
Multi-level Reconfigurable Architectures in the Switch Model

Sebastian Lange and Martin Middendorf
Department of Computer Science

University of Leipzig
Augustusplatz 10-11, D-04109 Leipzig, Germany
{langes,middendorf}@informatik.uni-leipzig.de

Abstract

In this paper we study multi-level dynamically recon-
figurable architectures. These are extensions of stan-
dard reconfigurable architectures where ordinary recon-
figuration operations correspond to the lowest recon-
figuration level. On each higher reconfiguration level
the reconfiguration capabilities of the reconfigurable re-
sources that are available on the level directly below can
be reconfigured. We show that the problem to find op-
timal reconfigurations with an arbitrary number of re-
configuration levels can be found in polynomial time
for the switch cost model. The problem of finding the
optimal number of reconfiguration levels is shown to be
solvable in polynomial time on homogeneous multi-level
architectures but it becomes NP-hard for heterogeneous
multi-level architectures. Moreover, we present experi-
mental results for some example problems on a simple
test architecture.

1 Introduction

Reconfigurable architectures that can be reconfig-
ured dynamically on two different levels have been pro-
posed in [3]. These architectures allow to adapt the
amount of reconfiguration possibilities that are avail-
able for (ordinary) reconfigurations to the actual needs.
A small amount of reconfiguration possibilities offers
less flexibility but has the advantage that dynamic re-
configuration is faster because less reconfiguration bits
are necessary to define the new state of the architec-
ture. The lower reconfiguration level of a 2-level recon-
figurable architecture corresponds to ordinary recon-
figuration operations. On the upper reconfiguration
level the reconfiguration capabilities of the reconfig-
urable resources that are available for the lower level
reconfiguration can be reconfigured. The upper level
reconfiguration operations were called hyperreconfigu-

rations in [3]. Accordingly there exist two types of (re-
configuration) contexts: i) the ordinary context is de-
fined by the reconfiguration bits that have been loaded
onto the architecture during the last reconfiguration
operation and ii) the hypercontext is defined by the
reconfiguration bits that have been loaded during the
last hyperreconfiguration operation. This definition of
2-level reconfiguration is different from the two-level
reconfiguration scheme of the MATRIX architecture
[5]. MATRIX uses a two level configuration scheme
where traditional “instructions” are seen as the lower
reconfiguration level. The higher level reconfiguration
is used to configure the architectural organization for
a computation and the corresponding reconfiguration
data are called metareconfiguration data.

Several aspects of 2-level reconfigurable architec-
tures have been studied so far. The problem to find
for an algorithm that is characterized by a sequence of
ordinary reconfiguration operations the best time steps
when to perform upper level reconfiguration operations
and to determine the corresponding hypercontexts was
studied in [3] and called Partition into Hypercontexts
(PHC) problem. It was shown that PHC is NP-hard in
general but for the so called switch model of 2-level re-
configuration it can be solved in polynomial time. The
use of a context cache in 2-level reconfigurable archi-
tectures was studied in [2]. It was shown that the PHC
problem with cache is NP-complete even in the switch
model of 2-level reconfiguration no matter which cache
replacement strategy is used. Heuristics to select the
contexts that are stored in the upper level cache have
been proposed. The fundamental design problem to
find the best level of granularity that should be pro-
vided for the upper level reconfiguration operations was
addressed in [4].

It has been argued in [3] that architectures with
more than two reconfiguration levels might be advan-
tageous to make dynamic reconfiguration even faster.
But so far no detailed investigations have been done to

1-4244-0054-6/06/$20.00 ©2006 IEEE

Switches controlled
by SRAM cells

Control
Reconfiguration

chain

SRAM cells

1

1

0

H
y
p

e
rc

o
n

te
x
t

S
R

A
M

1

0 0
C

o
n

te
x
t

S
R

A
M

Figure 1. 3-level reconfigurable switchbox

explore the concept of multi-level reconfiguration for
more than two levels of reconfiguration.

