
Construction of Efficient OR-based Deletion–tolerant Coding Schemes

Peter Sobe and Kathrin Peter
University of Luebeck

Institute of Computer Engineering
{sobe|peterka}@iti.uni-luebeck.de

Abstract

Fault–tolerant data layouts for storage systems are
based on the principle to add redundancy to groups of
data blocks and store them in different fault regions.
Commonly, XOR-based codes are used with an optimal
redundancy overhead but with the disadvantage of rel-
atively high calculation costs. We present a scheme
that encodes input data in a highly redundant code and
exploits that redundancy for a fault tolerance scheme.
It allows to recalculate missed bits in fewer steps than
needed for XOR-based schemes. This simple and ef-
ficient en- and decoding requires an appropriate hard-
ware architecture or a highly parallel microprocessor ar-
chitecture. Particularly, disjunctions over many input
bits must be calculated, e.g. by wide OR-gates or busses
that are driven by multiple logic input lines. The high
redundant encoding is combined with data compression
for separated data streams, each stream dedicated to
a storage device. The compression not only eliminates
the introduced redundancy of the used code, it also elim-
inates redundancy in the input data.

1. Introduction

Classical fault–tolerant data layout schemes employ
redundancy schemes that are independent of the input
data itself. The schemes add redundancy and use it
for error detection, error correction or deletion correc-
tion. Fault–tolerant storage based on multiple disks or
distributed systems mostly employ deletion correction
codes. These codes are based on the knowledge about
which storage is faulty and exploit that for efficient
coding.

Redundancy is the key point for fault tolerant cod-
ing. Redundancy must (i) be structured, i.e. built
by functional dependencies from different code word
regions and (ii) must be stored in fault regions that
are different from the data storage. This is the rea-

son why redundancy of data cannot be used directly.
The typical case is to eliminate data redundancy at
first, i.e. saving data in a compressed format (e.g.
pdf, jpg, mpg, mp3) and then to add new structured
redundancy. Alternatives are limited to a few cases
when data redundancy can be exploited for efficient
encoding. For instance, added redundancy can get re-
stricted to significant parts of data, whereby less sig-
nificant parts may be lost in case of faults. Examples
were given with MPEG–aware encoding[3] or a fault-
tolerant multi-server VOD architecture [4]. Roughly,
one may classify common redundancy schemes in:

• Data Replication: Redundancy consists in com-
plete copies of the data words. The copies must
be stored each in different fault regions, and their
number must be f + 1 or larger, when f is the
number of fault regions. A 2-times replication is
used for the RAID level 1 and indirectly for levels
0+1 and 1+0.

• Simple parity-based: Structured redundancy is
added by using functional dependencies based on
the bitwise exclusive OR operation (XOR). This
principle is used for RAID levels 3,4 and 5, mainly
to tolerate single faults. Multiple one- and multi-
dimensional schemes (e.g. [5]) can be applied to
tolerate situations with many failed storages. For
all schemes of this class, a single input bit from
each fault region is used in a calculation. When
more than one parity is calculated, bits may be
included in more than one calculation.

• Sophisticated parity-based: Horizontal-
diagonal schemes use another approach. Such
schemes are based on XOR and use different bits
on storages for different parity calculations that
build check information on two or more disks. An
efficient code of this class is the Even-Odd-Scheme
[1, 2].

• Reed-Solomon-redundancy: (described in [7])

1-4244-0054-6/06/$20.00 ©2006 IEEE

This code is used to tolerate m faults among n
data- and m redundancy storages, with m > 0,
and m < n to be efficient. It requires more com-
plex arithmetics than bitwise XOR. Recently, re-
search is focusing on XOR-based implementations
of the operations within these arithmetics, e.g. [6].

• Hamming-Codes: These codes are known from
channel coding and can also be used to correct
deletions. Nevertheless, due to the fault charac-
teristic of deletion instead of corruption, this kind
of code is not widely used.

An example for a system that employs full data repli-
cation is CEFT-PVFS [10], an extension of PVFS-1
that mirrors each block in the distributed system. A
system that implements block-wise data distribution
combined with configurable XOR and R/S redundancy
is NetRAID[8, 9]. Figure 1 depicts the commonly ap-
plied way for data storage. Often, original data is com-
pressed in a first step. Then structured redundancy
is added, e.g. adding XOR-parity to each block. To
form independent fault regions, blocks of data and re-
dundancy are distributed across several independent
storage devices. Principally, codes with low storage
overhead are used.

