
The Monitoring Request Interface (MRI)

Edmond Kereku and Michael Gerndt

Institut für Informatik
Technische Universität München
{kereku, gerndt}@in.tum.de

Abstract

In this paper we present MRI, a high level interface for
selective monitoring of code regions and data structures in
single and multiprocessor environments. MRI keeps trans-
parent the available monitoring resources from the perfor-
mance analysis tools and can electively generate monitor-
ing results as online profile information, or as postmortem
traces. MRI is the first step toward a standard monitoring
interface which can be used by a broad range of perfor-
mance analysis tools, from profiler tools, trace producers
and visualizers, up to complex automatic performance ana-
lyzers. We also present an implementation of MRI for SMPs
which transparently use a simulation backend and a PAPI
backend to obtain performance data.

Keywords: Performance Analysis, Monitoring, Cache,
Instrumentation, Interface, C API.

1 Introduction

Performance analysis for high-performance systems is
based on monitoring the dynamic behavior of the applica-
tion during its execution. The information produced dur-
ing runtime is either stored in files and inspected after the
program terminated (offline analysis) or delivered to analy-
sis tools while the application is still running (online analy-
sis). The monitoring for current performance analysis tools
is achieved in a very tool-specific way.

In contrast to this approach, we suggest to define a stan-
dard interface, the Monitoring Request Interface (MRI),
which permits the performance analysis tool to request the
available information from the monitors. The most impor-
tant advantage of this approach is to keep the monitoring re-
sources transparent from the performance tool. Further de-
velopment of hardware counters or simulators used to col-
lect performance data, does not require any changes in the
performance tool.

Another advantage of MRI is, that it allows selective
monitoring for individual code regions. For monitoring
memory hierarchies, it allows one to focus the monitoring
on accesses to individual data structures. With the latest de-
velopments in hardware counters it is now possible to only
collect events from a restricted memory address range[4]
and MRI makes this available to performance analysis tools.

MRI also supports monitoring in multiprocessor envi-
ronments. From simple SMPs to thousand-processor ter-
aflop machines, multiprocessors are the de-facto running
environment of HPC applications.

MRI can be divided into four interfaces.
The Monitor Configuration Interface which serves to

online configure the monitoring resources.
The Data Retrieval Interface. This interface provides

means to deliver the determined information at runtime to
the analysis tool. If the analysis is performed in an offline
approach, an archiver is required that collects the runtime
information and stores it in a file for later processing.

The Application Control Interface which controls the
execution of the monitored application.

The Publication Interface which copes with the diver-
sity of underlying hardware and software sensors available
for monitoring. This interface publishes at runtime what in-
formation can be obtained from the monitoring system and
in which form or aggregation.

The overall design of the application monitor and its in-
teraction with performance analysis tools is illustrated in
Figure 1. Performance analysis tools can submit informa-
tion requests to the application monitor via the Monitoring
Request Interface of the information producer. The pro-
ducer configures the sensors, aggregates their data and de-
livers the information to the analysis tool.

Because the configuration of monitoring resources hap-
pens online and there are requests and result types for al-
most any known performance data type, MRI can basically
be used by any kind of performance analysis tool. This
no matter whether the tool performs postmortem or online
analysis and no matter what the nature of the tool is. We

1-4244-0054-6/06/$20.00 ©2006 IEEE

Application Monitor

Runtime

Information

Producer

Hardware

Sensor

Software

Sensor

Performance

Analysis

Tool

Monitoring

Request

Interface

(MRI)

Figure 1. Overall design of the monitoring in-
frastructure.

think of MRI as the first step toward a standard interface
used by a broad range of tools starting from simple profil-
ers, trace generators and visualizers, GUIs up to complex
automatic performance analyzers.

We implemented MRI for the EPC Monitor[3], an en-
vironment for monitoring cache hierarchies in SMP sys-
tems. In the context of EP-Cache1 project[7] we also im-
plemented performance tools which use MRI. The tools
include a trace archiver which produces traces in Vampir-
Trace-Format (VTF3), a GUI[8] and an automatic analysis
tool called AMEBA[2].

The rest of the paper is organized as follows. Section 2
shows the terms and definition used in MRI. Sections 3, 4, 5
and 6 explain respectively the monitoring, results delivery,
application control and publishing interfaces. Finally the
Section 7 provides some details in our implementation of
MRI.

