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Abstract

In this paper, we present performance results from 
mapping five real-world DSP applications on an 

embedded system-on-chip that incorporates coarse-grain 

reconfigurable logic with an instruction-set processor. 
The reconfigurable logic is realized by a 2-Dimensional 

Array of Processing Elements. A mapping flow for 

improving application’s performance by accelerating 
critical software parts, called kernels, on the Coarse-

Grain Reconfigurable Array is proposed. Profiling is 
performed for detecting critical kernel code. For mapping 

the detected kernels on the reconfigurable logic a 

priority-based mapping algorithm has been developed. 
The experiments for three different instances of a generic 

system show that the speedup from executing kernels on 

the Reconfigurable Array ranges from 9.9 to 151.1, with 
an average value of 54.1, relative to the kernels’ 

execution on the processor. Important overall application 

speedups, due to the kernels’ acceleration, have been 
reported for the five applications. These overall 

performance improvements range from 1.3 to 3.7, with an 

average value of 2.3, relative to an all-software execution.     

1. Introduction

Reconfigurable architectures have received growing 

interest in the past few years [1]. Reconfigurable systems 

represent an intermediate approach between Application 

Specific Integrated Circuits (ASICs) and general-purpose 

processors. Such systems usually combine reconfigurable 

hardware with one or more software programmable 

processors. Reconfigurable processors have been widely 

associated with Field Programmable Gate Array (FPGA)-

based systems. An FPGA consists of a matrix of 

programmable logic cells, executing bit-level operations, 

with a grid of interconnect lines running among them. 

However FPGAs are not the only type of reconfigurable 

logic. Several coarse-grain reconfigurable architectures 

have been introduced and successfully built [1], [2], [3], 

[4], [5], [6], [7], [8]. Coarse-grain reconfigurable logic has 

been mainly proposed for speeding-up loops of 

multimedia and DSP applications in embedded systems. 

They consist of Processing Elements (PEs) with word-

level data bit-widths (like 16-bit ALUs) connected with a 

reconfigurable interconnect network. Their coarse 

granularity greatly reduces the delay, area, power 

consumption and reconfiguration time relative to an 

FPGA device at the expense of flexibility [1].  

In this work, we consider a subclass of coarse-grain 

architectures where the PEs are organized in a 2-

Dimensional (2D) array and they are connected with 

mesh-like reconfigurable networks [1], [2], [3], [7]. This 

type of reconfigurable logic is increasingly gaining 

interest because it is simple to be constructed and it can be 

scaled up, since more PEs can be added in the mesh-like 

interconnect. In this paper, these architectures are called 

Coarse-Grain Reconfigurable Arrays (CGRAs). A variety 

of CGRA architectures has been presented in both 

academia [1], [2], [3] and in industry [4], [7], [8]. 

Recently, design flows for System-on-Chip (SoC) 

platforms composed by a processor and FPGA [9], [10] 

found that when critical parts of the application, called 

kernels, are moved for execution on the FPGA the 

performance is improved. This is due to the fact that most 

embedded DSP and multimedia applications spend the 

majority of their execution time in few small code 

segments (typically loops), the kernels. This implies that 

an extensive solution search space, as in past 

hardware/software partitioning works [11], [12] is not a 

necessity.

A mapping flow for improving the application 

performance in single-chip systems composed by an 

instruction-set processor and a CGRA is proposed. 

Speedups are achieved by accelerating critical software 

parts (kernels) on the CGRA. The processor executes the 

non-critical software parts. Mapping flows for processor-

FPGA systems [9], [10] showed that such type of 

partitioning is feasible in embedded systems and it leads in 

important speedups. Processor-CGRA systems are present 

in both academia [2], [3], and in industry [4], [5], [7]. 

These SoCs is expected to further gain importance since 

the CGRAs lead to smaller execution times and lower 

power consumption of critical software parts when 
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compared with FPGAs. Thus, a mapping methodology 

like the one presented in this paper, is considered as a 

prerequisite for improving the performance of 

applications in such embedded systems.   

