adjacent vertical lines form a connected region which 
includes the license plate and noise from areas of high 
visual contrast like the car periphery, trees, houses, road 
texture, etc. As we will discuss later, the existence of 
such noise in the picture creates large variations in 
execution time of the application. A threshold function 
transforms the image into black and white. 

Connected components labeling scans the image and 
classifies the pixels into components based on pixel 
connectivity and intensity values, i.e. all white pixels that 
are adjacent belong to the same strongly connected 
component. The components correspond to regions that  
are candidates for the location of the license plate.  

This step concludes the image-based low-level 
processing of LPR by producing the coordinates of the 
bounding boxes (BBs) of the regions. The next step of 
the plate location stage reduces the number of potential 
license plate regions by eliminating regions that have a 
small gross confidence value. 

Object based
low level
processing

Object based
intermediate level
processing

Image based
low level
processing

Figure 3: LPR processing features 



We apply geometric criteria to compute the gross 
confidence for a region as the weighted sum of 
confidence components based on the properties of 
license plates:

• The Area of the license plate must be between a 
minimum and maximum value. 

• The Width/Height aspect ratio must be within a 
certain range. For example the aspect ratio for 
European plates is about 5:1, whereas for US plates is 
2:1.  

• The number of foreground pixels in the region, 
known as region density, must be larger than a 
threshold because the region is mostly filled. 

• The region must be close to the center of the 
frame 
In Figure 5 the license plate region has the highest 

gross confidence and is marked with a red box.  
The last stages apply filtering transformation to each 

different region to extract and verify the characters.  
The procedure attempts to minimize spurious noise 

between characters and between the plate edges and the 
characters by computing the horizontal projection of 
each column in the region and setting as background all 
the pixels in a column whose projection is less than a 
threshold. Then, a labeling of connected components 
follows to create character regions and eliminate 
background noise. After character extraction, each 
subregion is compared to a preloaded data base of 
alphanumeric symbols for the final matching. The 
matching is a pixel-wise comparison between the two 
symbols, as well as comparison of the horizontal 
projection of each column and the vertical projection of 
each row of the symbols. If the differences are within a 
threshold, the system declares a match and moves to the 
next character. A number of filtering steps are also 
included in the last few stages of the algorithm but are 
not explained here because of limited space. Their role is 
to eliminate noise in the license plate to make character 
identification and separation easier, and to resize the 
characters to the same size as the symbol table in the data 
base. 

4.2. Implementation using a stream 
accelerator 

Morphological filters have high degree of instruction 
and data level parallelism, low control overhead and 

operate on the whole frame in each invocation. We 
manually allocate the execution of parallelizable code on 
accelerators, and of sequential code with limited ILP to 
the embedded processor. 
Table 1 shows the computational complexity of the main 
LPR processing steps for three input images in an ARM9 
processor. The variation on execution time is due to the 
large number of connected components in the image 
because of ambient visual noise. For example, images 
similar to the one shown in Figure 5 cause the 
application to spend a large amount of time trying to 
merge all the foreground pixels into increasingly larger 
connected components through multiple passes in the 
image.  

Figure 4: The effect of an Open filter using a 
vertical 3x9 mask. Only vertical lines with a height of 
at least 9 and width of at least 3 are preserved.
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In all of our experiments, connected components outside 
a 200 pixel radius from the center of the VGA (640x480) 
image are assigned a lower confidence value and tend to 
be eliminated from further merging with other regions.  

We used our tool methodology to accelerate the 
Opening and Closing morphological filters as well as the 
image Differencing and Binarization. By merging all the 
filters in a single sDFG (shown in Figure 6) we eliminate 
wasted bandwidth to fetch processed frames back and 
forth from the main memory. 