2 Terms and Definitions

MRI is a C interface for submitting monitoring requests
in terms of performance events for specific code regions or
data structures. When used in multiprocessor environments
the requests should be also able to specify aggregations,
threads, processes or compute nodes. This section explains
some of the terms and definitions we use in the rest of this
paper as well as their C representations in MRI.

Runtime information is any information gathered dur-
ing the execution of an application. Some monitor-
ing systems use the terms event or metric. These can
be events such as cache misses, CPU cycles, etc. or
software sensor events such as execution time. MRI
representation for this term is an enumerator called
MRI Runtime Information Spec.

A (code) region is a single entry block of statements. We
interchangeably use the terms region and code region in the
rest of this document pointing to the same concept. Exam-
ples of regions are:

1The work presented in this paper is mainly performed in the context
of the EP-Cache project, funded by the German Federal Ministry of Edu-
cation and Research (BMBF), and the APART working group

Program units such as procedures, functions, and the
main program.

Other sequential regions such as sequential loops and
vector statements.

Parallel regions such as parallel loops, parallel sections,
and master regions.
MRI Region Spec is the MRI representation of a

code region. The structure includes two elements:
MRI Region Type identifying whether the region is a se-
quential loop, routine, etc. and MRI Region ID identify-
ing the region’s location in the source code in terms of a
file ID, an unique id for a source file, and a line NR,
the region’s first line number in the source file.
MRI Data Structure Spec specifies the data struc-

tures to be monitored. A similar region id as for code re-
gions is used to identify the data structure. This id how-
ever does not indicate the line number where the data struc-
ture is defined or used in the code. Instead the id indicates
the program unit where the data structure is declared. This
information together with the data structure’s name (also
included in the MRI Data Structure Spec), uniquely
identifies the data structure.

With the C data structures explained above here, it is pos-
sible to specify measurement requests for code regions and
data structures. But MRI also supports requests for multi-
ple processor environments such as shared memory or dis-
tributed systems. The performance tools using MRI should
be able to request information for a single thread or process
as well as aggregated information such as for example, Sum
over all threads or Minimum over the threads. The follow-
ing definitions serve to achieve this goal.

An active object is an entity performing some compu-
tation. We also use the term region instance by which we
mean the execution of a region by an active object.

Active objects are represented in MRI by a structure
called MRI Active Object Spec. This structure in-
cludes the active object’s type which can be a thread, pro-
cess or computing node. It also includes an id for specifying
the thread id (if the active object is a thread), the process id
(if the active object is a process), and so on.

An aggregation combines runtime information from
multiple instances of a region. These might be region in-
stances in the same active object or in different active ob-
jects of the same kind. MRI Aggregation Spec defines
the aggregation in MRI. Aggregations have an operation
and a target. Operation indicates how to aggregate the run-
time information. The target specifies the kind of the active
object where the aggregation takes place. Examples are:

”SUM” and ”PER THREAD” specifies the sum of a
runtime information for all executed instances of a region
for a specific thread.

”MAX” and ”PER PROCESS” specifies the maxi-
mum of a runtime information achieved in any executed in-

stance of a region in all threads of a process.
”MAX” and ”PER THREAD” specifies the maximum

of a runtime information achieved in any instance of a re-
gion for a single specified thread.

Aggregation and active object are complementary. This
means that if ”PER THREAD” is specified as aggregation
target for example, MRI expects the specified active object
to be a thread.

3 Specification and Management of Monitor-
ing Requests

MRI provides routines for submitting and deleting moni-
toring requests. The communication mode is asynchronous.
Immediately after a request submission, the control is re-
turned to the performance tool which is using MRI. No
action is undertaken from the MRI at this time. The
monitoring only starts after one of the application con-
trol routines (see Section 5) is called. The resulting in-
formation, partial or complete depending on the state of
the application’s execution, is available via MRI as long
as the request exists. Once the request is deleted via
MRI Request Delete(), the resulting information is
no longer accessible for the request.

The data structures introduced in section 2 are used as
part of the parameters for the MRI requests. We say ”part”
because the requests accept tables of regions, active objects,
data structures etc. Here is the definition of such a table for
MRI Region Spec:

typedef struct {
MRI_Region_Spec *region;
int nr_Elements;

} MRI_Region_Table;

The other tables are similar to this one. The concept of
tables of objects is useful for specifying more than one ac-
tive object or code region per request.