The mapping flow mainly consists of the following 

steps: (a) profiling for detecting critical kernel code, (b) 

Intermediate Representation (IR) creation, (c) mapping 

algorithm for the CGRA architecture, and (d) compilation 

to the instruction-set processor. We emphasize to the 

mapping for CGRA architectures, since it considerably 

affects the performance improvements through the kernels 

acceleration. The proposed mapping procedure for 

CGRAs is a priority-based (list-based) algorithm and it 

targets a CGRA template architecture which can model a 

variety of existing architectures [2], [3], [7].  

The work of [4] describes a design flow for an XPP-

based system. Performance results from mapping DSP 

algorithmic kernels on the XPP array are given. In [6] the 

instruction-set extension of a RISC processor coupled 

with a 4x4 XPP coarse-grain reconfigurable array is 

described. Performance improvements relative to the 

stand-alone operation of the RISC processor are shown 

for an 8x8 IDCT. However, in [4] and in [6] the mapping 

of a complete DSP application is not performed. In [13], it 

is shown that a hybrid architecture composed by an 

ARM926EJ-S and a CGRA similar to MorphoSys [3], 

executes 2.2 times faster a H.263 encoder than a single 

ARM926EJ-S processor. The design flow for the ADRES 

architecture was applied to an MPEG-2 decoder in [14]. 

The kernel and the overall application speedup over an 8-

issue VLIW processor were 4.84 and 3.05, respectively.  

In this paper, we provide results by applying the 

proposed mapping flow in five real-life DSP applications, 

coded in C language, on three instances of a generic 

processor-CGRA system. A 4x4 array of PEs is used for 

accelerating critical kernel code, while an ARM processor 

executes the non-critical code. The applications are: (a) a 

medical image processing application [15], (b) an IEEE 

802.11a OFDM transmitter [16], (c) a wavelet-based 

image compressor [17], (d) a still-image JPEG encoder, 

and (e) a video compression technique [18]. The results 

illustrate that the speedup from executing kernels on the 

CGRA ranges from 9.9 to 151.1, with an average value of 

54.1, relative to the kernels’ execution on the instruction-

set processor. Furthermore, significant overall application 

speedups, ranging from 1.26 to 3.70, were achieved 

relative to an all-processor execution of the application.  

The rest of the paper is organized as follows: section 2 

presents the system architecture and the mapping flow for 

this system. Section 3 describes the CGRA architecture 

template and the mapping algorithm for it. Section 4 

presents the experimental results, while section 5 

concludes this paper and outlines future research 

activities. 

2. Mapping flow  

2.1. System architecture 

A generic diagram of the considered hybrid SoC 

architecture, that targets embedded DSP applications, is 

shown in Figure 1. The platform includes: (a) Coarse-

Grain Reconfigurable Array for executing kernels, (b) 

shared system data memory, and (c) an instruction-set 

embedded processor. The processor is typically a RISC 

processor, like an ARM7 [19].  

CGRA Processor

Shared

Data RAM

Figure 1. Generic hybrid SoC architecture. 

Communication between the CGRA and the processor 

takes place via the shared data RAM and several direct 

signals. Part of the direct signals is used by the processor 

for controlling the CGRA by writing values to memory-

mapped registers located in the CGRA. Also, direct signals 

are used by the CGRA for informing the processor. For 

example, an interrupt signal is typically present which 

notifies the processor that the execution of a critical 

software part finished on the CGRA. Local data and 

configuration memory exist in the CGRA, for quickly 

loading data and configurations, respectively. This 

generic system architecture can model a variety of 

existing processor-CGRA SoCs, like the ones considered 

in [2], [3], [5], [7].  

2.2. Flow description 

The proposed mapping flow for processor-CGRA 

systems interests in increasing application’s performance 

by mapping critical software parts on the coarse-grain 

reconfigurable hardware. This flow takes advantage of the 

fact that kernels of DSP and multimedia applications 

contribute the most to the execution time.  

