Evaluating a Clock Synchronization for Dependable Sensor Networks

Spiro Trikaliotis!, Georg Lukas'

University of Magdeburg
Institute for Distributed Systems
Universitatsplatz 2, 39106 Magdeburg, Germany
{spiro,glukas}@ivs.cs.uni-magdeburg.de

Abstract

A synchronized clock is an important prerequisite for
many distributed algorithms. This clock is used to give
an "occured before" relationship, as well as for synchro-
nizing distributed actions. There are many clock syn-
chronization algorithms with varying precisions and as-
sumptions on the underlying network topology. In this
paper, a synchronization protocol is presented which
achieves a high precision in the order of 20us to 80us in
a one-hop wireless environment, and a multiple of this
value for multi-hop wireless networks, such as sensor
networks. The protocol works reliably even if message
losses occur, which is very likely in wireless networks.
For this, it utilizes redundancy in the sent time infor-
mation. This protocol is implemented and evaluated
on standard PC hardware running RT-Linux/Free, and
an outline of the extension for multi-hop scenarios is
given.

1. Introduction

The synchronization of clocks in a multi computer
environment is very important for many applications.
Distributed computers use their clocks to synchronize
their computations, or to serialize distributed events
throughout the networks. This is especially true for
real-time systems and sensor-networks, as these have
to interoperate with their environment. In a wireless
network, the protocol has to cope with much more mes-
sage losses and variances in the medium access than
with wired mediums. This is a challenge especially
when building dependable sensor networks.

Most existing wirelss clock synchronization proto-
cols assume that all stations are within direct reach of

1-4244-0054-6/06/$20.00 ©2006 IEEE

each other because they exploit the broadcast property
of the medium to achieve a high precision. Our proto-
col utilizes the broadcast property of the medium, but
still allows for ordering distributed events, as necessary
for sensor networks.

2. Related work

The synchronization of clocks is a rather old topic,
but it has got more attention recently for wireless and
sensor networks.

A good survey on clock synchronization for sensor
networks can be found in [7]. It shows that traditional
clock synchronization protocols for wired networks can-
not be used for wireless sensor networks because these
require the ability to adapt dynamically, the ability to
handle sensor mobility, and scalability. The sensors
themselves are heavily resource-constrained because of
limited battery power. Furthermore, they need to op-
erate in highly lossy and unreliable environments. As a
result, several clock synchronization protocols for wire-
less sensor networks have been designed in the recent
past. We presented a protocol in [5], [6], which is based
on an idea which can be found in [1], [8]. The idea is
also utilized in the clock synchronization protocol of
the CAN standard [3].

The underlying idea is to minimize the time critical
path of synchronization in order to improve the quality
of the synchronization.

There has been much other work on clock synchro-
nization. [2] showed an approach similar to [5], but
focusing more on sensor-networks and their low-power
constrains as well as their multi-hop nature.

For this purpose, they calculate a linear regression
for the time values obtained from a time server, and
they propose a scheme for synchronizing time for more

than one broadcast domain. Because of their high
computational requirements, they are not best suited
for sensor networks with small, battery-constrained de-
vices. [9] tries a similar approach with the same disad-
vantages.

3. The clock synchronization protocol
3.1. Critical path minimization

The main idea of this clock synchronization protocol
is to minimize the critical path in the transmission of
the clock information.

Time synchronization protocols using message de-
livery for communication all contain a timing critical
path. The lower the jitter of this critical path, the
better precision is achievable [4]. Figure 1 shows the
critical path for conventional clock synchronization al-
gorithms.

Most synchronization protocols operate in the fol-
lowing way: Some station takes a timestamp and sends
it over the network. This way, the critical path con-
tains local processing of the message at the sender, at
the receiver, and the medium access which can be very
high on CSMA (carrier sense multiple access) networks
like Ethernet and most wireless networks.

Note that the station taking the timestamp differs
whether there is a master/slave protocol, or a dis-
tributed one. In distributed protocols, some or even all
stations take and send the timestamp. In master/slave
protocols, only one master takes a timestamp. Subse-
quently, we will only the case of master/slave protocols
for brevity.

In this case, the time consumption is as follows:
Whenever a synchronization round starts, a time
sender prepares a packet to be sent over the network at
time instance t1. It puts a timestamp Tsepder into that
packet. This packet is processed on the master ma-
chine. This includes operating system overhead and
overhead from the medium access mechanism. At ¢,
the packet leaves the sender and is send out to the
communcation medium. At time t¢3, the recipient phys-
ically receives the packet. Again, the network card and
the operating system are involved. It takes the receiver
up to t4 to process the packet in the time synchroniza-
tion algorithm.