In MRI there are four types of requests: aggregated, his-
togram, trace, and profile requests.

3.1 Aggregated Requests

MRI_Request_ID MRI_Aggregate_Request(
MRI_Runtime_Information_Spec *ri,
MRI_Region_Table *regions,
MRI_Active_Object_Table *ao
MRI_Data_Structure_Table *variables,
MRI_Aggregation_Spec *aggregation)

This routine defines an aggregation request. The tool
specifies one or more code regions, none or one data struc-
ture, one or more active objects, as well as an aggregation.

Whether a data structure can be specified or not, depends on
the requested runtime information. For example, if the ex-
ecution time is specified as runtime information, it doesn’t
make sense specifying a variable. On the other hand, if the
number of level one cache misses is requested, specifying
a data structure restricts the cache miss count to the vir-
tual address of the specified data structure. The routine re-
turns MRI Request ID, an identification number for the
request. This is used later to retrieve the results of the re-
quest or to delete the request.

The information is aggregated according to the aggrega-
tion and active object parameters. If multiple regions are
specified, the information is additionally aggregated over
all specified regions.

The number of measurements for a code regions in-
volving hardware counters is limited by the actual num-
ber of available counters. If more requests are added than
counters are available, the request will return MRI Error.
This does not apply for runtime information such as
EXECUTION TIME or NUMBER OF INSTANCES which
doesn’t require any hardware counters.

3.2 Histogram Requests

MRI_Request_ID MRI_Histogram_Request(
MRI_Runtime_Information_Spec *ri,
MRI_Region_Table *regions,
MRI_Active_Object_Table *ao,
MRI_Data_Structure_Table *variables,
int *histogram_elements_nr)

The histogram request is especially designed for future
hardware monitors or monitoring systems which provide
detailed information for example about the access behavior
of a code region in the memory occupied by a data struc-
ture. The EP-Cache hardware monitor[7], for example, can
deliver this information. An MRI histogram contains aggre-
gated values for a subrange of the requested address range.
Each entry specifies a value plus a list of the data struc-
ture mapped to this subrange. Figure 2 depicts an histogram
with 25 bins about the level one cache read misses for a data
structure of a simple program.

As it can be seen from the request’s signatures, the first
four parameters are the same for aggregated and histogram
requests. For the sake of conformity we designed it that
way for all the MRI requests. While the first four param-
eter specify what is to be measured and exactly where, the
next parameters hold information about the special kind of
request.
histogram elements nr for instance specifies the

number of bins for the requested histogram. Assigning a
meaningful value to this parameter helps to understand and
analyze the histogram. Consider again Figure 2. If the data
structure represented in the histogram is an array of 25 x

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

COUNTS

1 3 5 7 9 11 13 15 17 19 21 23 25 BINS

LC1_READ_MISS

Figure 2. The histogram of level 1 cache read
misses for a two dimensional array (100x100)
in gauss, a program for solving linear equa-
tions, Ax = b, using Gauss elimination with-
out pivoting.

25 elements, then each bin of the histogram represents the
access behavior of an array’s row (or column depending on
the programming language and compiler).

3.3 Trace Requests

MRI_Request_ID MRI_Trace_Request(
MRI_Runtime_Information_Spec *ri,
MRI_Region_Table *regions,
MRI_Active_Object_Table *ao,
MRI_Data_Structure_Table *variables)

Collecting, analyzing, and visualizing trace informa-
tion of an application is one of the most common ways
of performing performance analysis today. As we com-
mitted to build a measurement interface that would pro-
vide support for almost any monitoring system, we had to
also support trace information. Therefore we provided the
MRI Trace Request. As it can be noted from the re-
quest’s signature, only the 4 parameters specifying what to
measure and where to measure it are available. For each
instance of the specified regions as well as their subregions
and for each specified active object a trace record will be
generated which contains the measured metric’s value, e.g.,
for each instance of region you get a trace record with the
number of L1 cache misses.

We also defined a special runtime information for
exclusive use with trace requests. This is called
MRI REGION EVENT. A trace request with this runtime in-
formation will trigger the generation of trace records each

time a region is entered or exited. This is necessary for
visualizing a timeline of the application for example with
Vampir[10].