Compression

Storage
Devices

Code−word
selection

Redundancy
Encoding

Distribution

Figure 1. Common data path to the storage
medium

Another way for storing data in a space–efficient and
fault–tolerant way is to encode input code I in another
code O that already contains structured redundancy.
This code is directly employed for distribution of data
and has already to represent the independent fault re-
gions of the storage system. From that point, data can
be distributed onto several independent storages pro-
viding fault tolerance automatically. Recovery is based
on the error correction or deletion tolerance capabilities
of the chosen code O. The code may employ a higher
degree of redundancy than an optimal code, in order to
allow a simple and efficient encoding. A main fraction

of redundancy is removed by compressing the data as-
signed to a storage device. This principle is illustrated
in figure 2.

Compression in the scope of a storage device is ca-
pable to remove redundancy of the original input data
(the redundancy in I) as well as the redundancy caused
by the data symbol distribution in O. So, the pro-
posed scheme promises to reach nearly the same space-
efficiency as the common methods. With a more effi-
cient en- and decoding it is worth to be analyzed and
tried to get used in distributed storage systems.

Distribution

Part()

Codeword
Selection

Redundancy
Encoding

CodeCode
I

O

O

Compression

Compr(Part())O

Figure 2. Alternative data path to the storage
medium

2 Redundant Coding

2.1 Deletion–Tolerant Codes

The hamming distance is a lower bound for the num-
ber of tolerable bit errors in a code. When each two
code words differ in at least dmin bits, one can deter-
mine the number of faults that are safely detected and
corrected. A decoder that exclusively detects errors,
is able to detect dmin − 1 erroneous bits. When the
decoder corrects errors, (dmin − 1)/2 bit errors can be
corrected.
These numbers are lower bounds, i.e. for particular po-
sition patterns there exist codes that tolerate a higher
number of errors1.

When positions of errors are known, i.e. which disks
are failed, codes offer better properties and dmin − 1
errors can be corrected. The hamming distance of a

1This ability is caused by a particular structure of the redun-
dancy. For instance a code with 8 data bits d0, . . . , d7 and two
parity bits p0 = xor(d0, . . . d3) and p1 = xor(d4, . . . , d7) also has
a hamming distance of two and thus a single error is detectable.
But also when two errors in dx and dy with x ∈ {0, . . . , 3} and
y ∈ {4, . . . , 7} occur, this situation can be tolerated because of
the error position patterns and the redundancy structure.

simple binary parity code is dmin = 2. Another code
with the same hamming distance of dmin = 2 is a (1
out-of N) code. Thus, in both codes a single error can
be corrected, when the failed storage (i.e. the deleted
bit) is known for decoding.

2.2 XOR-based codes

Each storage medium or each node in a distributed
storage system can be seen as a fault region, i.e. these
regions fail independently of each other. The bits of a
code word must be interleaved across these fault re-
gions. Assuming N different fault regions that are
used to store the data word without parity, the number
of computation steps for a simple XOR calculation is
given in the following.

• O(N) when XOR is computed sequentially. Usu-
ally, the word parallelism of a microprocessor al-
lows to encode w code words of N bits each in
O(N) time steps. Common microprocessors pro-
vide bit-wise XOR instructions for data words of
width w.

• O(ldN) when XOR is calculated along a reduction
tree with parallel logic operations. The word par-
allelism of a microprocessor can be exploited to
calculate w′ XOR trees in parallel. In O(log2N)
steps w’ codewords of N data bits each can be
calculated.

For hardware acceleration the minimal cost is in the
order O(ldN) with a word parallelism of w′. This
means that a single parity bit, as well as a group of
w’ parity can be calculated in a time proportional in
a logarithmic way to the number of fault regions. The
word parallelism w′ is not bounded in theory, but lim-
ited by the width of data paths.