In Figure 6 the vtunnel nodes use named registers (zi)

to provide a single cycle latency to reuse incoming pixel 
values in the next sDFG iteration. The sDFG is invoked 
twice during a frame, once for the horizontal filters 
(Open, Close) and once for the vertical filters (Close), 
using a horizontal and vertical image scan, respectively. 
The vif (vector-if) node is used to select between the two 
cases at the end.      

A separate accelerator is used in the MatchSymbols 
function to compute the horizontal and vertical 
projections of each license plate symbol, as well as the 
pixel-wise matching between a license plate symbol and 
each one of the symbols in the symbol table data base. 

 The connected components labeling and subsequent 
confidence evaluation, and connected components 
merging is not parallelized because it is mostly 
sequential code with limited parallelism. 

5. Experimental Evaluation 

The LPR system was implemented as a stand-alone 
platform based on a Virtex-II Pro FPGA [19] using the 
Xilinx Platform studio 7.1 and the Xilinx ISE 7.1. The 
Virtex FPGA is equipped with a PPC405 running the 
sequential code and the OS, and with a selected 
synthesized set of peripherals to communicate with the 
image sensors, the Ethernet, the USB 2.0, and external 
DDR memory. Two image sensors are used, one 
grayscale as the image source of the LPR application, 
and one color sensor as a backup for video replay. 
Separately, we have developed, in C and C++, the 
hardware accelerator generator which reads streaming 
DFGs, schedules them under different template 
configurations, and generates Verilog RTL for each case. 
The accelerators are manually connected to the PLB bus 
of the PPC processor to get a complete system, and the 
ISE toolset is used for the back-end hardware 
implementation. In the final design, the PPC core was 
clocked at 350 Mhz, and the rest of the circuit at one 
third of that.  

For the results of Tables 1 and 2, we used a system-
level simulator, and not the actual board. The memory 
system used in this simulation has the following 
characteristics: 18 cycles are needed to open a new row 
in the DRAM, and the first word is produced 21 cycles 
after the memory request. After that, new 64-bit data are  
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Figure 6: The sDFG of the morphological filters 

Table 1: Cycle distribution for three input images
% execution time

Number of 
cycles (10^6) 

Number of initial 
connected 

components

Morphological 
Filters

Connected 
components labeling 

and confidence 
evaluation

Character 
extraction and 

match

Image A 540 1029 21.2% 60.0% 18.7%

Image B 211 401 54.1% 23.1% 19.3%

Image C 147 219 77.3% 8.4% 10.2%



Table 2  Speed up of the LPR application and kernels

burst through the PLB bus every three core cycles, up to 
a maximum of 256 bits, which is the burst size.  

Table 3 shows synthesis and mapping results for the 
sDFG of Figure 6 under six different configurations. The 
ci parameter refers to user constraints to the generator 
tool in terms of the maximum number of computational 
resources that the tool can utilize to schedule the sDFG. 
For this experiment, c1 corresponds to a minimal 
configuration in which only one resource for each 
operational type is provided (e.g. only one adder, one 
port per input stream, etc.), c3 corresponds to a very wide 
configuration with a large number of functional units and 
c2 corresponds to an intermediate configuration, which is 
the same as the RSVP™-II implementation [4]. The ui

parameters show the degree of unrolling of the sDFG to 
achieve higher throughput. In wider configurations, 
sDFG unrolling can be an effective means to use 
resources that would otherwise remain unused, and 
increase the effective bandwidth. However, a higher 
degree of unrolling can strain the bus and memory 
resources and may result in low or negligible speed up. 
The results of Table 2 are obtained using a (c2,u1)
configuration.  

The results enforce our premise that a template-based 
approach can produce fast and area efficient designs. 
Wider designs (c3 configuration) require more resources 
mainly because a large number of queuing elements at 
the output of each functional units is needed to 
temporarily store all the live variables at each cycle. On 
the other hand, wider configurations tend to be faster due 
to the lack of large multiplexers at the inputs of 
functional units. The last row refers to the throughput 
requested by the data path to the stream interface.  This 

is an upper bound of the total bandwidth between the 
memory system and the accelerator.  