3.4 Profile Requests

MRI_Request_ID MRI_Profile_Request(
MRI_Runtime_Information_Spec *ri,
MRI_Region_Table *regions,
MRI_Active_Object_Table *ao,
MRI_Data_Structure_Table *variables)

This request provides profile information about the ap-
plication. That is for example a time profile or the profile of
L1 cache misses for the executed regions. The information
per region is summed over the specified active objects. If no
active object was specified then every executed instance of
the regions is counted. This request generates another kind
of histogram, but this time the runtime information is dis-
tributed between the regions. For each region there is one
bin in the histogram.

Figure 3 shows the visualized profile information from
a MRI profile request. The required runtime informa-
tion is MRI Execution Time. The left window of
Kcachegrind[1] shows the list of regions together with
the execution time in percentage. The profile information
can be combined with the application’s static information
to produce a call tree as shown in the right window of
Kcachegrind.

4 Data Retrieval Interface

After the submission of the measurement requests by us-
ing the request functions and after the application or a part
of it was executed, the tool using MRI should be able to
ask whether the performance results are ready and get the
results for further analysis.

Figure 3. Profile information produced by MRI
and visualized with Kcachegrind[1]

The delivery interface includes two synchronization rou-
tines, one of them is blocking and the other one a non block-
ing routine. MRI Wait() as the name suggests, block the
execution of the performance tool until either the results
for the submitted requests are there or the application fin-
ishes its execution. The second routine, MRI No Wait()
returns the status of the monitored application. The status
tells whether the application is in execution, terminated, or
stopped waiting for the results to be retrieved and maybe for
new measurement requests.

The performance data for a request can be retrieved
through the routine MRI Get Data(). This routine return
results for aggregation, histogram and for profile requests
based on the id of the request. It is up to the performance
tool to cast the chunk of memory delivered by the routine
to the proper result according to the request’s kind. MRI
specifies a result type for each kind of request.

4.1 Aggregation request results

MRI Aggregate Request Results defines the re-
sult type for the aggregate request. The result contains
the number of counted events and an eventual active ob-
ject which is called focus active object. This is optional for
aggregations that implies a minimum or maximum value. If
for example the minimum of L1 cache misses over threads
was requested, the focus active object indicates the thread
where the minimum was achieved.

4.2 Histogram request results

MRI Histogram Request Results is the result
type for the histogram request. Each histogram bin contains
the number of counted events together with a list of data
structures. If a data structure was specified in the histogram
request, each bin of the histogram will contain the same
name of the specified data structure. In this case each bin
correspond to a part of the data structure. If no data struc-
ture was specified in the request, then the whole address
space of the application is monitored. In this case every
data structure for which runtime information was counted
appears in the histogram. Depending on the size of the data
structure, it can happen that there are several bins of the his-
togram corresponding to one (large) data structure as well
as multiple data structures for a single bin.

4.3 Profile request results

MRI Histogram Profile Results is the type for
the profile request. This is a table of all the monitored code
regions together with the gathered runtime information for
each region.

4.4 Trace request results

The results delivery routines shown at the beginning of
this section are not available for the trace requests. While
we can calculate the amount of information delivered by the
aggregate, histogram, or profile request prior to results de-
livery, this is impossible for trace requests. We don’t know
how many instances of a region will be executed in one
thread as we don’t know how many events will be mea-
sured in a monitoring session. To cope with this dynam-
ically growing amount of data, the data delivery interface
provides a special mechanism. The monitored data is stored
in a buffer in the form of trace records. Each record contains
among other things the runtime information, a code region
where the event was measured together with an eventual
data structure, an active object, and a timestamp.

typedef struct MRI_Trace_Element_Spec{
MRI_Runtime_Information_Spec event_type;
MRI_Region_Spec region;
MRI_Active_Object_Spec active_object;
MRI_Data_Structure_Spec data_structure;
unsigned long long timestamp;
unsigned long long data;

} MRI_Trace_Element_Spec;

To retrieve the data, the tool using MRI, has to
first register a call back function using the MRI routine
MRI Register Call Back Function(). During the
monitoring process, if the trace buffer is full, the registered
call back function will be called and the tool can retrieve
the data. The application execution stops until the buffer
is again empty. The same procedure is used to retrieve the
information at the end of the monitoring process.

