
Reconfiguration of Embedded Java Applications

João Cláudio Soares Otero, Flávio Rech Wagner, Luigi Carro

Universidade Federal do Rio Grande do Sul – Instituto de Informática
Porto Alegre, Brazil

{jcotero,flavio,carro}@inf.ufrgs.br

Abstract

This work presents the development of a coarse grain
reconfigurable unit to be coupled to a native Java
microcontroller, which is designed for an optimized
execution of the embedded application. Code fragments to
be accelerated through this unit are identified by profiling
the application. The unit is able to explore ILP in a simple
way and allows for Java compatibility, while also
reducing the number of executed instructions, thus
improving the performance with simultaneous energy
savings. In many cases, as demonstrated by experiments,
it also allows for smaller power consumption.

1. Introduction

The growing of the embedded systems market, together
with the increasing popularity of Java applications for the
consumer electronics industry [1], gives margin to a new
focus on the embedded computation landscape, which
must increasingly consider the issues of design
complexity, time-to-market, and software compatibility.
Besides that, the requirement of energy savings with
simultaneous performance improvement is imposed by the
current mobile systems. Traditional RISC processors
achieve high performance by applying techniques that
result in high power consumption and are not appropriate
for the embedded systems domain [2]. In this context, we
are developing a large project around FemtoJava [3], a
microcontroller designed for the native execution of
bytecodes of embedded Java applications.

Since energy savings are one of the main objectives of
an embedded system design, we present in this paper
Javarray, a coarse grain reconfigurable unit to be coupled
to the FemtoJava microcontroller, which is designed for
the optimized execution of operand blocks from the more
representative basic blocks of embedded applications.

These blocks are identified by static profiling of the
application.

With profiling analysis applied to the Java code and the
use of reconfiguration, we can explore ILP in a simple
way and reduce the number of executed instructions, thus
improving the performance with simultaneous energy
savings. At the same time, software compatibility with the
Java application is maintained and a better fit of the
application to the embedded systems domain is achieved.

The remaining of this paper is organized as follows. An
analysis of related work can be found in Section 2,
concerning other architectures that also look for energy
savings with simultaneous performance improvements.
Section 3 analyzes the properties of embedded Java
applications that allow us to derive the main architectural
needs of the Javarray reconfigurable unit. Experimental
results are presented in Section 4. Section 5, finally, draws
main conclusions and introduces future work.

2. Related Work

Many reconfigurable architectural designs have been
proposed for various goals. Some architectures have a
more general goal, trying to explore distinct levels of
parallelism for desktop applications, like Piranha [4] and
TRIPS [5]. Dealing with the embedded market, the
Javarray architecture takes another approach and uses alu-
sized processor elements, proposing a reconfigurable
architecture for obtaining energy savings through
optimization of critical code. Similar ideas are being
explored with very promising results in related works.

In the XiRisc processor [6], the algorithms’ portions
with more intensive computations are mapped to the
reconfigurable unit, allowing for performance speedups
from 4.3 to 13.5, while at the same achieving reduction in
energy consumption of up to 92%. The work in [7]
proposes the development of a reconfigurable logic
architecture specifically devoted to dynamic
hardware/software partitioning. Through this architecture,
and by programming the FPGA to deal specifically with

1-4244-0054-6/06/$20.00 ©2006 IEEE

the performance improvement of software kernels, the
authors claim to have reached performance gains between
2 and 4 times, with energy savings with an average of
33% and up to 74%. The ADRES architecture [8] is
specifically designed for embedded systems and uses a
VLIW processor tightly coupled to a coarse-grained
reconfigurable array, which is intended to efficiently
execute only computationally intensive kernels of
applications.

The Javarray design considers the same idea of
optimization of software parts that are dynamically
mapped to a reconfigurable architecture, but differs from
[6] and [7] by the use of a coarser granularity for the
processing elements and also by its optimization strategy,
which is chosen through the analysis of the application
profile. Differently from the ADRES architecture,
Javarray maintains native software compatibility with Java
and requires no special compilers.