The main limiting factor of the streaming accelerators 
is that a high bandwidth path to memory should exist to 
be able to keep up with the available computational 
power. The next step in our system integration is to 
develop a memory hierarchy that understands the 
semantics of the streaming model and is optimized for 
stream data transfer. A streaming memory controller can 
be used to optimize the scheduling of the DRAM 
memory accesses using a variety of techniques such as 
packing of streaming data, out of order accesses, 
merging of multiple requests, priority-based accesses, 
data buffering and staging and so on.  

6. Related Work 
There has been an intense interest in the research 

community in the last decade to automate the 
architectural process for ASIC of FPGA tool flows 
starting from a high level representation like C, Java, 
Matlab, DFGs etc. [5]. The PICO project from HP labs 
incorporated a lot of concepts from earlier work on 
VLIW machines, and described a methodology to 
generate a VLIW engine along with an accelerator 
optimized for a particular application [9]. Similar 
projects include the OCAPI tool from IMEC [13], the 
DEFACTO compiler from USC [15], the ASC streaming 
compiler effort from the Imperial College [11], and the 
CASH compiler from CMU that maps the complete the 
C application onto asynchronous circuits [15]. The 
Impulse-C [12] and Handel-C [17] languages are efforts 
to utilize C with extensions as a high level RTL language 
for FPGA design. At an even higher level of abstraction, 
AccelChip [2] is commercializing a compiler to 
automatically generate gates from Matlab code. The tool 
targets mainly DSP kernels on FPGA platforms. 

Most of the above mentioned approaches use C as a 
more “user-friendly” hardware description language, and 
they add constructs to enhance concurrency, variable 
bitwidth, and so on in order to make C more amenable to 
hardware design. We believe that a template-based 

Speed Up 

Application Kernel 

Image A 1.2 5 

Image B 1.76 5 
Image C 2.62 5 

Table 3: FPGA synthesis results for the LPR sDFG of Figure 6 

 (c1,u1) (c1,u2) (c2,u1) (c2,u2) (c3,u1) (c3,u2)

Data path slices 1181 1252 1124 1672 1957 3393

Stream interface unit slices 1531 1531 1531 1557 1531 1777

Total accelerator slices 2712 2783 2655 3229 3488 5170

Max data path clock 
frequency (Mhz) 165 163 156 126 203 204

Max stream interface clock 
frequency 140 140 140 140 140 148

Requested throughput  
(Bytes/cycle) 0.07 0.14 0.29 0.57 2 4



architectural automation that evaluates a large number of 
potential designs and focus on the most “profitable” parts 
of the code is able to offer both design efficiency in 
terms of speed and cost, as well as programmability for 
developers that are not well-versed in hardware design.  

A number of companies have developed LPR 
platforms for a variety of applications[16][18]. Their 
approach is to either use high performance 
microprocessors or platforms based on embedded 
processors and FPGAs for the heavy duty tasks.  

7. Conclusion 

We presented a methodology and a prototype tool to 
automate the construction of hardware accelerators that 
process streaming data. In comparison to other 
architectural synthesis tools, we utilize a framework-
based approach which is based on a well-engineered set 
of implementations and allows fast convergence to an 
area and speed efficient accelerator. This methodology 
focuses on kernels that can be parallelized while leaving 
the sequential code to be executed by the scalar 
processor. The streaming programming model allows the 
decoupling of data access and execution, and enables 
separate optimizations of these two modules to match the 
requirement of the application and the system.  

We showed how this approach is used in a license 
plate recognition SoC. This methodology facilitates the 
field upgrade of such a system with new algorithms and 
new accelerators without costly re-designs of the system. 
Besides the license plate recognition system, our 
approach can be used in a multitude of applications that 
can naturally be expressed as a series of streaming filters 
such as communications, DSP, multimedia, image 
processing, etc.  
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