There are two routines providing the necessary func-
tionality for emptying the trace buffer. The first routine,
MRI Get First Trace Record() returns the trace
record at the top of the buffer. The second routine,
MRI Get Next Trace Record() incrementally deliv-
ers the next record until the trace buffer is empty.

5 Application Control

The control over the execution of the monitored appli-
cation is an important part of MRI. The application and
the analysis tool using MRI synchronize with each other
at the beginning of the execution. The tool poses its de-
mands of monitoring in form of MRI requests and deter-
mines whether the application will start running until a pre-
defined breakpoint or until a stop command is given. MRI
provides two routines for running the stopped application.

One of them is MRI Start(). The consequence of
its call is for the application and the monitoring system to

continue execution until the application terminates or the
MRI Stop() routine is called from the tool. The second
start routine poses a breakpoint to the application’s execu-
tion. MRI Start Stop() takes as a parameter a normal
MRI Region. Once the end of this region is reached, the
application stops and waits for further commands from the
tool. We emphasize that only serial code regions can be
used as breakpoints. This way we are sure that all active
objects stop their execution after a breakpoint.

MRI also provide the means to load and
finish the application. The respective rou-
tines are MRI Application Load() and
MRI Application Finish(). This functionality
is used if we want to restart the application several times
while not changing the measurement requests. Such a
situation can occur in case of a saturation of hardware
counters for example. Instead of making sure that no more
requests are submitted as the monitoring resources can
handle at a time, the tool can just rerun the application until
all the request are honored.

Part of the application control are also the initializa-
tion and finalization of the interface. MRI Init() and
MRI Finalize() make sure that the tool waits for the
application to load at the beginning of the monitoring pro-
cess and that the application is also finished when the tool
finish monitoring.

6 Publication Interface

We thought of MRI as an interface that should work with
a large variety of monitoring resources in different comput-
ers. A performance tool prior to using MRI to submit mea-
surement requests in a specific system, usually need to ex-
actly know what resources the system offers in the sense of
hardware and software sensors and what is provided by the
monitoring infrastructure in terms of runtime information
and aggregations. We supplied the publication interface as
part of MRI to provide the tool with this kind of informa-
tion. The following is provided by the publication interface:

6.1 Available hardware resources

This is provided in the form of: number of CPU(s),
memory hierarchy, number of available hardware counters,
etc. For trace requests including a timestamp or for re-
quests evolving time measurements is especially important
to know whether the times supplied by the monitor are ex-
pressed in seconds, microseconds or nanoseconds. This is
specified by the MRI Time Entity member of hardware
information.
MRI Get System Information() from publica-

tion interface returns information about the architecture of
the machine and the monitoring system. This is provided

in form of a structure called MRI HW Info including de-
tailed info about CPU, memory hierarchy, available hard-
ware counters etc.

6.2 Available runtime information

This is a list of metrics than are provided by the hardware
and software sensors of the monitoring system. Dependent
on the design and ability of hardware counters available in
the system this could vary from a couple of events to more
than a hundred of them.
Get Available Runtime Information()

returns a table of runtime information available by the
monitoring system.

6.3 Available active objects

This shows in which computational resources the appli-
cation will execute, i.e., the number of threads, processes,
compute nodes, etc. The aimed systems can vary from sin-
gle processor workstations to SMP nodes, to thousand pro-
cessor machines.
Get Available Active Objects() returns the

list of active objects which will execute the application.

6.4 Available aggregations

The available aggregations depend on the monitoring
system. Usually they are specific to the required runtime
information. As MRI would likely be used by a tool rather
than directly by a user, it is important that we provide this
quite intuitive information.

For example it does make sense to aggregate the run-
time information MRI LC1 DATA READ MISS as a min-
imum over threads, meaning that the thread is required
where the minimum of level 1 cache read misses occur
and how much this minimum is. On the other side it
doesn’t make any sense to aggregate the runtime informa-
tion MRI REGION EVENT which indicates the start of a re-
gion and is only used in trace requests.
Get Available Aggregations() provides a list

of available aggregations for a given runtime information.