In this paper we introduce a formal model for multi-
level reconfigurable architectures and study algorith-
mic problems for their use. In particular, we define
a multi-level reconfigurable Switch model architecture
and investigate versions of the PHC problem for this ar-
chitectures. We extend the results of [3] and show that
the PHC problem can be solved optimally in polyno-
mial time also for Switch model reconfigurable archi-
tectures with more than 2 levels.

2. Multi-Level Reconfigurable Architec-
tures

In this section we introduce multi-level reconfig-
urable machines (as an extension of 2-level reconfig-
urable architectures as introduced in [3]). We start
with intuitive definitions to introduce the concept and
then present formal models. Multi-level reconfigurable
architectures have two types of reconfiguration opera-
tions. The lowest (or first) level of reconfiguration cor-
responds to ordinary reconfiguration operations. Thus,
during a lowest level reconfiguration operation (or-
dinary reconfiguration operation) the context (in the
sense of [1]) of an algorithm is defined. A context de-
termines, e.g., the connections for communication or
the functions that are computed by Look-Up Tables.

Let r ≥ 2 be the number of reconfiguration levels.
The kth level of reconfiguration, r ≥ k ≥ 2 is used to
define the capabilities of the reconfigurable resources
or the availability of these resources for the subsequent
reconfiguration steps on level k − 1. In other words,
k-level reconfiguration operations, k ≥ 2 define the set
of contexts that are available to lower reconfiguration
levels. A central aspect of multi-level reconfigurable
architectures is that the cost (i.e., the reconfiguration
time or the amount of bits necessary to be loaded onto

the architecture) of a k−1-level reconfiguration opera-
tion depend on the current k-level context as explained
in the following, k ≥ 2. The k-level reconfiguration op-
erations, k ≥ 2, are also called hyperreconfigurations
and the corresponding contexts hypercontexts ([3]).

In this paper we assume that an algo-
rithm/computation can be characterized by a
sequence of context requirements that specify which
reconfigurable features are needed for every ordinary
reconfiguration step during run time on the multi-level
reconfigurable machine. The context requirements are
minimal requirements that have to be satisfied in order
to guaranty a successful computation. One example
is that a certain set of switches in the switchboxes
is required for reconfiguration in order to satisfy the
routing demands. Another example is a minimum
required number of functional units that are avail-
able for reconfiguration to satisfy the computational
demands. Note that the actual reconfiguration of a
computation during run time might depend on the
data and therefore we do not assume that it can be
determined exactly in advance. Thus not all of the
switches that were required for a reconfiguration step
are necessarily being used during run time in the
corresponding reconfiguration step. In that case the
context requirements are worst case upper bounds.
When the meaning is clear we call the context require-
ments of an algorithm/computation sometimes simply
its contexts. Before we describe the formal model we
give an example.

Example. Consider a 3-level reconfigurable switch-
box with 6 inputs, 6 outputs and 36 reconfigurable
switches sij , i, j ∈ [1 : 6] (see Figure 1). There exists a
chain of S-RAM cells — called reconfiguration chain —
that defines the state of the switches. During a recon-
figuration operation the reconfiguration bits are shifted
into this register chain. There exist two other chains of
S-RAM cells called 1st- and 2nd-hyperreconfiguration
chain. These chains are used to define whether an S-
RAM cell is included in the reconfiguration chain (re-
spectively the 1st-level hyperreconfiguration chain) or
is shortcut.

During a k-level reconfiguration operation the hy-
perreconfiguration bits are shifted into the kth reg-
ister chain, k ∈ [2 : 3]. Assume that an algorithm
A makes six 1st-level reconfiguration operations and
therefore can be characterized by a sequence of six
context requirements c1c2c3c4c5c6. We assume that
the requirement for the first two contexts is that all
6 switches on the diagonal are needed, i.e. c1 = c2 =
{s11, s22, s33, s44, s55, s66} (Figure 2 (a)), the next two
reconfigurations need only the upper third of the diago-
nal, i.e. c3 = c4 = {s11, s22} (Figure 2 (b)), and for the

(a)

enabled switch
disabled switch

bypassed SRAM cell
SRAM cell on “low”
SRAM cell on “high”

(b) (c)

Figure 2. The example 3-level reconfigurable switchbox with corresponding (hyper-)reconfiguration
data for reconfigurations 1-2 (a), 3-4 (b) and reconfigurations 5-6 (c)

last two reconfiguration steps only the upper two rows
are required, i.e., c5 = c6 = {s11, . . . , s16, s21, . . . , s26}
(Figure 2 (c)). Note that it is not known in advance
how the switches are used (i.e., on or off).

