
Securing Embedded Programmable Gate Arrays in Secure Circuits

Nicolas Valette1,2, Lionel Torres2, Gilles Sassatelli2 and Frédéric Bancel1

1STMicroelectronics
Smartcard Division

ZI de Rousset, 13 106 Rousset Cedex, France
{nicolas.valette, frederic.bancel}@st.com

2LIRMM / UMR 5506
Microelectronics Department

161 rue Ada, 34 492 Montpellier Cedex 5, France
{valette, torres, sassatelli}@lirmm.fr

Abstract

The purpose of this article is to propose a survey of
possible approaches for implementing embedded
reconfigurable gate arrays into secure circuits. A standard
secure interfacing architecture is proposed and motivations
justifying such an approach are discussed. This paper also
lists all features offered by FPGA vendors (Field
Programmable Gate Array) aiming at securing those
circuits according to different concerns. This article
emphasizes on configuration memory programming which
is probably the weakest point of using programmable
devices on a secure context.

1. Introduction

Secure circuits are considered as the main elements for
performing the security of a given system. For instance,
they are used to store secret keys, to control confidential
data access or to encrypt/decrypt secure data [1]. For
performing these operations, secure circuits are mainly
composed of a CPU (Central Process Unit), non-volatile
and volatile memories and cryptographic operators.
Representative secure circuit architecture is described in
Figure 1.

Internal Bus

I/O

Interface
I/O

Pad
CPU

Memory

RAM
Non

Volatile

Memory

Security

functions

Chip protection
functions

ROM

Block 1

Block 2
Block m

Specific
functions

Block n-1

Block n Program-
mable Gate

Arrays

Firewall

Figure 1. Secure component architecture.

Application fields for such systems are rapidly widening
and are no longer limited to banking transactions. Health,
electronic passport, pay TV or mobile phones are a few
examples where providing security (under different forms:

confidentiality, authenticity, integrity) is a must. Some
application fields need a high bandwidth communication
interface, others require important storage memory.
Matching both system specifications and security concerns
often implies the use of hardware solutions.

Manufacturers also have to integrate in their chip
specific countermeasures against potential attacks. With the
improvement of technologies and communications media,
especially the Internet, hackers become stronger in
bypassing security functions. [2] provides an interesting
overview on what hackers can do. Authors present different
ways to obtain secret data hidden in circuits: invasive or non
invasive attacks. Some types of non invasive attacks are
based on side channels [3]. Those techniques rely on the
analysis of information that leaks from the circuit like
power consumption, electromagnetic emanations,
temperature or even sound ... SPA (Simple Power Analysis)
and DPA (Differential Power Analysis) are common attacks
carried out on smartcards. Countermeasures and chip
protection functions are embedded into secure chips to
defeat those attacks.

From a financial point of view, secure devices tend to
become cheaper, chip vendors have to reduce their
manufacturing costs. Therefore, in order to lower the
production cost as much as possible, they generally design
dedicated applications for a customer including minimal
features. Another solution consists in creating a standard
product with a complete feature set corresponding to every
single customer’s requirements. This solution of course
tends to be too expensive. Additionally, dedicated products
often lack minimum flexibility, which prevent customers
from updating their products.

A considered solution for addressing these problems in
secure circuits relies on using embedded reconfigurable
logic. This approach is expected to offer more flexibility
and performance compared to CPU based devices. It should
also enable the improvement of security through being more
reactive and resistive to hacker’s threats. For example, a
circuit update founded on a different cryptographic
algorithm could void a given attack.

Integration of a reconfigurable core into chips has
already been done with success [4]. Some IP’s are also

1-4244-0054-6/06/$20.00 ©2006 IEEE

available for direct instantiation into SoCs (System on
Chip), but so far, no secure circuits make use of
reconfigurable logic. One reason for that is the necessity to
secure the reconfigurable circuit itself. Access to the
reconfigurable area has to be strongly secured in order to
prevent this area becoming a perfect backdoor for breaking
into the system. Two distinct levels of security are
considered. First we have to secure the macro cell against
hostile users, i.e. forbid reconfiguration to hackers; in other
words, securing the bitstream. The second aspect consists in
securing the rest of the system in order to restrict access
from this reconfigurable area. It is used to strengthen the
previous point and to control interactions of allowed users
with in the system: the firewall shown in Figure 1.