The mapping flow is illustrated in Figure 2. The input 

is an application described in a high-level language, like 

ANSI C/C++. Firstly, profiling is performed in the input 

source code for identifying the critical code sections, the 

kernels. For performing profiling, the standard 

debugger/simulator tools of the development environment 

of a specific processor can be utilized. For example, for 

the ARM processors, the instruction-set simulator (ISS) of 

the ARM RealView Developer Suite (RVDS) [19] is 

typically used. An instruction-set simulator that targets an 

extension of the MIPS IV processor [20] is the 

SimpleScalar toolset [21]. This simulator can be used 



when this superset of the MIPS IV is coupled with the 

CGRA in the targeted SoC platform. We consider as 

kernels those code segments that contribute more than a 

certain amount to the total application’s execution time on 

the processor. For example, parts of the code that account 

10% or more of the application’s time can be 

characterized as kernels.  

Input application (C/C++)

IR creation

Mapping to CGRA
Standard C/C++

Compilation 

Configuration Executable code

IR

Kernels

Non-critical code
Profiling

Figure 2. Mapping flow for the processor-CGRA 

architecture. 

The profiling step outputs the kernels and the non-

critical code segments. The kernels will be mapped on the 

CGRA for improving application’s performance, while 

the non-critical code will be executed on the processor. 

The non-critical segments are compiled using a standard 

C/C++ compiler for the specific processor. Then, the 

produced executable code runs on the processor and the 

execution cycles are calculated using an instruction-set 

simulator/debugger for the specific processor. 

For mapping the critical parts on the CGRA, the 

Intermediate Representation (IR) of each kernel code 

segment is created. We have chosen in this work the 

Control Data Flow Graph (CDFG) model of computation 

as the IR. The CDFG is a model of computation 

extensively used in mapping applications on 

reconfigurable hardware [22]. The CDFG of each kernel 

is input to our-developed mapping procedure, described in 

section 3.2, for CGRA architectures. The mapping 

procedure defines the configuration of the CGRA and 

reports the clock cycles of the kernels executed on the 

CGRA.

The communication mechanism used by the processor 

and the CGRA preserves data coherency by requiring the 

execution of the processor and the CGRA to be mutually 

exclusive. The kernels are replaced in the software 

description with calls to CGRA. When a call to CGRA is 

reached in the software, the processor activates the CGRA 

and the proper configuration is loaded on the CGRA for 

executing the kernel. The data required for the kernel 

execution are written to the shared data memory by the 

processor. These data are read by the CGRA. When the 

CGRA executes a specific critical software part, the 

processor usually enters an idle state for reducing power 

consumption. After the completion of the kernel 

execution, the CGRA informs the processor typically 

using a direct interrupt signal and writes the data required 

for executing the remaining software. Then, the execution 

of the software is continued on the processor and the 

CGRA remains idle.  

The mutual exclusive execution simplifies the 

programming of the system architecture since 

complicated analysis and synchronization procedures are 

not required. However, the parallel execution on 

processor and on the CGRA is a topic of our future 

research activities.  

The total execution cycles after partitioning the 

application on the processor and the CGRA are:  

Cycleshw/sw = Cyclesproc + CyclesCGRA                     (1)

where Cyclesproc represents the number of cycles needed 

for executing the non-critical software parts on the 

processor, and CyclesCGRA corresponds to the cycles that 

are required for executing the software kernels on the 

CGRA. The communication time between the processor 

and the CGRA is included in the Cyclesproc and in the 

CyclesCGRA since load and store operations that refer to the 

shared data RAM are present in the non-critical parts and 

in the kernels of each application. The CyclesCGRA have 

been normalized to the clock frequency of the 

microprocessor. The Cycleshw/sw are multiplied with the 

clock period of the processor for calculating the total 

execution time thw/sw after the partitioning. 

The proposed mapping flow requires the execution 

times of kernels on the coarse-grain reconfigurable 

hardware. Since, those times can be also given by other 

mapping algorithm than the one considered in this work, 

the proposed flow can be applied in conjunction with 

other mapping algorithms [22], [23], [24]. Additionally, 

the flow is parametric to the type of coarse-grain 

reconfigurable hardware, as the mapping procedures 

abstract the hardware by typically considering resource 

constraints, timing and area characteristics. Due to the 

aforementioned factors, the design flow can be considered 

retargetable to the type of coarse-grain reconfigurable 

hardware. Thus, the proposed mapping flow can also take 

into account other types of coarse-grain reconfigurable 

hardware [25], and not only CGRAs. 