Assume that a 3rd-level reconfiguration is performed
before the first reconfiguration step so that exactly
those S-RAM cells that correspond to switches on the
diagonal and the first two rows are included in the
2nd-level reconfiguration chain (i.e. the 3rd-level con-
text is {s11, . . . , s16, s21, . . . , s26, s33, s44, s55, s66}). As-
sume further that a 2nd-level reconfiguration is per-
formed so that exactly those S-RAM cells that cor-
respond to switches on the diagonal are included in
the 1st-level reconfiguration chain (i.e. the 2nd-level
context is {s11, s22, s33, s44, s55, s66}). Observe, that
only 16 bits have to be shifted into the 2nd level re-
configuration chain for this. For each of the first four
1st-level reconfiguration operations only 6 reconfigu-
ration bits have to be shifted into the reconfiguration
chain. Assume that another 2nd-level reconfiguration
is made before the fifth reconfiguration step so that
exactly the S-RAM cells of the switches on the first
two rows are included into the 1st-level reconfiguration
chain. Consequently, for each of the last two 1st-level
reconfiguration operations only 12 reconfiguration bits
have to be shifted into the reconfiguration chain. Alto-
gether, a total number of 116 reconfiguration bits have
to be shifted into the 1st-level reconfiguration chains:
36 3rd-level reconfiguration bits, 32 2nd-level reconfig-
uration bits and 48 1st-level reconfiguration bits. This
is less than 6x36=216 reconfiguration bits that would
have been necessary for an ordinary (i.e. 1-level) re-
configurable switchbox where each reconfiguration step

requires 36 reconfiguration bits. Observe also that it
would be possible to make an additional 2nd-level re-
configuration before the third reconfiguration so that
only the switches {s11, s22} are included in the reconfig-
uration chain. But this is more costly because it needs
16 additional 2nd-level reconfiguration bits and saves
only 8 1st-level reconfiguration bits (4 for the each of
the 3rd and 4th reconfiguration operation).

Formal model. The formal model that we intro-
duce in the following is an extension of the 2-level
reconfigurable switch model as introduced in [3]. It
should be noted that it is possible to extent other mod-
els of 2-level reconfigurable machines from [3]. Since we
want to concentrate on the algorithmic problems in this
paper this is not done here.

A multi-level reconfigurable architecture (in the
switch model) consists of a set X1 = {x1

1, . . . , x
1
n} of

reconfigurable units or switches. For r ≥ 2 reconfigu-
ration levels the machine has for each k ∈ [2 : r] a set
Xk = {xk

1 , . . . , xk
n} of SRAM cells. A subsequence of

xk
1 , . . . , xk

n forms a chain (called k-level reconfiguration
chain) that can be loaded from outside, k ∈ [1 : r]. For
k = r always all SRAM cells xr

1, . . . , x
r
n are included in

the r-level reconfiguration chain. Which SRAM cells
or switches are included into the k-level reconfigura-
tion chain for k < r is defined by the content of the
SRAM cells on higher levels as described in the follow-
ing. The state of an SRAM cell xk

i can be used to define
whether the corresponding SRAM cell one level below
(i.e. xk−1

i) is included in the k−1-level reconfiguration
chain. More exactly, if SRAM cell xk

i is included in
the k-level reconfiguration chain then SRAM cell (re-
spectively switch, for k = 2) xk−1

i is included in the

k − 1-level reconfiguration chain if and only if xk
i con-

tains a one, i ∈ [1 : n], k ≥ 2. If SRAM cell xk
i is

not included in the k-level reconfiguration chain then
SRAM cell (respectively switch, for k = 2) xk−1

i is also
not included in the k − 1-level reconfiguration chain,
i ∈ [1 : n], k ≥ 2.