3. Javarray Architecture

The Javarray architecture acts only at interesting and
repetitive points of the dynamic trace of the application,
leaving less attractive tasks to the Java microcontroller, to
which the array is coupled. In this sense, Javarray is a
functional unit tightly coupled with the host processor.

The FemtoJava microcontroller is a stack-based
microcontroller specifically designed for the embedded
system market, which natively executes Java bytecodes. In
this work, two versions of the Java microcontroller are
used. The first one is a multi-cycle version, which takes
from three to fourteen cycles to execute an instruction.
The other is a low-power pipelined version – a classical 5-
stage processor, but with the additional presence of
registers playing the role of the operand stack and local
variable storage (used to keep values of the local variables
of a method), instead of using the main memory for this
purpose, as in other stack machines. In this work, we
compare the use of these two FemtoJava versions as the
host processor for the Javarray reconfigurable unit.

Through the analysis of application profiles, we have
defined interesting points for applying reconfiguration.
We have identified several basic blocks – parts of code
without incoming or outcoming branches – where some of
them were very repetitive on the execution of the
application.

A basic block is composed by one or more operand
blocks, used as units for reconfiguration, which are well
defined by their first and last instruction addresses. After
the block mapping to the reconfigurable substrate has been
performed, the fetch of the first address corresponding to
the first instruction of an operand block fires the execution
of the reconfigured block. After the identification of an
operand block starting address, the fetch and decoding of

the other instructions of the block are not necessary
anymore.

The application kernels were selected from various
projects of our group. They do not represent current
embedded systems benchmarks, but correspond to distinct
categories of applications. Thus, SortBubble is an instance
of the well known bubble sort algorithm; IMDCT is the
Inverse Modified Discrete Cosine Transformation, used
for instance in the MP3 decompression algorithm; and
Crane is a control algorithm used to control a crane,
proposed as a benchmark on the area of system-level
modeling and synthesis [9].

In all these application kernels, profiling revealed that a
small part of the existing basic blocks stands for most of
the executed code. For the IMDCT, 2 out of 17 existing
basic blocks represent 40% of the total application
instructions, but 94% of the executed code. For the
SortBubble, 2 out of 12 basic blocks represent 47% of the
code, but 80% of the execution. And for the Crane, 7 out
of 117 basic blocks contain 20% of the application code,
but stand for 34% of the executed instructions.

Even if a broader analysis of other applications would
be desirable, it is not common, because of the existence of
branches, that the size of the basic blocks is larger than the
ones found on these selected kernels. Furthermore, the
format of the Java code, based on a stack machine,
produces bytecodes’ dependence graphs that are very
similar to binary trees. From this knowledge on the code
properties, we have noted that a 3x8 structure of
processing elements is sufficient to support most of the
interesting blocks for reconfiguration. We have also
observed a maximum number of two memory reads in a
same depth level of this 3x8 structure, as well as a
maximum number of 6 instructions that used variable
values (from the stack) or constant values, for every two
levels. These observations lead to the definition of the
general topology of the Javarray architecture, shown in
Figure 1.

Since the Java Virtual Machine is based on a stack
machine, potentially parallel instructions are serialized,
and many data input instructions occur repeatedly in the
normal Java instruction flow. The reconfiguration of these
instructions in a dependence graph can eliminate this
repetition and also explore the whole ILP potential of the
application. Thus, for repeated instructions, the result is
calculated only once and then used many times when
required. Besides that, many data input instructions refer
to constants, such that after the instructions have been
reconfigured, they do not need to be executed at every
basic block’s occurrence anymore. It has been found that
up to 80% of the input instructions can be eliminated.

Also, when the original instruction flow is transformed
into a dependence graph, many instructions in pairs like
istore-iload and putstatic-getstatic that are internally
present in the graph can also be eliminated, thus reducing

even more the number of required instructions for the
execution of the reconfigured basic block. Adding the
savings on the repeated and constant data input
instructions to those achieved by the suppression of
internal instruction pairs, a reduction of up to 42% on the
number of total required instructions has been achieved, in
comparison to the complete original basic block code, thus
saving processing time and energy.