2.3 (1 out-of N) Codes

For the redundant code O we chose a (1 out-of N)
code. Here, each code symbol of O contains exactly
one bit that is 1 and the rest of bits are 0. Such a code
with N bits forms N different code words. Compared
to XOR-based codes, a (1 out-of N) code allows encod-
ing and bit recovery in O(1), i.e. a constant number
of time steps. The code redundancy is rather high.
To encode N symbols with equal likelihood, ld(N) bits
would be necessary in the redundancy-free case. When
N bits are used, r = N − ld(N) bits per symbol are
redundancy. The entropy2 of symbols coded by O is

2H(x) =
∑

i
−p(xi)ld(p(xi)) with xi as the i-th code symbol

and p(xi) the likelihood of the occurrence of xi.

slightly increased compared to the symbols in the orig-
inal code I. It can be calculated from the probabilities
of 1-bit and 0-bit occurrences. In the following, the
entropy per bit is calculated for O-code symbols that
originate from t-bit words in I:

Ebit = − 1
2t

ld(
1
2t

) − 2t − 1
2t

ld(
2t − 1

2t
)

=
t

2t
− 2t − 1

2t
(ld(2t − 1) − t) (1)

The entropy in O is derived by

Esymbol = Ebit · 2t. (2)

With a growing t the entropy Esymbol approaches
t + 1.44. This means that data in code O could be
compressed very close to the size of its representation
in I with additional 1.44 bits in average when an ideal
compressor is used. The approach of compression is
used later for compressing data after distribution.

For distribution across the fault regions, data is kept
uncompressed so far. The high redundancy is traded
for a very efficient en- and decoding that can be im-
plemented in both hardware and software, e.g. using
a lookup table that is addressed by the input symbols.
In hardware, a channel-wise encoder array of size N
can be build. Each channel encoder ei compares the
input symbol in I with the value i and the input word.
In case of equality, 1 is taken into the channel, other-
wise 0. An example for encoding, splitting and channel
compression is shown in figure 3.

Decoding is implemented by reading the single bits
from the storage channels. Single bits from all N chan-
nels form the code word in O. The channel that owns
the 1 initiates the output of a fixed codeword in I, all
other channels return a word containing all zero. In
a second step, the outputs of all channel decoders are
bitwise OR-ed. Two steps are needed to obtain the
data word, coded in I.

A software–based decoder implementation has to
find the 1-bit by comparing words by zero and select-
ing the 1-bit position of the word containing the 1-bit.
This position and the word-index can form a offset to
a table where the code words of I are located.
The deletion tolerance of the decoder is based on the
property that exactly a single 1-bit exists in each code
word. So, if the available part of the codeword con-
tains this 1-bit, the missed bit must be 0. Vice versa,
when the available part does not include a 1-bit, then
the missed bit must be 1. The decision about that is
implemented by a NOR-operation.

The high ratio of redundancy added by the (1 out-of
N)-code later is eliminated by channel compression. To
estimate the compression degree within each channel,

storage
device

storage
device

storage
device

storage
device

0: 00
2: 10
1: 01

1 0 0

compress
100 ...

compress
001 ...

compress
010 ...

compress
000 ...

0 0 1

0 0 0

0 1 0

1000
0010
0100

Input data:
"0", "2", "1" in
binary format

Representation in
code O:

"1000", "0010", "0100"

Separation
of i−th bit
for storage i

Figure 3. Data path for the (1 out-of N)-code

we calculated the size of data for each channel assuming
an entropy encoder. We vary the symbol length of
the input code in table 1. For input code I a symbol
length t is used. Then the symbol length of O is 2t.
This length directly corresponds to the number of fault
regions, i.e. the number of used disks that can fail
independently. For each storage channel we obtain an
entropy H(x) for a bit symbol in the cannel. Using an
ideal compressor, in the compressed code compr(O) the
average size of a word is Esymbol = 2tH(x). This result
can be used as well for the sequence of bits within a
storage channel. This storage size is used to calculate
the overhead R related to a word with t bits in code I.
The overhead R is compared with the overhead induced
by a XOR parity RXOR that represents the minimum
of needed redundancy.

Symbol length Storage Redundancy ratio
I O size R RXOR

t 2t 2tH(x) 2tH(x)
t

t+1
t

1 2 2 2 2
2 4 3.24 1.62 1.5
3 8 4.34 1.45 1.33
4 16 5.39 1.35 1.25
...

...
...

...
...

8 256 9.44 1.18 1.12
...

...
...

...
...

16 65536 17.44 1.089 1.062

Table 1. Properties of the (1 out-of N)-
Encoding with channel–wise compression

2.4 Concatenated (1-out-of M) codes

For concatenated codes, the original code word is
split into k parts. These parts are encoded separately
in a (1 out-of Mk) code, with

∑
k ld(Mk) = ld(N).