The content of the k-level reconfiguration chain is
called k-level context and denoted by hk

1 , k ∈ [1 : r].
The set of (1st-level) context requirements C = 2X1 is
the set of all subsets of X1. An algorithm that per-
forms m 1st-level reconfiguration operations is charac-
terized by a sequence C = c1 . . . cm of context require-
ments with ci ∈ C, i ∈ [1 : m]. The algorithm can run
successfully only when each context requirement ci is
satisfied by the actual context during the correspond-
ing 1st-level reconfiguration operation. Thus, h1 must
contain all switches in ci during the corresponding re-
configuration step.

For this paper we assume that after a k-level recon-
figuration the machine must make a reconfiguration on
all lower levels, i.e. from level k-1 to level 1 (in this
order), before a computation operation can be done.
Thus during the run of an algorithm/computation
a machines performs operations H1S1 . . . HpSp where
H1, . . . , Hp stands for a sequence of hyperreconfigura-
tions and Si stands for a sequence of reconfigurations
which use only those parts of the machine that are
available within the 1st-level context as defined by Hi.

As a measure for the reconfiguration costs of an
algorithm we compute the total number of reconfig-
uration bits that are loaded onto the machine during
its run. Consider a sequence H = hkhk−1 . . . h2 of
hyperreconfigurations, then the costs for performing
these hyperreconfiguration operations are cost(H) :=
|hk| + |hk−1| + . . . + |h2| where |hj | denotes the num-
ber of SRAM cells (respectively switches) that are in-
cluded in the j-level reconfiguration chain at the cor-
responding hyperreconfiguration operation. For a se-
quence H1S1 . . . HpSp of operations of an algorithm
where Hi stands for a sequence of hyperreconfigura-
tions and Si stands for a sequence of reconfigurations
the total reconfiguration cost of a computation is mea-

sured as
p∑

i=1

cost(Hi) +
p∑

i=1

|h1
i | · |Si| where |h1

i | is the

number of switches that are included in the 1st-level
reconfiguration chain after Hi.

3. The Partition into Hypercontexts
Problem

An algorithmic question that emerges for multi-level
reconfigurable machines and a given algorithm (that is
characterized by a sequence of context requirements)

is when are the best time steps for reconfiguration op-
erations on the different levels in order to minimize
the total reconfiguration costs. Also the corresponding
hypercontexts have to be defined such that the con-
text requirements of the algorithm are satisfied. This
problem has been called the Partition into Hypercon-
texts (PHC) problem in [3]. For the switch model of
reconfigurable architectures (which is the model used
in this paper) the problem was called PHC-Switch. It
has been shown in [3] that the PHC-Switch problem
can be solved for 2-level reconfigurable architectures
by dynamic programming in time O(n ·m2). For more
general models of 2-level reconfigurable architectures
the problem is NP-hard. Formally we define the PHC-
Switch problem for multi-level architectures as follows.

PHC-Switch problem for multi-level architectures:
Given a multi-level reconfigurable architecture in the
switch model where r ≥ 2 is the number of recon-
figuration levels and X = {x1, . . . , xn} is the set of
switches. Given also a sequence of context require-
ments C = c1 . . . cm. Find a partition of C into sub-
strings S1, . . . , Sp, p ≥ 1 (i.e. C = S1 . . . Sp) and se-
quences H1, . . . , Hp of hyperreconfiguration operations
with corresponding hypercontexts such that each con-
text requirement is satisfied by the actual 1-level con-
text and the total reconfiguration costs are minimal.

4. The Multi-level PHC-Switch Algo-
rithm

In this section we describe an optimal polynomial
time dynamic programming algorithm for PHC-Switch
for multi-level reconfigurable architectures. First, we
give a recursive version of the algorithm. Algorithm
Multi phc(level, hc cost, l, u) computes for reconfigu-
ration level level ≥ 1 the minimal costs for comput-
ing the sequence cl . . . cu of C and under the assump-
tion that a level-level reconfiguration operation has
cost hc cost. The algorithm computes a table Mij ,
i ∈ [l + 1, . . . , u], j ∈ [l, u] where Mij are the minimal
costs for computing the sequence cl . . . cj , i ≤ j ≤ u
under the assumption that i many level-level reconfig-
uration operations are used. For level = 1 Multi phc
computes only the standard reconfiguration costs.