7 Implementation of EPC Monitoring Sys-
tem

We built a monitoring system called EPC which imple-
ments the Monitoring Request Interface. EPC was first
designed for a new hardware monitor developed in TU-
München[7]. The counters on our hardware monitor can
be configured to observe the whole or only a precise ad-
dress range of the memory. We built a simulator called

 1 12 27 39 1 8 31 38 7 14

 42 42 42 42 46 46 46 46 47 47

 X X X X X X X

File ID

Configuration Table

Line

Number

Application
Monitoring Control

Component

Region_Enter()

Region_Exit()

Next

Configure

 Get Results

Configure

Current Region

Information

Shared Memory Space

Monitoring

Resources

Configurator

Hardware

Resources

Aggregator

MRI Request

Results

Performance

Analysis

Tool

Monitoring

Request

Interface

(MRI)

Monitoring

Library

Put Results
Get

Results

Add MRI Request

Figure 4. A more detailed view of EPC monitoring system revealing some internal functionality.

SMART[9] to simulate SMP nodes with our hardware mon-
itor integrated in each of the node’s processors.

We also implemented a PAPI[6] backend for EPC which
allows us to perform measurements using the hardware
counters available in architectures that are supported by
PAPI. Recently we developed an Itanium specific imple-
mentation thus being able to monitor data structures in the
program using the Itanium’s hardware counters.

EPC supports Fortran 95 OpenMP programs. The moni-
toring environment requires source code instrumentation to
insert monitoring library calls in the code. We use a Fortran
95 instrumenter[5] based on NAGWare f95 compiler front-
end to instrument the code regions and data structures. The
instrumenter also generates static information about the ap-
plication such as which code regions or data structures were
instrumented.

Our monitoring system is structured into two processes,
the application process and the performance tool process.
These processes communicate via shared memory segments
of System V’s Inter Process Communication (IPC). Accord-
ingly, the system is implemented as two libraries. Figure 4
reveals the whole EPC system with some implementation
details and functionality.

The first process is the performance tool (at the right
in Figure 4) linked with the library which implements the
Monitoring Request Interface. This component creates a
Configuration Table in shared memory starting from code
region entries in the application’s static information. It also
starts and terminates the monitored application. MRI re-
quests issued by the tool are saved as shared memory seg-
ments and attached to the proper entry of Configuration Ta-
ble according to the code region specified in the request.

The second process is the monitored application linked
with the Monitoring Library, and the back-end which can be
either the simulator or PAPI. The Monitoring Control Com-
ponent (MCC) is the implementation of the monitoring li-

brary. The monitoring library passes the control to MCC at
each region enter and exit which at its turn looks at whether
there are appended MRI requests in the Configuration Ta-
ble. If this is the case, the Monitoring Resources Config-
urator breaks down the MRI Requests to simpler PAPI or
simulator Events and uses the Resources Configurator to
configure the simulator or the hardware monitor.

Once the monitoring is finished, the results are either
saved in the trace buffer, or if the MRI Request is an ag-
gregated request, the Aggregator component aggregates the
results and save them in the shared memory space.

7.1 Monitoring Scenario

Figure 5 depicts the interaction between the performance
analysis tool, the application and the monitoring system.
This helps the understanding of how the monitoring with
EPC works.

The very first statement executed by the application after
entering the main region is an instrumented call that initial-
izes the EPC monitor. The application is blocked during
initialization until the analysis tool specifies MRI requests
and releases the application. The EPC initializes all moni-
toring sensors and then signals the tool that the application
is ready for monitoring.

Once the tool finishes generating its initial MRI re-
quests2, it specifies a breakpoint where the program should
stop (usually the end of a region) and the EPC is notified to
start the application’s execution.

At the entry and exit points of each instrumented region,
the region instrumenter inserted a call to the monitoring li-

2We say initial because the tool can make other requests at any time.
The synchronization between EPC and the tool allows interruption of the
program for getting partial results or for making new requests. This is
particulary useful if the tool can make new decisions (followed by new
requests) based on the existing results gathered until the present state of
application’s execution.

Performance Tool
Application EPC Monitor Hardware Monitor

Configure

Initialize

Region_START()

Execution

Start Sensor

Monitor_Init ()

Region_END ()
Stop Sensor

Monitor_Final () Finish

Results

Application Start

Application Finish

Figure 5. Monitoring Scenario - UML Se-
quence diagram.

brary. When the control flow enters the library, EPC looks
up the configuration table for an MRI request that is ap-
pended to the current region. If such a request exists, sym-
bolic data structure information will be translated into vir-
tual addresses if necessary and the Hardware monitor will
be configured accordingly. After that, the control is returned
to the application.