The steps of the IR creation and the mapping to 

CGRA, enclosed in the dashed line of Figure 2, have been 

automated for an input software description in C 

language. In particular, for the CDFG creation from the C 

code, we have used the SUIF2 [26] and MachineSUIF 

compiler infrastructures [27]. The mapping algorithm for 

the CGRA is implemented in C++. In the following 

section, we describe the CGRA architecture template and 

the developed mapping algorithm for such types of 

architectures.



3. Mapping algorithm for CGRAs

3.1. CGRA architecture template 

The considered generic CGRA template is based on 

characteristics found in the majority of existing 2D 

coarse-grain reconfigurable architectures [1], [2], [3], [7] 

and it can be used as a model for mapping applications to 

such type of architectures. The proposed architecture 

template is shown in Figure 3a. Each PE is connected to 

its nearest neighbours, while there are cases [3], [7] where 

there are also direct connections among all the PEs across 

a column and a row. A PE typically contains one 

Functional Unit (FU), which it can be configured to 

perform a specific word-level operation each time. 

Characteristic operations supported by the FU are ALU, 

multiplication, and shifts. For storing intermediate values 

between computations and data fetched from memory, a 

small local data RAM exists inside a PE. Figure 3b shows 

an example of a PE architecture. The FU of this PE has 

two inputs and one output. The multiplexers are used to 

select each input operand that can come from different 

sources: (a) from the same PE’s RAM, (b) from the 

memory buses and (c) from another PE. The output of 

each FU can be routed to other PEs or to its local RAM. 

The reconfiguration (context) register of a PE stores 

control values (context word) that determine how the FU, 

the local RAM and the multiplexers are configured. Also, 

this context word determines where the output of the FU 

is routed, thus defining the interconnections among the 

PEs.
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Figure 3. (a) CGRA architecture template, (b) 

Example of PE architecture. 

The main configuration memory of the CGRA (Figure 

3a) stores the whole configuration for setting up the 

CGRA for the execution of application’s kernels. 

Configuration caches distributed in the CGRA and 

reconfiguration registers inside the PEs are used for the 

fast reconfiguration of the CGRA. A configuration cache 

stores a few contexts locally, which can be loaded on 

cycle-by-cycle basis. The configuration contexts can also 

be loaded from the configuration memory at the cost of 

extra delay, if the local configuration caches are not large 

enough to store the configuration of the kernel body.     

The CGRA’s data memory interface consists of: (a) 

the memory buses, (b) the scratch-pad memory [28] 

which is the first level (L1) of the CGRA’s memory 

hierarchy, and (c) the base memory level, called L0, 

which is formed by the local RAMs inside the PEs.  The 

main data memory of the CGRA is a part of the system’s 

shared data memory (Figure 1). The PEs residing in a row 

or column share a common bus connection to the scratch-

pad memory, as in [2], [3], [7]. The L1 serves as a local 

RAM memory for quickly loading data in the PEs of the 

CGRA. The interconnection network together with the L0 

acts as a high-bandwidth foreground memory, since 

during each cycle several data transfers can take place 

through different paths in the CGRA.  

We note that the organization of the PEs and their 

interface to the data memory largely resembles the 

popular MorphoSys reconfigurable array [3]. However, 

with little modifications it can model other CGRA 

architectures.  For example, if we allow only the PEs of 

the first row of the CGRA to be connected to the scratch-

pad memory through load/store units then our template 

can model the data memory interface of the CGRA in 

[14].    

3.2. Algorithm description

The task of mapping applications to CGRAs is a 

combination of scheduling operations for execution [29], 

mapping these operations to particular PEs, and routing 

data through specific interconnects in the CGRA. The first 

input to the mapping algorithm is a DFG G(V, E) that 

represents the kernel (critical basic block) which is to be 

mapped to the CGRA. The algorithm is applied to all the 

application’s kernels, one at a time, for computing the 

execution cycles on the CGRA. The description of the 

CGRA architecture is the second input to the mapping 

process. The CGRA architecture is modelled by a 

undirected graph, called CGRA Graph, GA(Vp, EI). The Vp

is the set of PEs of the CGRA and EI are the 

interconnections among them. The CGRA architecture 

description includes parameters, like the number of the 

PEs, the size of the local RAM inside a PE, the memory 

buses to which each PE is connected, the bus bandwidth 

and the scratch-pad memory access times.  