Depending on implemented locks, a system will have a
lower or higher security level. In [5], authors presented a
classification of attackers. A Class I corresponds to clever
outsiders. Such attackers often take advantage of an existing
weakness in the system. Class II are knowledgeable insiders
who have good experience and access to highly
sophisticated tools. Class III are funded organizations. They
are teams of specialists with great funding resources and
have access to highly sophisticated tools.

This paper lists all proposed solutions found in the
literature aiming at securing the bitstream. Our focus is to
be resistant to Class III attackers.

2. Configuration of stand alone programmable

arrays: state of the art.

FPGA can be seen as devices made of two distinct
layers: the operating layer and the configuration layer. The
purpose of the configuration layer is to store the
configuration of the operating layer. The configuration data
file is called the bitstream. Additional external non-volatile
memory is often used to store the bitstreams and to trigger
FPGA configuration. A hostile user may easily probe this
configuration bus; this attack is called “man in the middle”.
Then he can copy this bitstream into other devices of the
same family; this is called cloning. The bitstream can be
reverse-engineered if this one is not encrypted.

In this section, we will list the different solutions used
by FPGA manufacturers to secure the configuration of their
devices. In order to embed a reprogrammable array, we will
only consider solutions which permit device
reconfiguration. We will not consider Fuse / Anti-fuse
configuration-based devices.

2.1. Encapsulation

To prevent probing of configuration data, Atmel chose
to encapsulate the reconfigurable array and the non-volatile
memory into the same package for its FPSLIC family [6].
This solution is efficient against hackers with poor
resources, i.e. Class I attackers. But with limited equipment,
it is possible to extract the chip from the package, to probe

the connexions and to reach the confidential data. Figure 2
is an example of a low cost security, but is not good enough
to defeat users of class II and III. Therefore, it is not suitable
for our purpose.

FPGA non-
volatile

memory

CPU

multi-die chip
bitstream

Figure 2. Encapsulation of non-volatile memory.

2.2. Dongle

Another low cost solution consists in connecting the
FPGA to a CPLD (Complex Programmable Logic Device)
which is used as a “dongle”, like software security [7]. The
configuration phase is classical. First, the bitstream is stored
in a non-volatile memory, and then it is loaded into the
FPGA. But during run time, the FPGA sends random data to
the CPLD. The security core of the CPLD manipulates this
data and returns a result to the FPGA. If the FPGA doesn’t
receive expected data, it detects that it was cloned and stops
running (see Figure 3). This protection is efficient against
cloning but not against reverse-engineering. Because the
bitstream is not encrypted, it can be analysed, the security
core identified and bypassed. Moreover, the cost and the
area of a CPLD make this solution impossible for secure
circuits like smartcards.

bitstream

NVM : Non-Volatile Memory

FPGA NVM
verification

CPLD
Security

 Core

Security

 Core

Figure 3. Use of a CPLD.

2.3. Manufacturer defined key

Ciphering the bitstream is a good protection against
reverse engineering. A simple way to use cryptography is to
store a secret key (in hardware) into the chip when
manufacturing it and to store the same key in the CAD tool
(Figure 4). Actel used this principle to protect its 60RS
family [8]. It implies the implementation of a hard macro
into the FPGA to decrypt the bitstream which takes some
area, reducing the programmable array for user. This
solution is also low cost but is not efficient for our
applications because it doesn’t prevent cloning. If anybody
succeeds in hacking the FPGA or the CAD tool, to obtain
the secret key, we can imagine that he will share it on
Internet. Then, anybody will have the key and will be able
to reverse engineer all chips of this manufacturer. That’s

why this solution is not appropriate for embedded secure
devices.

ciphered bitstream

FPGA

NVM

same key for all

devices of the family

decryption

circuit

Figure 4. Manufacturer defined key.