The timestamp Tsender corresponds to the instance
of time ¢;. On processing of the packet on the receiver
at t4, the time has progressed by t4 —t1. Obviously, the
jitter of t4 — t; is crucial for the achievable accuracy of
the synchronization protocol. Thus, this is the critical
path of the synchronization protocol. Unfortunately,
this critical path contains many parts which are very

variable in their running time. The operating system
has to process the packets two times, at the sender’s
(t1 to t3) and at the receiver’s site (t3 to t4). Here,
multitasking and caches of the processor can influence
the time, resulting in a jitter. An even bigger jitter
is generated due to the medium access time, which is
part of the critical path. Even if the user can prevent
most of the jitter somehow on the operating system
level - by using a real time OS, clever programming, or
whatever -, there is still the waiting time for the access
of the communication medium in there (¢; to t2). This
medium access time is unpredictable by nature.

Note that the delay t4 — t; could be calculated and
corrected for if the jitter where zero. Anyhow, this is
not possible for the jitter, as that one is unknown.

In contrast, our protocol moves most of the operat-
ing system time and all of the medium access time out
of the critical path. To achieve this, an a posteriori ap-
proach, involving two messages, is used to synchronize
slaves to a master. The protocol uses an event which
can be observed by every recipient and the sender itself.
This globally observable event is a special message, the
indication message. Figure 2 shows the timing and the
critical path of our protocol.

Master

Client

\ \
t1 2 3 t4

Figure 1. The critical path of other synchro-
nization protocols

At time t;, the master prepares the global event,
the so-called indication message. The operating system
gets this message, the medium contention takes place,
and at to, the message is sent out to the medium. At
time t3, this message physically arrives at the slave.
At t4, the slave takes a timestamp T° of this message.
As the master itself knows when exactly it sent out
this message, it can generate a timestamp T at ap-
proximately t4, too. We will discuss the word "approx-
imately" later on in this section. Furthermore, note
that we ignore the propagation delay through the wire-
less medium, which is orders of magnitudes lower than
the rest of the timing.

Now, the master has to tell the slave its timestamp
TM to allow the slave to adjust its clock. For this,
it sends another message at t5 which is processed at
the client at tg. Now, the receiver knows its time dif-

Master \ \

Client

tl t2 t3 t4

t5 t6

Figure 2. The critical path of the clock synchronization protocol

ference to the sender at t3 by calculating 75 — T™.
As this information is not the current difference to the
sender’s time at tg anymore, the receiver’s time may
have drifted away from the sender’s time much more.
Thus, it does not make much sense to apply the dif-
ference directly to the receiver’s time, but use a more
sophisticated clock correction. This correction gives a
continuous clock, and it is discussed in the next section.

If the routine for taking the timestamps is placed
into the driver of the network interface card - the best
place for this is the interrupt service routine -, the jitter
of t4 — t3 can be made very small.

Obviously, the critical path has been minimized to
the path t3 to t4, which does not contain any medium
access anymore, and only a minimal amount of oper-
ating system and cache dependancy. Thus, the jitter
is very low. Note that the second message sent at t5 is
not timing critical.

Instead of using two messages as states above, an
easy optimization of this algorithm is to use only one
message for the indication, the global observable event,
in one synchronization round, and to send the times-
tamp of the sender for the last round in the same mes-
sage. This way, only one message is needed for syn-
chronization.

For practical purposes, often, it is not possible to
determine the point of time when a message was sent
exactly, that is, ¢5 on the master might be different to
t3 on the slave. Due to this, the timestamp T of the
master might refer to another point of time ¢, than ¢4.
This is due design decisions in modern network cards
and their drivers to optimize throught. For example,
they using buffering, interrupts and direct memory ac-
cess (DMA) to act as much autonomous as possible.
Unfortunately, this makes it harder to determine the
exact instant of time when the message was put on the
medium.

Note that this is no fundamental problem for our
protocol, as this can be circumvented in different ways.
For example, network cards can change their opera-

tional mode to not use buffering. Unfortunately, this
would reduce network throughput, and it might in-
crease the processing load on the host computer. If
buffering can be disabled on a packet basis, the hit
would not be very high.

Of course, these solutions come with a cost. It makes
sense to find out if it is needed to use them, or if the
resulting synchronization is good enough for a given
scenario. To get an idea of what is possible, we also
implemented the protocol with an explicit indication
sender, that is, a station which only sends out indica-
tion messages. This way, the master physically receives
the indication, as all the slaves, and behaves the same
way as these. More or less, this mimics the scenario
when the master and the slaves do not use buffering for
sending and receiving. The measurements will show if
there is a significant improvement in the precision of
the protocol.

Another option for improvement is to make the wire-
less network card itself take the timestamp on the mas-
ter and on the slave. This removes all operating sys-
tem time and such details like interrupt processing from
the critical path. Only timing issues inside the network
card would be relevant. Of course, the network card it-
self can be controlled much better than the whole host
machine. Thus, most probably, this would increase the
precision very much.