Based on the previous considerations about the
application dependence graphs, the general Javarray
topology (Figure 1) consists of an array of 3x8 processing
elements, each of them capable of executing the
fundamental operations of the Java bytecodes, interleaved
with interconnections. The array is able to execute one
operand block configuration in a unidirectional processing
flow. At every two lines, the processing elements are
organized in a way to share six input data registers and
four memory read registers. There is also a special
processing element that is capable of executing operations
with three inputs, to perform iastore operations – a
bytecode that commonly appears as the root of many
dependence trees in Java applications.

Figure 1: Javarray topology.

4. Experimental Results

To analyze energy and power consumption and
performance, a cycle-accurate model of the Javarray
coupled to the FemtoJava microcontroller was developed.
The cycle-accurate power simulator CACO-PS [10]
performs a high-level approximation considering the bit
transitions for simulating dynamic power consumption at
the gate level, but also considers static power. The results
are given in numbers of switching gate capacitances and
can be calibrated for the current technology. The estimates
collected by simulation compare the use of the Javarray,
coupled to the two versions of the Java microcontroller as
the host processor, against the same execution without the
Javarray.

The energy savings shown in Table 1(a) reveal that, for
the IMDCT application, with the reconfiguration of 2
basic blocks that represent 40% of the application code
and 94% of the executed instructions, we can achieve
global energy savings of 64% when Javarray is coupled to
the multi-cycle version of FemtoJava. When it is coupled
to the low-power version, 41% of energy savings have
been achieved. The table also shows that we can obtain
energy savings from 47% to 36% for the SortBubble and
from 22% to 17% for the Crane application (a control-
based application), depending upon the FemtoJava version
to be used. Even with energy savings of only 22% and
17%, it must be considered that the reconfigured blocks of
the Crane application represent only 34% of the total
executed instructions, such that the obtained savings are
very close to the potential limit. These energy savings are
mainly due to the reduction in the number of executed
instructions and to the reduction in the stack and memory
accesses allowed by the code reorganization into a
dependence tree.

Regarding performance, Table 1(a) shows that the
Javarray coupled to the multi-cycle FemtoJava version
gives cycle savings between 8% and 63% when compared
to the same applications executed without Javarray.
Although the low-power pipelined FemtoJava version has
a better performance than the multi-cycle one, global
savings of up to 53% have been obtained in comparison to
the number of required cycles to execute the applications
without Javarray. The performance gains are also due in
part to the reduction in the number of instructions and in
part to the ILP exploration made possible by the
instructions’ reconfiguration.

Table 1(b) shows the power increase/reduction in the
execution of the basic blocks when we couple Javarray to
the two versions of FemtoJava, in comparison to the
execution of the same blocks without the use of Javarray.
Thus, 100% corresponds to the original power
consumption of the blocks without Javarray, and the table
shows the differences obtained by the use of Javarray
when compared to this original consumption. Thus, results
smaller than 100% represent power savings.

Although a power increase could be expected, because
of the Javarray, it can be observed in Table 1(b) that this
increase, in average, is small. In many cases, a
simultaneous reduction in power consumption can be
obtained together with the energy and performance gains.
This is not an absurd and essentially happens when the
energy savings are larger than the performance gains. This
fact can be observed mainly when the low-power
pipelined version is used, because it does not give a large
margin to further acceleration of applications as the multi-
cycle version does.

 (a) (b)

Table 1: Savings in energy, number of cycles (a), and power (b).

5. Conclusions and Future Work

In this work, we have presented a coarse grain
reconfigurable unit aimed at performance increase and
energy savings of Java-based embedded applications. The
proposed approach explores the intrinsic JVM
characteristics in the design of a reconfigurable unit that
presents high locality of resources to accelerate the most
representative application’ basic blocks, selected by static
profiling.