This variant reflects the change of granularity in code
word selection and parallelism in encoding. Figure 4
shows the direct (1 out-of 256) encoding of an 8-bit
word and the concatenated encoding of two sub words,
each with a (1 out-of 16) code.

The concatenated encoding of smaller sub words re-
duces the storage overhead of O. When a (1 out-of N)
encoding requires N = 2t bits for encoding of a t–bit
word, the s–concatenated encoding requires s · 2(t/s)

bits, where s sub words of equal length are formed. In
contrast, the overhead for compressed storage in O is
slightly enlarged and the parallelism in the en- and de-
coder is shifted to a simultaneous processing of multiple
code words.

0010 1011

1 out−of 256

256 Bit code word in O

16 Bit code word 16 Bit code word

1 out−of 161 out−of 16

00101011 8−bit code word in I

Figure 4. Concatenated Encoding

2.5 Hierarchic Code

A further reduction of the temporary storage over-
head in O is reached by encoding the 1-position in O
in a hierarchic way. A hierarchy level is introduced by
dividing the O code word into two halves. The informa-
tion which half contains the 1-bit is encoded by a two
bit sequence, according to a (1 out-of 2) code. That
(1 out-of 2) word is used as the leading sequence, fol-
lowed by the half of the word that contained the 1-bit.
With such a hierarchy level, the data word size in O is
reduced to 2 + m/2, compared to the original amount
of m. Hierarchy levels can be applied recursively. Fig-
ure 5 illustrates the encoding with two hierarchy lev-
els. Adding hierarchies can be seen as a compression
that leads to a (1 out-of 2) binary code, when applied

completely through the code word in a recursive way.
In such a complete hierarchic code, each bit from a bi-
nary code is represented by two bits where the sequence
“10” stands for 1 and “01” stands for 0. An example
is (010)I that is represented in O by (00000100)O. Us-
ing t − 1 = 2 levels it gets hierarchically encoded to
(01)(10)(01) . The (1 out-of 2) sequences also can be
encoded in a single step each, simply by OR-ing the
bits of each half.

0 0 0

1 out−of 256

256 Bit Codewort in O

0 0 0 1 0 0

0 1 0 0 0 1 0 0

Hierarchy Level 1

0 0 0 0 .. 1 ..0 0 1

0 .. 1 ..0 0 1 0 1

Second two bits encode

Hierarchy Level 2

in the 2nd half

occurence of 1

First two bits encode

occurence of 1

in the second half

00101011 8−bit code word in I

Figure 5. Hierarchic Encoding

The number of hierarchy levels must be traded with
a corresponding number of logic stages for en- and de-
coding. These stages are introduced by filtering out the
corresponding half using multiplexors. The OR opera-
tions can be (but do not have to be) done in parallel.
Figure 6 illustrates the example of an 8 bit word coded
in O that is encoded in two hierarchic levels.

Code word
in O

Hierarchy
level 1

level 2
Hierarchy

MUX−1

MUX−3

MUX−2

o7 o0

l1 l0 o0"o1"o2"o3"

o6 o5 o4 o1o2o3

l0l1 o0o1 ~~m0m1

Figure 6. Encoding in Levels

The storage overhead for hierarchic encoding and a
single hierarchy level is listed in table 2. We use the
symbol O′′ for the codeword half that contains the 1-
bit. The storage size is obtained by S = 2H(x′) +
(2t/2)H(x′′), with x′ denoting the bits of the leading
sequence L and x′′ the bits in O′′.

Symbol length Storage Redundancy
size ratio

I O L and O′′ R RXOR

t 2t 2 + 2t/2 S S
t

t+1
t

2 4 2 + 2 2 + 2 2 1.5
3 8 2 + 4 2 + 3.24 1.75 1.33
4 16 2 + 8 2 + 4.34 1.58 1.25
...

...
...

...
...

...
8 256 2 + 128 2 + 8.44 1.30 1.11
...

...
...

...
...

...
16 65636 2 + 32768 2 + 16.44 1.15 1.06

Table 2. Properties of a (1 out-of N) code with
a single hierarchy level

For such a scheme with a single hierarchy level,
the redundancy ratio approaches (2 + (t− 1) + 1.44)/t
asymptotically. With an increasing number of hierar-
chy levels the redundancy ratio approaches (2 · t)/t = 2
asymptotically.