The PE selection for scheduling an operation, and the 

way the input operands are fetched to the specific PE, will 

be referred to hereafter as a Place Decision (PD) for that 

specific operation. Each PD has a different impact on the 

operation’s execution time and on the execution of future 

scheduled operations. For this reason, a cost is assigned to 

each PD to incorporate the factors that influence the 

scheduling of the operations. The goal of the mapping 

algorithm is to find a cost-effective PD for each operation. 

The proposed priority (list) based mapping algorithm is 

shown in Figure 4.  

The algorithm is initialized by assigning to each DFG 

node a value that represents its priority. The priority of an 

operation is calculated as the difference of its As Late As 



Possible (ALAP) minus its As Soon As Possible (ASAP) 

value. This result is called mobility. Also variable p,

which indirectly points each time to the most exigent 

operations, is initialized by the minimum value of 

mobility. In this way, operations residing in the critical 

path are considered first in the scheduling phase. During 

the scheduling phase, in each iteration of the while loop, 

QOP queue takes via the ROP() function the ready to be 

executed operations which have a value of mobility less 

than or equal to the value of variable p. The first do-while

loop schedules and routes each operation contained in the 

QOP queue one at a time, until it becomes empty. Then, 

the new ready to be executed operations are considered 

via ROP() function which updates the QOP queue. 

// SOP          : Set with operations to be scheduled 

// G(V,E)     : Kernel’s DFG 

// QOP         : Queue with ready to schedule operations 

SOP = V;

AssignPriorities(G);

p = Minimum_Value_Of_Mobility; // Highest priority 

while (SOP  ø) {    

QOP = queue ROP(p);

  do { 

Op = dequeue QOP;

   (Pred_PEs, RTime) = Predecessors(Op);

do {

       Choices = GetCosts(Pred_PEs, RTime);

       RTime++; 

} while( ResourceCongestion(Choices) ); 

   Decision =               

               DecideWhereToScheduleTimePlace(Choices);

ReserveResources(Decision);

Schedule(Op);   

SOP = SOP – Op; 

 } while(QOP  ø); 

p = p+1;

}

Figure 4. CGRA mapping algorithm. 

The Predecessors() function returns (if exist) the PEs 

where the operation’s Op’s predecessors (Pred_PEs) were 

scheduled and the earliest time (RTime) at which the 

operation Op can be scheduled. The RTime (eq. (2)) 

equals to the maximum of the times where each of the 

Op’s predecessors finished executing tfin. P is the set 

having the predecessor operations of Op.

1,..,
max ,0   fin ii P Op

RTime Op t Op          (2) 

where iOp P Op . The function GetCosts() returns the 

possible PDs and the corresponding costs for the 

operation Op in the CGRA in terms of the Choices

variable. It takes as inputs the earliest possible schedule 

time (RTime) for the operation Op along with the PEs 

where the Pred_PEs have been scheduled. The function 

ResourceCongestion() returns true if there are no 

available PDs due to resource constraints. In that case 

RTime is incremented and the GetCosts() function is 

repeated until available PDs are found. The 

DecideWhereToScheduleTimePlace() function analyzes 

the mapping costs from the Choices variable. The 

function firstly identifies the subset of PDs with minimum 

delay cost. From the resulting PD subset, it selects the one 

with minimum interconnection cost as the one which will 

be adopted. The function ReserveResources() reserves the 

resources (memory bus, PEs, local RAMs and 

interconnections) for executing the current operation on 

the selected PE. More specifically, the PEs are reserved as 

long as the execution takes place. For each data transfer, 

the amount and the duration of bus reservation is 

determined by the number of the words transferred and 

the memory latency, respectively. The local RAM in each 

of the PEs is reserved according to the lifetime of the 

variables [29]. Finally, the Schedule() records the 

scheduling of operation Op. After all operations are 

scheduled, the execution cycles of the input kernel are 

reported. 