Let Rk,j be the number of switches that are
contained in at least one of the context re-
quirements ck, . . . , cj . The code for algorithm
Multi phc(level, hc cost, l, u) is given in Algorithm 1.

In order to proof that the PHC-Switch problem can
be solved on multi-level reconfigurable architectures in
polynomial time we consider an iterative version of Al-
gorithm 1 in the proof of the following theorem.

Algorithm 1 Multi-Level PHC Algorithm
Multi phc(level, hc cost, l, u)
1: if level = 1 then
2: return Rl,u × (u − l + 1) {plain minimal recon-

figuration costs}
3: else
4: define matrix Mi,j ; i, j ∈ [l, u]
5: for all Ml,k; k ∈ [l, u] do {calculate first row}
6: Ml,k = Multi phc (level − 1, Rl,k, l, k) +

hc cost
7: end for
8: for all Mk,k; k ∈ [l + 1, u] do {calculate diago-

nal}
9: Mk,k = Mk−1,k−1 +

Multi phc (level − 1, Rk,k, k, k) + hc cost
10: end for
11: for all i ∈ [l + 1, u] do {main step}
12: for all j ∈ [i + 1, u] do

13: Mi,j =
j

min
k=i

(Mi−1,k +

Multi phc (level − 1, Rk+1,j , k + 1, j) +
hc cost)

14: end for
15: end for
16: end if
17: return

u
min
i=l

(Mi,u)

1

1

Hyper

Reconfiguration

Figure 3. SHyRA

Theorem 1. The PHC-Switch problem can be solved
on multi-level reconfigurable architectures with r ≥ 2
levels of reconfiguration optimally in polynomial time
O(nm2 + m2(m + n)(r − 2) + m3).

Proof. Given a multi-level reconfigurable architecture
in the switch model with r ≥ 2 reconfiguration lev-
els, set of switches X = {x1, . . . , xn}, and a sequence
of context requirements C = c1 . . . cm. The basic idea
is to compute the multi-level PHC-Switch problem it-
eratively for an increasing number of reconfiguration
levels. For this iterative version of the algorithm for
each number q ∈ [1 : r] of reconfiguration levels a
table Tabq[rcost, l, u], rcost ∈ [0 : n], l, u ∈ [1 : m]
is computed where Tabq[rcost, l, u] contains the min-
imum cost for computing the subsequence cl . . . cu on
a q-level reconfigurable architecture assuming that a
q-level reconfiguration level has cost rcost. This al-
lows to exchange the recursive execution of Multi phc
with q − 1 by a lookup of the corresponding ele-
ment in the Tabq−1. Observe, that Tabq[rcost, l, u] =
Tabq[0, l, u] + rcost × nRec for n ≥ rcost > 0 where
nRec denotes the number of q-level reconfigurations,
which is already available from the calculation of ma-
trix Mi,j . Hence, Tabq[rcost, l, u] for rcost > 0 can
be computed in constant time when Tabq[0, l, u] is
known. Thus on each level q ≥ 3 the computation
of Tabq can be done in time O(m2(m + n)). For the
first reconfiguration level the cost of a reconfiguration
is Tab1[rcost, l, u] = Rl,u × (u − l + 1). It is easy
to see that Tab1 can be computed in time O(nm2).
Since the cost for an r-level reconfiguration are always
n it is enough to compute the entries for Tabq with
rcost = n. Altogether, the total computation time is
O(nm2 + m2(m + n)(r − 2) + m3).

A corollary to this theorem is that the best number
r of reconfiguration levels for a given multi-level recon-
figurable architecture in the switch model and a given
sequence of context requirements can be found in poly-
nomial time. ”Best” means here to find an r such that
the solution of the corresponding PHC-Switch problem
is minimal. We call this problem the Reconfiguration
Level Problem (RLP). We make the following obser-
vation. For a given computation a given level k of
reconfiguration cannot be useful if for the solution of
the corresponding PHC-Switch problem a reconfigura-
tion on level k is always done when a reconfiguration
on level k − 1 is done. Also there is at least one r-level
reconfiguration at the beginning. Hence, it follows that
for the solution of the PHC-Switch problem with the
best number r of reconfiguration levels there must ex-
ist for each k ∈ [2 : r − 1] at least one time step when
a k-level reconfiguration is done but no k + 1-level re-

configuration is done. Hence m + 1 is a simple upper
bound for the best number of reconfiguration levels.
Now we can show the following theorem.