At the end of the monitored region, EPC stops the hard-
ware monitor, retrieves the results, aggregates them if re-
quired, and transfers the results to the space reserved for
them in shared memory. When the end of a region corre-
sponds with the specified monitoring breakpoint, the tool
is notified to retrieve the results by leaving the application
blocked.

There are two3 possibilities for terminating the monitor-
ing. One is that the application terminates. As showed in
Figure 5 the application calls Monitor Final(). This
call is instrumented in all exit points of the application. Af-
ter wrapping up all ongoing activities, EPC signalizes the
tool to retrieve the final results and terminates the applica-
tion.

Another possibility is that the tool decides to terminate
the application. Another synchronization event between the
application and the tool takes place in this case and the tool
sets a termination flag in the EPC. On the next region en-
ter or exit, the EPC realizes that the termination flag is set
and calls Monitor Final(). Everything continues af-
terwards as in the first case.

8 Summary and Outlook

MRI is the first step toward a standard monitoring inter-
face. We think such an interface can improve our ability

3For the sake of simplicity both cases of monitoring termination are
merged together in the Figure 5

to build better performance tools. By allowing online and
offline monitoring, MRI is flexible enough to provide all
the performance data needed by almost any existing perfor-
mance tools. Because it is transparent, MRI can help the
performance tool developers to concentrate their efforts on
the quality of the analysis and optimization rather than on
how to obtain the performance data. MRI also support mon-
itoring in multiprocessor environments being thus available
in basically any architecture.

MRI is an ongoing work. We are currently working on
extending the runtime information offered by MRI in or-
der to support more monitoring resources and we are also
studying possible extensions or changes in the interface for
an improved support of distributed systems and the Grid.

References

[1] KCachegrind - Profiling Visualization), 2005.
http://sourceforge.net/projects/kcachegrind/.

[2] Edmond Kereku, Michael Gerndt. The EP-Cache Automatic
Monitoring System. In Proceedings of Parallel and Dis-
tributed Computing and Systems, Phoenix AZ, pages 39–44,
November 2005.

[3] Edmond Kereku, Tianchao Li, Michael Gerndt, Josef Wei-
dendorfer. A Data Structure Oriented Monitoring Environ-
ment for Fortran OpenMP Programs. In Proceedings of
Euro-Paar 04, Pisa, pages 133–140, 2004.

[4] Intel Corporation. Intel R© ItaniumTM Processor Reference
Manual for software Development. Intel Press, 2002.

[5] Michael Gerndt, Edmond Kereku. Selective Instrumenta-
tion and Monitoring. In Proceedings of 11th Workshop on
Compilers for Parallel Computers (CPC 04), pages 61–74.
Shaker Verlag, 2004.

[6] Shirley Browne and Jack Dongarra and Nathan Garner and
George Ho and Phil Mucci. A Portable Programming In-
terface for Performance Evaluation on Modern Processors.
The International Journal of High Performance Computing
Applications, 14(3):189–204, Fall 2000.

[7] T. Brandes, H. Schwamborn, M. Gerndt, J. Jeitner, E.
Kereku, W. Karl, M. Schulz, J. Tao, H. Brunst, W.E.
Nagel, R. Neumann, R. Mller-Pfefferkorn, B. Trenkler, H.-
C. Hoppe. Monitoring Cache Behavior on Parallel SMP Ar-
chitectures and Related Programming Tools. Future Gener-
ation Computer Systems, 20, 2005.

[8] Tianchao Li, Michael Gerndt. Cockpit: An Extensible GUI
Platform for Performance Tools. In Proceedings of Euro-
Paar 05, 2005.

[9] Tianchao Li, Michael Gerndt. SMART: A Simulation Tool
for Monitoring Cache Access Behavior on SMPs. In IEEE
Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), 2005.

[10] W. E. Nagel and A. Arnold and M. Weber and H. C. Hoppe
and K. Solchenbach. VAMPIR: Visualization and Analysis
of MPI Resources. Supercomputer, 12(1):69–80, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