2.4. User defined key

An improvement is to allow users to define their own
keys. In that way, designs are more protected against
cloning and reverse-engineering. The problem is to store
this secret key into the FPGA.

In the Virtex-II family, Xilinx [9] uses volatile memory
to store the secret key (see Figure 5). This choice was made
due to the configuration layer based on SRAM. The cipher
algorithm is the triple DES, with 168 bits for the key (in fact,
3 keys of 56 bits). The drawback of volatile memory is that
it doesn’t keep its content without supply. So it is necessary
to add an external battery dedicated to the storage of the key.
With the low power consumption of the key storage block, a
lithium battery can keep keys for more than 10 years. This
solution is robust and has been improved in the last product;
Virtex-IV family uses AES algorithm with a 256 bit key and
retains data for more than 20 years.

ciphered bitstream

FPGA

NVM

additional
battery

decryption

circuit

key storage

Figure 5. User defined key with volatile key storage.

Let’s apply this solution to secure chips. From a security
point of view, this can defeat attackers from class I and II,
and hinder the work of Class III attackers for a long time.
From a technical point of view, we can use a common
decryption circuit embedded in secure chips. But depending
on the application, additional battery is impossible to use.
For instance, it is the case for smartcard area where it is
impossible to store bitstream in all card readers, and to
implement a battery into the chip. As a conclusion, this
solution is suitable for secure components, depending on the
domain field. So, this solution will not be considered to
develop a standard secure configuration.

One way to free ourselves from external battery is to
replace the volatile memory with a non-volatile memory.
It’s the choice of Altera with its Stratix II family [10]. Its
devices use an AES algorithm with a 128 bit key (Figure 6).
The principle is the same as previous. In that way, this

solution is efficient for our purpose. Moreover, decryption
circuit and NVM are present in the secure platform (see
Figure 1). The main drawback is the volatility of the
configuration layer of the FPGA. This forces us to embed
more NVM into the secure chip to store the bitstream which
takes more area.

ciphered bitstream

FPGA

NVMdecryption
circuit

key storage

Figure 6. User defined key with non volatile key
storage.

2.5. Flash based FPGA

Actel also uses user defined keys in its ProAsic product
[11]. The principle is the same as the previous one, except
that the configuration layer is made of Flash technology, a
non volatile memory. Then, the bitstream is directly stored
in the non-volatile configurable array (Figure 7). This small
difference has a huge consequence. In its stand-alone
devices, Actel doesn’t need external NVM. This means that
for our embedded array, there’s no need of an additional
memory, which means a saving in silicon area. The security
is efficient and it fits exactly with our platform architecture.
This solution is well-suited for our applications, if we can
embed sufficient flash memory.

FPGA

non-volatile
configuration

memory

decryption

circuit

key storage

ciphered

bitstream

Figure 7. User defined key with non-volatile
configurable array.

2.6. T. Kean principle

This principle, proposed by T. Kean for Algotronix in
[12], allows the storage of a ciphered bitstream in external
NVM without knowledge of the secret key for user or CAD
tool. Manufacturers integrate a secret hardware key and a
permanent encryption/decryption circuit into the FPGA.
During initial programming, the unencrypted bitstream is
sent to the circuit via the JTAG port. Then the FPGA uses
an embedded key and an encryption circuit to cipher
bitstream and to store it in external memory. When power
on, the ciphered bitstream from NVM is decrypted by the
FPGA thanks to its own secret key (Figure 8). Advantages
are that there’s no need to know the secret key and the
bitstream can only be deciphered by the FPGA that ciphered
it.