Corollary 1. RLP is solvable for multi-level reconfig-
urable architectures in polynomial time O(nm4 + m5).

5. Heterogeneous Multi-level

In this section we describe an extension of the multi-
level reconfigurable architectures. Often there exist dif-
ferent types of reconfigurable resources that are used
within one machine. Since the pattern of usage of the
different reconfigurable resources will typically be dif-
ferent it cannot be expected that the same number
of reconfiguration levels is optimal for all types of re-
sources (when they are considered separately). More-
over, since each level of reconfiguration needs its own
hardware resources it is proposed here to have a dif-
ferent number of reconfiguration levels for different re-
configurable resources. Such architectures are called
here heterogeneous multi-level reconfigurable architec-
tures. They are described further for the switch model
in the following. For this model we assume that the
switches (possibly) have different numbers of reconfig-
uration levels. All SRAM cells on the same reconfigu-
ration levels are included into one corresponding recon-
figuration chain. Thus the length of the reconfiguration
chains decreases monotonically with higher levels.

Formally, a heterogeneous multi-level reconfigurable
architecture (in the switch model) consists of a set
X1 = {x1

1, . . . , x
1
n} of reconfigurable units or switches.

Let r ≥ 2 be the maximum number of reconfiguration
levels. For each i ∈ [1 : n] there exits an ri ∈ [1 : r] and
the machine has a set {x2

i , . . . , x
ri
i } of SRAM cells (in

the case of ri = 1 the set is empty). Thus, ri denotes
the number of reconfiguration levels for switch xi. For
each k ∈ [2 : r] let Xk be the set of switches of the
form xk

i , i ∈ [1 : n]. The set xk is the set of SRAM
cells that are included in the reconfiguration chain for
reconfiguration level k. How the heterogeneous model
works and how high are the costs for reconfiguration
is defined analogously to the non-heterogeneous model
(this is straightforward and can not done formally here
due to limited space).

In section 4 we have shown that for a given
algorithm the PHC-Switch problem can be
solved on multi-level reconfigurable architectures.
The main changes in the code of algorithm
Multi phc(level, hc cost, l, u) to obtain the corre-
sponding algorithm Het Multi phc(level, hc cost, l, u)
for the heterogeneous case are the that the costs
Rk,j have to be defined for different levels as de-
scribed in the following. Define costs Rlevel,k,j as

the sum over values vi, ∈ [1 : n] where: i) vi = 1
if switch xi is used in the contexts ck, . . . , cj and if
level < ri (recall that ri is the number of reconfig-
uration levels for switch xi), ii) vi = 1 if level = ri,
and iii) vi = 0 if level > ri. It is enough to ex-
change each occurrence Rk,j in the code of algorithm
Multi phc(level, hc cost, l, u) by Rlevel−1,k,j to obtain
algorithm Het Multi phc(level, hc cost, l, u).

We can state the following result for the hetero-
geneous multi-level reconfigurable architectures (Ob-
serve, that the time to compute the values Rlevel−1,k,j

is only O(rm2)).

Theorem 2. The PHC-Switch problem can be solved
on heterogeneous multi-level reconfigurable architec-
tures with a maximum of r ≥ 2 levels of reconfiguration
in polynomial time O(nm2 + m2(m + n)(r − 2) + m3).

A problem that emerges with heterogeneous multi-
level reconfigurable architectures is to decide for a
given algorithm and each switch what is the best num-
ber of reconfiguration levels so that the solution of
the corresponding PHC-Switch problem has minimum
costs. We call this the Heterogeneous Reconfigura-
tion Level Problem (H-RLP) for heterogeneous multi-
level reconfigurable architectures. It was shown in Sec-
tion 4 that the corresponding problem (RLP) for non-
heterogeneous multi-level reconfigurable architectures
is polynomial time solvable. Here we can state the fol-
lowing result (the proof is omitted due to limited space;
the reduction is from the Maximum Clique problem).