4. Experiments 

4.1. Set-up 

Five real-life DSP applications, written in C language, 

were mapped on three different instances of the generic 

processor-CGRA platform using the developed mapping 

flow. These applications are: (a) a cavity detector which is 

a medical image processing application [15], (b) the 

baseband processing of an IEEE 802.11a OFDM 

transmitter [16], (c) a wavelet-based image compressor, 

public available at [17], (d) a still-image JPEG encoder, 

and (e) a video compression technique, called Quadtree 

Structured Difference Pulse Code Modulation (QSDPCM) 

[18]. The experiments were performed using the following 

applications’ inputs: (a) an image of size 640x400 bytes 

for the cavity detector, (b) 4 payload symbols for the 

OFDM transmitter at a 54 Mbps rate, (c) an image of size 

512x512 bytes for the wavelet-based image compressor, 

(d) an image of size 256x256 bytes for the JPEG encoder, 

and (e) two video frames of size 176x144 bytes each for 

the QSDPCM.  

We have used three different architectures of 32-bit 

ARM processors [19], which are RISC processors widely 

used in embedded systems. These processors are: (a) an 

ARM7 clocked at 100 MHz, (b) an ARM9 clocked at 250 

MHz, and (c) an ARM10 having clock frequency of 325 

MHz. These clock frequencies were taken from reference 

designs from the ARM website [19] and they are 

considered as typical for these processors. The five 

applications were compiled to generate binary files for the 

ARM processors using the highest level of software 

optimizations. The ARM RVDS (version 2.2) [19] was 



used for calculating the execution cycles of applications’ 

parts for each one of the three processors. The instruction-

set simulator of the RVDS was used for profiling the 

application’s C source code for detecting kernel code 

segments. In this work, kernels are considered those code 

sections that contribute 10% or more to the application’s 

execution time.  

The CGRA architecture used in this experimentation 

and coupled each time with one of the three processors is 

a 4x4 array of PEs. The PEs are directly connected to all 

other PEs in the same row and same column through 

vertical and horizontal interconnections, as in a quadrant 

of MorphoSys [3]. There is one 16-bit FU in each PE that 

can execute any supported operation (i.e. ALU, 

multiplication, shift) in one CGRA’s clock cycle. Each PE 

has a local RAM of size 8 words; thus the L0 size is 256 

bytes. The direct connection delay among the PEs is zero 

cycles. Two buses per row are dedicated for transferring 

data to the PEs from the scratch-pad (L1) memory. The 

delay of fetching one word from the scratch-pad memory 

is one cycle. We assume that the CGRA configuration 

caches are sufficiently large to store the configuration of 

the applications’ kernels to be mapped on the CGRA. In 

this case, cycle-by-cycle reconfiguration of the CGRA is 

supported. The CGRA’s clock frequency is set to 150 

MHz as in the reconfigurable array of [4].  

4.2. Results 

We have profiled the five DSP applications and we 

have detected their kernels for each one of the three ARM 

processors. For all applications the detected kernels were 

loops that they consist of word-level operations (ALU, 

multiplications, shifts) that match the granularity (data 

bit-width) of the PEs in the 4x4 CGRA. In all 

applications, except from the QSDPCM, the number of 

kernels (loops) in each application equals 4. For the 

QSDPCM, three loops contributed 10% or more to the 

total execution time. Thus, the speedup of each 

application will come from accelerating a small number 

of kernels. The small number of the detected kernels in 

each application means that the usage of exploration 

algorithms, which typically examine thousands of 

possible partitions and utilize complex algorithms [11], 

[12] is not necessary in the case of partitioning the 

considered applications on the processor-CGRA SoCs. 

We note that the detected kernels of all applications were 

critical code parts when executed on each one of the three 

ARM processors. 