If we try to apply this method to secure circuits, as used
in a bank field, an update is impossible. Because following

this solution, we have to send an unencrypted bitstream to
the input port of the smartcard, which is not suitable against
“man in the middle” attack.

ciphered

bitstream

FPGA

NVM

encryption

circuit

configuration
circuit

volatile
configuration

memory

unciphered

bitstream

ciphered

bitstream

FPGA

decryption

circuit

configuration
circuit

volatile
configuration

memory

Bitstream cipher and storage Power on configuration

NVM

Figure 8. Algotronix principle.

2.7. Dynamic configuration

In [13], the authors improved the last presented
technique by using dynamic reconfiguration of FPGA. In
order to free some circuit area, they implemented the
encryption/decryption circuit into the configurable area.
They also allowed ciphering of different blocks of the
FPGA with different algorithms depending on the security
needed (see Figure 9). This solution seems optimal for
stand-alone FPGA because it uses the programmable area to
implement only useful blocks. Encryption and decryption
blocks are removed when they are not used. From a security
point of view, there’s a weakness. Bitstreams of the
decryption circuits are stored in plain text into the NVM,
which means that “man in the middle” can intercept one of
these unencrypted bitstreams, and replaces it with a Trojan
design. For example, this fake design can copy the secret
key to user pad.

Initial configuration Configuration during power on
Source : [13]

Figure 9. Dynamic configuration.

This weakness is bypassed when used with embedded
NVM to store bitstream because the configuration bus is

hidden in the circuit. However, it is not suitable for secure
circuits because this solution needs a lot of NVM memory
to store different bitstreams. That means a lot of area, and an
upper cost price. Moreover, like the previous cited solution,
there’s also a weakness during circuit update. This solution
also implies a kind of computation power, not found in all
secure circuits.

3. Conclusion

Only two solutions are suitable from a security point of
view to be used in secure circuits. Both of them use a user
defined key with a non-volatile key storage. The volatility
of the configuration layer is the main difference between
them. The choice of the appropriate solution will depend on
the technology of the embedded configurable array. Flash
based solutions seem to be well-adapted, while needing less
configuration steps. However, both solutions match. An
appropriate architecture for a reconfigurable secure core
will be determined in future work.

References

[1] W. Rankl and W. Effing, Smartcard Handbook – 3rd ed, Wiley,
2003.
[2] R. Andersen and M. Kuhn, “Tamper Resistance – a Cautionary
Note”, USENIX Workshop on Electronic Commerce Proceedings,
Oakland, California, November 18-21, 1996, pp. 1-11.
[3] Hagai Bar-El, “Introduction to Side Channel Attacks”, White
Paper, Discretix website.
[4] “GreenFIELD STW21000 - Reconfigurable Micro Controller”,
Technical Article, STMicroelectronics website, 2005.
[5] D.G. Abraham, G.M. Dolan, G.P. Double, J.V. Stevens,
“Transaction Security System”, IBM Systems Journal v30 no 2,
1991, pp. 206-229.
[6] “AT94S Secure FPSLIC”, Datasheet, Atmel website.
[7] D. Kessner, “Copy Protection for SRAM based FPGA
Designs”, Application Note, Free IP Project.
[8] “60RS Family SPGA’s”, Advanced Datasheet, Actel website.
[9] “Virtex-II Family Overview”, Datasheet, Xilinx website.
[10] “Stratix II Device Handbook”, Datasheet, Altera website.
[11] “ProASIC3 Flash Family FPGAs Datasheet”, Datasheet,
Actel website.
[12] T. Kean, “Secure Configuration of Field Programmable Gate
Arrays”, Proceedings of 11th International Conference on
Field-Programmable Logic and Applications, FPL 2001, Belfast,
United Kingdom, 2001.
[13] L. Bossuet, G. Gogniat and W. Burleson, “Dynamically
Configurable Security for SRAM FPGA Bitstreams”, Proceedings
of 11th Reconfigurable Architectures Workshop, RAW 2004,
26-27 Avril 2004, Santa Fé, USA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