3 Architectures

The discussed codes show clearly advantages in re-
covery complexity against common parity based codes.
For a (1 out-of N) code, recovery of a missed bit sim-
ply consists of an inverted conjunction of all other bits.
The (1 out-of N) code can be generated efficiently by a
broadcast bus and a set of parallel comparators. The
output of this comparator array leads directly to the
codeword in O.

The storage and transfer overhead before compres-
sion could be a serious argument against the usage of
(1 out-of N) codes. We argue that storage and trans-
fer overhead can be compensated by a proper architec-
ture, i.e. can be hidden in the computing nodes or in
the network. The efficient implementation of the OR
operation is a key point for a hardware acceleration to
reach a better encoding and decoding throughput in
comparison to parity-based codes.

3.1 OR-based Hardware Architecture

Figure 7 illustrates a possible hardware architecture
for a (1 out-of N) code. For encoding, the code word
in I is broadcasted over a bus to a set of N parallel
comparators. Each comparator compares with a par-
ticular code word in I and generates a 1-bit if the re-
sult of comparison is equality, otherwise it generates a
0-bit. The data streams generated by the comparators
are compressed and then stored on a storage medium.
Comparator, compressor and the storage medium form
a single fault region, i.e. a single fault region may fail
in a fail-stop manner.

Address
Comparator

’00’

I

O

B
ro

ad
ca

st
 B

us

Address
Comparator

’11’

Address
Comparator

’10’

Address
Comparator

’01’

Figure 7. Encoding in Hardware

Reading data from storage invokes a decoding pro-
cess in the presented hardware architecture. Data from
the storage mediums get decompressed into a represen-
tation in code O′. Faulty storages are considered in the
code O′ that is equal to O except for the possibility of
a single deleted bit. The deleted bit is coded by an
arbitrary bit value, but its position is signaled. De-
coding from O to I base on the principle of parallel
code generators and a bus that transports the gener-
ated codewords to a data sink. In the fault free case,
for a single clock period solely a single bit in O′ is equal
to the value 1. So a single code generator sends the cor-
responding code word in I. The bus can be seen as a
word-wide set of parallel OR gates over N input lines.
In case of a faulty storage, the bit recovery is getting
activated. A fault region covers the storage medium
(disk, RAM–based memory) and the assigned decom-
pressor. The fault must be signaled by FD=1, then an
arbitrary data output of a single faulty storage can be
tolerated. For all non-faulty storages, FD is signaling
0.

Figure 8 shows the used hardware architecture for

O’ O

FD
*

FD
*

FD
*

clock

FD
*

Code
Generator

’11’

’10’

’01’

’00’

Generator
Code

Generator
Code

Generator
Code

*

I

Q’

QD

Q’

QD

Q’

QD

Q’

QD

Figure 8. Decoding in Hardware

decoding. The bit recovery is activated for the faulty
storage by closing the AND-gate for direct data output
and opening the AND-gate for the inverted conjunc-
tion result (marked as * in figure 8). Due to the usage
of master-slave flipflops for decoupling input and out-
put, the inverted conjunction result may only be used
a clock period later. Thus, the logic for bit recovery
needs two clock cycles, a first one for propagation of
the fault free bits into the flipflops, and a second one
for calculating the missed bit and store them in the
flipflop array as well. For the first clock period, the *
value must be 0, in the second period it has to represent
the OR-result of all inputs from O′. This can easily be
reached by clock division and appropriate gating. For
decoding, a fault region only covers the storage and the
decompressor. The set of gates, flipflops, the OR-logic
and the code generators are assumed to be failure re-
silient for the presented architecture. By the deletion
correction, the code O′ is transformed into O, the fault-
free representation of the data words in a (1 out-of N)
code.

3.2 Software-based Architecture
for Multiprocessors

The basis principle of generating the bits of a (1
out-of N) code by parallel encoders can be adopted in
software as well. It requires a parallel hardware archi-
tecture, e.g. a multiprocessor system that supports a
couple of parallel threads that execute encoder and de-
coder functions. The data processed by these threads
must be assigned to different storages. Encoding is
done by parallel comparator threads that check for par-
ticular codewords in an input buffer, generate the code
words in O bit-wise and do the compression. Decoding

also relies on parallelism in a multiprocessor system.
Multiple threads read compressed data from different
storages, decompress and mix the obtained 1-bits into
a storage area that contains codewords of O′.
When a faulty storage is present, a correction thread is
capable to recalculate the missed bit simply by OR-ing
all bits in the codewords of O′ and setting the missed
bit according to the inverted OR-result. Finally, the
data in code I is obtained by a set of threads that
compare for 1-bits in particular positions and write the
related code word in the output sequence. For that, N
parallel comparator threads are necessary.