For more details on the protocol, and how it handles
omissions, we refer the reader to [5].

3.2. Continuous clock correction

Instead of applying the clock difference directly to
the slave’s clock, the clocks are adjusted with the help
of two clock differences at two instances of time. This
way, the precision can be improved as well as a contin-
uous clock can be achieved. Furthermore, the protocol
profits if information about clock differences is known
which are farther apart, allowing to lower the frequency
the time information is sent. This reduces the com-

putational and network overhead significantly, allow-
ing for power-constrained operation needed in sensor-
networks.

t ve A
™
MC
vc!
L
VvC
™ /
; D>t
TS TS TS, T3 P

Figure 3. Calculation of the global clock

Figure 3 shows the clock correction as done by the
protocol on one slave. On the x-axis, the physical clock
of the slave is shown, while on the y-axis, the virtual
clock of the slave is diagrammed.

Assume that two synchronization rounds i, j, with
i # 7, took place in the past. Now, according to the
above protocol, the slave knows the following facts: At
its physical time 7;°, the master’s clock was TM. Ad-
ditionally, at its phyiscal time Tjs , the master’s clock
was TM.

According to this, the client can calculate the mas-
ter’s clock as seen by him. It calculates the straight
line through (7%, T*) and (TJS,TJM) (MC in figure
3). Assuming it is now 75 at its physical clock, and
the current clock of the slave is V(| it could adjust its
virtual clock to have exactly the gradient and the offset
of the sender’s clock, resulting in changing from VC to
the clock MC at time T .

Of course, adjusting the time directly leads to time
jumps. To avoid this, instead of using the master’s
clock directly as its own virtual clock, the slave adjusts
its clock in two steps. In the first step, it adjusts its
clock in such a way that it smoothly approaches the
master’s clock at some instance of time 7'% in the fu-
ture. This results in the clock V' C’, as seen in figure 3.
After T, it uses the master’s clock as its own virtual
clock. This way, a continuous clock can be achieved
very easily.

This protocol needs a master to synchronize slaves
in direct reach. It can be easily extended to synchro-
nize a whole sensor network as follows: The sensors
build clusters, with a master as clusterhead being able

to reach all of its cluster members directly, running
the protocol. Slave stations which can be reached by
more than one master synchronize to both masters, re-
membering the time difference between both clusters.
Whenever these slaves route time information from one
cluster to the other, they adjust the times with their
knowledge of the time in the different clusters.

For more details on the protocol, we refer the reader
to [5] and [6].

4. Implementation

The clock synchronization protocol has been imple-
mented on RT-Linux/Free, a GPL real time extension
to the Linux kernel based on the work of FSMLabs
Inc. RT-Linux was chosen because of its real time ca-
pable interrupt request (IRQ) management, which is
best suited for optimal synchronization precision.

The protocol has been integrated into RT-Orinoco,
our RT-Linux implementation of the Orinoco driver,
but the driver modifications were limited to several key
positions, so a migration to other hardware drivers or
to a more generic API (application programming inter-
face) would be easily possible.

Depending on the role of the station (master, client
or indication server) the driver has to complete differ-
ent tasks. For most of them, a precise timestamping
of the Orinoco hardware interrupt is needed. To ac-
complish this, the TRQ handler has been extended by a
query of the current local time as its first action. The
so gained time stamp is then used when a master or in-
dication packet is received, or when the master finishes
sending.

A procedure has been added to the beginning of the
RT-Orinoco IRQ handler to get the local timestamps of
global events (i.e. the reception of indication packets).
An additional out-of-band packet buffer was added into
the driver for the transmission of indication packets,
and a periodic master thread has been implemented to
generate such packets.

The virtual clock is based on the RT-Linux
gethrtime () function on the master machine. In the
x86 implementation of RT-Linux, this function is based
on the rdtsc command of the CPU, which has a gran-
ularity of several nanoseconds. Thus, it is suitable for
the synchronization protocol.

The driver also has been extended by an additional
packet buffer for out-of-band packets. This buffer is
used for time synchronization packets, because of their
higher priority status and because they must not be
retransmitted in the case of an error.

An additional thread is running on the indication
server (or on the master, when separate indication is

FHFO F}{O
ring

FIFO |
hdlr buffer

> IRQ hdlr XE
\V

TimeSync

[

v_|

l Firmware / Hardware

Figure 4. Structure of the modified RT
Orinoco driver

not activated), which is periodically scheduled to send
out broadcast packets. Raw Ethernet frames with a
distinguished packet type are used for the synchroniza-
tion. These frames are automatically converted to the
right 802.11 frame format by the Orinoco firmware. To
accomplish application transparency, the synchroniza-
tion packets are generated in the driver when sending,
and the driver analyzes them and inhibits their transfer
to the higher level application on reception.