Qualitatively, the basic blocks’ reconfiguration into the
Javarray architecture allows the reduction in the number
of instructions to be executed, the exploration of ILP, a
smaller number of accesses to the stack and to the
memory, a smaller need for fetching and decoding of
instructions, and a smaller interaction with the host
processor datapath. This way, performance and energy
gains have been reached, with simultaneous reduction on
power consumption in some cases.

The selection of the most representative basic blocks to
be optimized depends on some prior (static) or run-time
(dynamic) application analysis. In the case of embedded
applications, where there is a previous knowledge of the
application, the static profiling analysis is not an obstacle.
However, although the present work deals with static
reconfiguration, a dynamic approach was always intended
and is being investigated. Our group has already obtained
results regarding dynamic binary translation for
reconfigurable arrays [11].

References

[1] G.Lawton, “Moving Java into Mobile Phones”. In:
Computer, Vol. 35, n. 6, June, 2002, pp. 17-20.

[2] K.Wilcox, S.Manne. “Alpha processors: A history of power
issues and a look to the future”. In: Coolchips Tutorial, An
Industrial Perspective on Low Power Processor Design in
conjunction with Micro-33, Dec. 1999.

[3] S.A.Ito, L.Carro, R.P.Jacobi. “System Design Based on
Single Language and Single-Chip Java ASIP
Microcontroller”. In: Proceedings of Design Automation
and Test in Europe. Paris, France, February 2000. IEEE
Computer Society Press, 2000. pp. 703-707.

[4] L.A.Barroso et al.. “Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing”. In: Proceedings of the
27th Annual International Symposium on Computer
Architecture, Vancouver, Canada, June, 12-14, 2000.

[5] K.Sankaralingam et al.. “Exploiting ILP, TLP, and DLP with
the Polymorphous TRIPS Architecture”. In: Proceedings of
the 30th Annual International Symposium on Computer
Architecture – ISCA-2003. San Diego, California, USA,
June, 9-11, 2003. IEEE Computer Society Press, 2003.

[6] A. Lodi et al.. “A VLIW Processor with Reconfigurable
Instruction Set for Embedded Applications”. In: IEEE
Journal of Solid-State Circuits, Vol. 38, n. 11, November
2003.

[7] G. Stitt, F. Vahid. “The Energy Advantages of
Microprocessor Platforms with On-Chip Configurable
Logic”. In: IEEE Design and Test 19, 6, November 2002. pp
36-43

[8] B.Mei, S.Vernalde, D.Verkest, H.De Man, R.Lauwereins.
“ADRES: An Architecture with Tightly Coupled VLIW
Processor and Coarse-Grained Reconfigurable Matrix”. In:
Proceedings of 13th International Conference on Field
Programmable Logic and Application – FPL 2003, Lisbon,
Portugal, September 1-3 2003. Lecture Notes in Computer
Science 2778 Springer 2003, pp. 61-70.

[9] E.Moser, W.Nebel. “Case Study: System Model of Crane
and Embedded Control”. In: Proceedings of Design,
Automation and Test in Europe, 1999. IEEE Computer
Society Press, 1999. pp 721-723.

[10] A.C.Beck, J.C.B.Mattos, F.R.Wagner, L.Carro. “CACO-PS:
A General Purpose Cycle-Accurate Configurable Power
Simulator”. In: Proceedings of the 16th Symposium on
Integrated Circuits and Systems Design – SBCCI. São
Paulo, Brazil, September 2003. IEEE Computer Society
Press, 2003. pp. 349-354.

[11] A.C.Beck, L.Carro. “Dynamic Reconfiguration with Binary
Translation: Breaking the ILP Barrier with Software
Compatibility”. In: Proceedings of the 42nd Annual
Conference on Design Automation – DAC’05. San Diego,
California, USA, June 13-17, 2005. ACM Press, New York,
NY, pp. 732-737.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