Theorem 3. H-RLP is NP-hard for heterogeneous
multi-level reconfigurable architectures even when the
maximum number of reconfiguration levels is 2.

6. Results

In the following we evaluate the concept of multiple
reconfiguration levels by applying it to four test cases.
The test cases consist of reconfigurable designs imple-
mented on the SHyRA architecture as described in [3].
The SHyRA architecture consists of a file of registers, a
plane of LUTs, and a MUX and DeMUX that are used
as interconnection for moving the data to the LUTs
and the results back to the registers. MUX, DeMUX
as well as the LUTs are multi-level reconfigurable (see
Figure 3). For the tests we used an 8 bit ripple carry
adder, a counter, an LED-decoder, and a simple control
circuit consisting primarily of adders and counters.

The first test case is a 4 bit reconfigurable counter
circuit that was implemented on a SHyRA with 2 LUTs
and 8 registers. 48 reconfiguration bits are needed to

0

5

10

15

20

25

30

12 2 2 2 2

Bit unchanged

Bit changed

Hypercontext on

Hypercontext off
Bit excluded

2 2 2 2 2 2 25 34

ReconfigurationHyperreconfiguration levels

S
w

it
c
h

e
s

2 1 113 1 1 111 111 111 11 111 111 111 11

Figure 4. First 45 reconfigurations and 33
switches of the counter with 5 levels of re-
configuration

define a context. The counter was executed 10 times
which requires a total number of 110 reconfiguration
operations. Figure 4 shows the first 45 reconfigura-
tions for the first 33 switches of the optimal solution to
the Multi phc using 5 reconfiguration levels (Remark:
the details are not relevant here, it is only important
that we have the pattern of bit usages which results
from the example circuit; for details on how to obtain
the bit pattern see [3]). The reconfiguration data is
shown from top (switch 0) to bottom (switch 32). The
reconfiguration operations are drawn from left to right,
starting with the highest reconfiguration level 5. Below
the image the corresponding reconfiguration levels are
given as numbers. The largest number of reconfigura-
tions are performed on the lowest reconfiguration level
1. This level corresponds to ordinary reconfigurations
known from traditional reconfigurable architectures.

The second example is an 8 bit ripple carry adder
circuit on a SHyRA with 1 LUT, 1 MUX, 1 DeMUX,
and 24 registers. 79 bits of reconfiguration data define
a context, i.e., the function that is computed by the
LUT and the routing that is realized by MUX and De-
MUX. The resulting adder requires 56 reconfiguration
operations. The solution of multi phc for 4 reconfigu-
ration levels is shown in Figure 5.

Test case 3 is an LED decoder which converts a 4 bit
number to the 7 bit representation of a 7 segment LED
display. This design was synthesized from a VHDL
description and then mapped onto the SHyRA. Similar
as for the adder 1 LUT, 1 MUX, and 1 DeMUX was
used with 55 registers to store temporary results. The

0

10

20

30

40

50

60

70

78

4 23 2 223 2 32 2 2 2 2 2 22 3

Bit unchanged Bit changedHypercontext on Hypercontext off Bit excluded

ReconfigurationHyperreconfiguration levels

S
w

it
c

h
e

s

11111111111111111 111111111111111111111111111111111111

Figure 5. Adder with 4 levels of reconfigura-
tion

design resulted in 155 reconfiguration operations with
224 bits of reconfiguration data.

As the fourth test case a part of a simple control cir-
cuit is chosen and implemented on the SHyRA using 36
LUTs. Here only the reconfiguration data of the LUTs
is taken into account. This way it is ensured that a
large portion of the reconfigurable resources is active,
because the routing resources do not change very fre-
quently in most parts of the design. The resulting LUT
reconfiguration data consists of 144 reconfiguration bits
and 141 reconfiguration operations.