We have unrolled the detected critical loops 16 times 

for mapping them on the CGRA. We have investigated 

that unrolling the kernels of the considered applications 

more than 16 times, the execution cycles, when these 

kernels were mapped on the 4x4 CGRA, slightly 

decrease. Thus, we have selected the unroll factor equal to 

16 since it gives significant reductions of the execution 

cycles of kernels over the execution of the original loop 

body on the 4x4 CGRA.  

Figure 5 shows the speedups for executing all the 

kernels of each application on the 4x4 CGRA relative to 

the execution of the kernels on the processor. For every 

application, the speedup is relative to each one of the 

three ARM processor used. For example, the left most bar 

in each application corresponds to the performance 

improvement obtained when the execution cycles of the 

kernels are compared to the ones for the execution of the 

kernels on the ARM7. The kernel speedup is defined as:   

Spkernel = Cycleskernels_sw / Cycleskernels_CGRA_norm                (3) 

where Cycleskernels_sw represents the number of cycles 

required for executing the kernels on the processor and 

the Cycleskernels_CGRA_norm represents the number of cycles 

for executing the kernels on the CGRA. We note that the 

cycles reported from the CGRA mapping algorithm 

described in section 3.2, are normalized to the clock 

frequency of the processor in the system platform, using 

the following relation: 

ker _ _ ker _

proc

nels CGRA norm nels CGRA

CGRA

Clock
Cycles Cycles

Clock
    (4) 

where the Cycleskernels_CGRA are the clock cycles reported 

from the developed mapping tool for CGRAs, Clockproc is 

the clock frequency of the processor and ClockCGRA is the 

clock frequency of the CGRA.   
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Figure 5. Kernel speedups on the 4x4 CGRA for 

various processor systems. 

From Figure 5, it is deduced that important speedups 

are achieved when critical kernels are executed on the 

CGRA. The performance improvements range from 9.9 to 

151.1, with an average value of 54.1 for all the 

applications and all the cases of ARM processors. Even in 

the case where the processors are clocked in a higher 

clock frequency than the CGRA (as in the ARM9 and 

ARM10 SoCs) the speedups are significant. The speedups 

are due to the fact that the inherent operation parallelism 

of the kernels is better exploited by the available 

Processing Elements of the CGRA than the functional 



units of the ARM processors. These results prove that the 

CGRA architectures are efficient in accelerating critical 

loops of DSP and multimedia applications which leads in 

improving the overall performance of an application 

executed on a processor-CGRA system as it will be 

shown in Table 1. 

For the ARM7 system the average kernel speedup for 

the five applications is 103.5, for the ARM9 system is 

35.2, and for the ARM10 system is 23.5. From Figure 5 it 

is noted that the kernel speedup decreases when a newer-

generation and higher-clocked instruction-set processor is 

used in the platform. The largest speedup is obtained 

relative to the ARM7 solution, which is the oldest-

generation of the ARM processors used in this work and 

the lowest-clocked one. The speedup relative to the kernel 

execution on the ARM9 is approximately 3 times in 

average smaller than the ARM7 one. Furthermore, the 

kernel speedup decreases more slowly when the ARM10 

is used in the platform. In this case, the speedup relative 

to the kernel execution on the ARM10 is approximately 

1.5 times in average smaller than the ARM9 one. This is 

justified by the facts that the clock difference of the 

ARM9 and ARM10 is smaller than the ARM7 and ARM9 

and that the ARM9 is a more contemporary 

microprocessor generation to the ARM10 than the ARM7.  

Table 1. Execution cycles and speedups for the 

processor-CGRA SoCs 

Application
Proc. 