For a multiprocessor system, usually the entire com-
puter is a single fault region. Thus, solely the differ-
ent storages can be seen as the fault regions. Other
software architectures and machine models (e.g. dis-
tributed systems) may show completely different struc-
tured fault regions.

4 Summary

An alternative approach to parity-based fault-
tolerant data layouts is the OR-based redundancy.
Parity–based schemes need a number of O(log2N) steps
for parity calculation and deletion correction, where N
is the number of fault regions. In contrast, the OR op-
eration can be done in a constant number of time steps.
Thus, the cost of encoding and decoding under faults
is independent from the number of fault regions (e.g.
number of disks). This advantageous approach comes
with two difficulties. First, a (1 out-of N) code must be
used that is very space-consuming. This can be com-
pensated by compression of data within the fault re-
gions. Secondly, an efficient implementation of the OR
operation must be either present in hardware or must
get implemented by software that exploits the paral-
lelism of the used machine. In this paper, it has been
shown that nearly the same space-efficiency as parity-
based codes can be reached and that the OR-based
codes are feasible, when an appropriate hardware ar-
chitecture is used. The applied compression can also
be used for reducing data redundancy, so the proposed
storage architecture comes with the byproduct of doing
data compression without any extra cost. First results
show that for input data that allow a high compression
ratio, the compression effect is also reached in the (1
out–of N) representation.

References

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon.
EVENODD: An Efficient Scheme for Tolerating

Double Disk Failures in RAID Architectures .
IEEE Transactions on Computers, 44(2), Febru-
ary 1995.

[2] V. Bohossian, C.C. Fan, P.S.LeMahieu, M.D.
Riedel, L. Xu, and J. Bruck. Computing in the
RAIN - A Reliable Array of Independent Nodes.
Technical report, California Institute of Technol-
ogy, September 1999.

[3] E. N. Elnozahy. Storage Strategies for Fault-
Tolerant Video Servers. Technical Report CMU-
CS-96-144, Carnegie Mellon University, 1996.

[4] R. Friedman, L. Baram, and S. Abaranal. Fault
Tolerant Multi-Server Video on Demand Service.
In IPDPS Proceedings. IEEE Computer Society
Press, 2003.

[5] Lisa Hellerstein, Garth A. Gibson, Richard M.
Karp, Randy H. Katz, and David A. Patterson.
Coding Techniques for Handling Failures in Large
Disk Arrays. Algorithmica, 12(2/3):182–208, 1994.

[6] Ping-Hsun Hsieh, Ing-Yi Chen, Yu-Ting Lin, and
Sy-Yen Kuo. An XOR Based Reed-Solomon Algo-
rithm for Advanced RAID Systems. In DFT ’04:
Proceedings of the Defect and Fault Tolerance in
VLSI Systems, 19th IEEE International Sympo-
sium on (DFT’04), pages 165–172, Washington,
DC, USA, 2004. IEEE Computer Society.

[7] J. S. Plank. A Tutorial on Reed-Solomon
Coding for Fault-Tolerance in RAID-like Sys-
tems. SOFTWARE - PRACTICE AND EXPE-
RIENCE, 27(9):995–1012, September 1997.

[8] P. Sobe. Data Consistent Up- and Downstreaming
in a Distributed Storage System. In Proceedings
of. Int. . Workshop on Storage Network Architec-
ture and Parallel I/Os, pages 19–26. IEEE Com-
puter Society, 2003.

[9] P. Sobe. Stable Checkpointing in Distributed
Systems without Shared Disks. In IPDPS 2003
Proceedings, Workshop on Fault-Tolerant Parallel
and Distributed Systems. IEEE Computer Society,
2003.

[10] Y. Zhu. Design, Implementation, and Performance
Evaluation of a Cost-Effective Fault-Tolerant Par-
allel Virtual File System. In Proceedings of. Int.
. Workshop on Storage Network Architecture and
Parallel I/Os, pages 53–64. IEEE Computer Soci-
ety, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