The optimal number of reconfiguration levels as well
as the minimal reconfiguration costs are obtained by
applying Multi phc to architectures with 1 to [m + 1]
reconfiguration levels, where m is the number of con-
text requirements for the corresponding test design (see
Table 1). This solves the RLP problem. Note that the
cost reduction in the last column of the table shows
the percentage by which the reconfiguration costs are
reduced when compared to an architecture of only one
reconfiguration level (i.e., only ordinary reconfigura-
tion).

Figure 6 shows the optimal reconfiguration costs all
test cases and 1-19 reconfiguration levels. In all cases
costs decrease with higher number of reconfiguration
levels until the optimal number of reconfiguration lev-
els is reached. Then the costs increase with a higher

Table 1. Numbers of reconfigurations and switches, optimal number of reconfiguration levels and
associated optimal costs for the test applications

Design #Reconfigurations #Switches Optimal number of Optimal cost Cost reduction
reconfiguration levels

8 bit RCA 56 79 3 1245 71.86%
Counter 110 48 2 3443 34.79%
LED Decoder 155 224 3 4527 86.96%
Control 141 144 2 10385 48.85%

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

H
y
p
e
r-

/R
e
c
o
n
fi
g
u
ra

ti
o
n

c
o
s
ts

(%
)

Levels of Hyperreconfiguration

LED Decoder 8 bit RCA

CounterControl

Figure 6. Optimal reconfiguration costs for
different number of reconfiguration levels in
percent of the costs for only one reconfigura-
tion level

number of reconfiguration levels. Turning back to Fig-
ure 4 note that level 4 and 5 are only used once at the
beginning and that the hypercontexts are the same in
both cases. In this case the 4th-level is not very use-
ful and increases only the reconfiguration costs. For
analogous reasons the reconfiguration costs for the test
cases increase linearly when the number of reconfigu-
ration levels becomes large. In that case for each ad-
ditional reconfiguration level one reconfiguration has
to be done before the first computations. Each such
reconfiguration has costs that are equal to the total
number of switches used during the computation (in
case that the reconfiguration are done according to an
optimal solution of the PHC-Switch problem).
7. Conclusion

The concept of 2-level reconfigurable architectures
that can adapt their ability of reconfiguration dur-

ing runtime in order to speed up ordinary reconfigu-
ration steps has been extended in this paper to multi-
ple reconfiguration levels. We also introduced hetero-
geneous multi-level reconfigurable architectures where
each switch can have a different number of reconfigura-
tion levels. It was shown that optimal reconfigurations
with an arbitrary number of reconfiguration levels can
be found in polynomial time for the switch cost model.
The problem of finding the optimal number of recon-
figuration levels (RLP) was shown to be solvable in
polynomial time on homogeneous multi-level architec-
tures but it becomes NP-hard for heterogeneous multi-
level architectures. experimental results for four appli-
cations (8 bit adder, counter, LED-decoder, and simple
control circuit) on an architectures that has different
reconfigurable units are presented. The results show
that multiple reconfiguration level can lead to reduced
reconfiguration costs.

References

[1] A. DeHon. DPGA utilization and application. In FPGA
’96: Proceedings of the 1996 ACM fourth international
symposium on Field-programmable gate arrays, pages
115–121, New York, NY, USA, 1996. ACM Press.

[2] S. Lange and M. Middendorf. Heuristics for context-
caches in 2-level reconfigurable architectures. In IEEE
Conf. on Field-Programmable Technology (FPT’ 05),
2005.

[3] S. Lange and M. Middendorf. Hyperreconfigurable ar-
chitectures and the partition into hypercontexts prob-
lem. J. Parallel Distrib. Comput., 65(6):743–754, 2005.

[4] S. Lange and M. Middendorf. On the design of two-
level reconfigurable architectures. In Int. Conf. on Rec.
Comput. and FPGAs (ReConFig05), 2005.

[5] E. Mirsky and A. DeHon. MATRIX: A reconfigurable
computing architecture with configurable instruction
distribution and deployable resources. In K. L. Pocek
and J. Arnold, editors, IEEE Symposium on FPGAs
for Custom Computing Machines, pages 157–166, Los
Alamitos, CA, 1996. IEEE Computer Society Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