Type
Cyclesinit Cycleshw/sw Speedup 

ARM7 178,828,950 87,512,166 2.04 

ARM9 161,441,889 85,566,541 1.89 Cavity

ARM10 155,356,758 87,255,890 1.78 

ARM7 397,851 121,873 3.26 

ARM9 362,990 118,197 3.07 OFDM

ARM10 334,375 119,455 2.80 

ARM7 25,832,508 11,564,753 2.23 

ARM9 20,574,658 10,135,735 2.03 Compressor 

ARM10 17,854,928 10,013,173 1.78 

ARM7 23,003,868 6,212,160 3.70 

ARM9 19,951,193 6,785,540 2.94 JPEG

ARM10 16,930,629 6,254,858 2.71 

ARM7 4,026,384,618 3,075,311,802 1.31 

ARM9 3,895,248,922 3,039,239,650 1.28 QSDPCM

ARM10 3,608,029,180 2,840,231,680 1.27 

Average:  2.27 

The execution cycles and the performance results from 

applying the proposed mapping flow in the five 

applications are presented in Table 1. For every 

application, each one of the three considered ARM 

processor types (Proc. Type) is used for estimating the 

clock cycles (Cyclesinit) required from executing the 

whole application on the processor. The application 

speedup is calculated as:   

Spapp = Cyclesinit / Cycleshw/sw                     (5) 

where Cycleshw/sw represents the execution cycles after the 

partitioning and the mapping of the kernels on the CGRA 

and the non-critical code on the processor.  

From the results given in Table 1, it is evident that 

significant performance improvements are achieved when 

critical software parts are mapped on the 4x4 CGRA. The 

application speedup for the five applications and for the 

processor used ranges from 1.27 to 3.70, with an average 

value of 2.27. Such amounts of speedups were also 

considered as important in previous works as in [13], 

where a video encoder executed 2.2 times faster on a 

processor-CGRA SoC than an all-software solution. It is 

noticed from Table 1 that the largest overall application 

performance gains are achieved for the ARM7 system, 

fact that is explained by the obtained kernel speedups 

illustrated in Figure 5 which were the largest ones among 

the three ARM-based systems. The average application 

speedup of the five DSP benchmarks for the ARM7 

system is 2.51, for the ARM9 is 2.24, while for the 

ARM10 system is 2.07. Thus, even when the 4x4 CGRA 

is coupled with a modern embedded processor, like the 

ARM10, which is clocked at a higher clock frequency 

(approximately two times larger), the overall application 

speedup is significant.    

Table 2. Exploration of the speedup relative to the 

clock frequency of the CGRA 

Application
Proc. 

Type

Speedup

(100 MHz) 

Speedup

(150 MHz) 

ARM7 2.03 2.04 

ARM9 1.86 1.89 Cavity

ARM10 1.75 1.78 

ARM7 3.23 3.26 

ARM9 2.99 3.07 OFDM

ARM10 2.70 2.80 

ARM7 2.21 2.23 

ARM9 1.96 2.03 Compressor 

ARM10 1.71 1.78 

ARM7 3.67 3.70 

ARM9 2.88 2.94 JPEG

ARM10 2.63 2.71 

ARM7 1.31 1.31 

ARM9 1.28 1.28 QSDPCM

ARM10 1.26 1.27 

Average: 2.23 2.27 

We mapped the five applications in the three SoCs 

where the 4x4 CGRA is now clocked at 100 MHz, instead 

of 150 MHz as in the previous results. The clock 

frequency of the CGRA in the MorphoSys SoC [3] was 

also 100 MHz. The three considered ARM processors 

have similar clock frequencies as in the previous 

experiments. In Table 2, the application speedups for 

these two different clock frequencies of the CGRAs are 

given. From these results it is deduced that the speedup 

slightly decreases when the clock frequency of the CGRA 



becomes smaller. The average speedup for the five 

applications and for the three ARM-based systems is 2.23 

for the clock of 100 MHz, while for the 150 MHz clock 

the average speedup is slightly larger since it is equal to 

2.27. Thus, we can achieve somewhat similar speedups if 

the CGRA is clocked at a smaller frequency. In this case, 

the system’s energy consumption is expected to be 

reduced. 

5. Conclusions - Future work 

A mapping flow for improving system performance by 

executing critical kernel code on the coarse-grain 

reconfigurable hardware of a processor-based SoC was 

presented. Results from mapping five DSP applications 

on three instances of a processor-CGRA platform show 

that the CGRAs are efficient in accelerating kernel code 

since the average kernel speedup was 54.1. This resulted 

in important overall performance improvements that 

ranged from 1.3 to 3.7. Future work focuses on exploiting 

the possible performance improvements of parallel 

execution of the processor and the CGRA. 
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