The transformation of local to virtual time and vice
versa requires several additions and a multiplication,
which has been implemented as 64bit x 32bit with a
64bit result. To calculate a new virtual clock with rate
adaptation, several additions, shifts and a 64bit divi-
sion are needed. These operations could be reduced
to 32 bits for better calculation performance on sensor
devices when using a master clock with a bigger gran-
ularity. Note that all calculations are done with fixed
point arithmetic.

5. Evaluation
5.1. Structure

To measure the clock differences between different
WLAN stations it was needed to connect them all to
one single observer machine. The communication has
been implemented as signal edges on the parallel ports
of the participating machines, which were all connected
to the input pins of the observer parallel port. The ob-
server, a Pentium 133 machine in real mode, is busy
waiting for changes on the port and logging them us-
ing its rdtsc time stamp. This construction allows a
measuring precision of 5us and the results can be com-
pared to the ones achieved in [6], as the same setup
was used. The synchronization protocol is deployed on
four Athlon XP 2400+ machines with Orinoco PCM-
CIA wireless network devices.

To measure the precision of the virtual clocks, an

additional RT-Linux task is run, which toggles one of
the parallel port bits in periodic time intervals based on
the virtual clock. This allows the observer to compare
the virtual clocks of all participating machines and to
see their differences.

To reach maximal precision in the task an ap-
proach of periodic clock polling has been chosen, which
switches to busy waiting when the trigger interval is al-
most over. Such an energy consuming procedure is not
needed when only recording the timestamps of events,
it is only required for events triggered by the virtual
clock. A scheduler extension is planned to fix this prob-
lem by utilizing the global clock for waking up threads.

To see the influences of a dedicated indication sta-
tion and of traffic load on the medium, four different
tests have been performed. Additionally, the reliability
of the protocol has been tested in the case of a master
failure.

As the total number of participating machines was
four, with explicit indication there were two clients
(plus master and indication server), while without ex-
plicit indication there were three client machines.

The diagrams in figures 5-10 display the trigger time
difference of the clients compared to the master’s vir-
tual clock, as measured by the observer. We used a
round time of 3s for these measurements. Please take
note that the diagrams are heavily disproportional due
to the fact that the time difference on the Y axis is in
the magnitude of microseconds whereas the X axis is
several minutes long.

20

Client 1 ——
Client2 ------
Client 3 -------

deviation (us)

-20

0 50 100 150 200 250 300 350 400
time (s)

Figure 5. Measured synchronization preci-
sion: no traffic

The network load was simulated by another two ma-
chines in the same Ad-Hoc wireless cell, which were
generating continuous bidirectional TCP traffic using

20

Client1 ——
Client2 ------
Client3 -------

deviation (us)
o

-20

0 50 100 150 200 250 300 350 400
time (s)

Figure 6. Measured synchronization preci-
sion: 650KB/s

the Linux tool iperf -d, leading to a load of approx.
650 KByte/s.

5.2. Results

Figure 5 shows the results which are observed if no
additional traffic is put on the network. A short time
after the clients synchronize with the master’s virtual
clock, their accuracy stays below 15us, that is, at all
times, they are not more than 15us away from the mas-
ter clock. Note that most of the values are even in the
magnitude of the observer’s resolution.

When the medium is under traffic load (diagrammed
in figure 6), it can be seen that the clients tend to be a
bit faster than the master in several places. This is due
to a delay in the master’s transmit IRQ, which is caused
by the Orinoco card firmware. Using a station as a
timestamp indicator is a workaround for this problem.

When deploying an explicit indication message, the
master and the clients are using the reception of the
same packet as a common trigger event, so the traffic
load has no negative impact on the virtual clock preci-
sion. Both with (figure 8) and without (figure 7) traffic
load, the precision is better and the clocks are steadier
than without indication, though again the difference of
the clients to the master is not much greater than the
measuring resolution.

When the master machine, being the central syn-
chronization instance, drops out, the clients use the
information from the last rounds to adapt their virtual
clocks. This can be seen in figure 9 for the case with-
out traffic, and in figure 10 for the case with traffic.
Because this information is not perfect and there are

20

"Client1' ——
Client2 ------

deviation (us)

0 50 100 150 200 250 300 350 400 450
time (s)

Figure 7. Indicated synchronization: no traf-
fic

no updates, the clients drift away from the master and
leave the regular precision window after several min-
utes. Anyway, in both cases, even after 300s, all clients
are not more than 20us away from the server, which
shows that the clock rate adjustment worked very well.

Additional tests have shown in practice, a master
failure (like a continuing disturbance of the WLAN
medium) can be tolerated for over 200s without the
clients leaving the 15us accuracy corridor. Thus it is
possible to increase the round time from 3s used in
the tests to 30s or even 60s to further decrease the en-
ergy consumption of the protocol without losing pre-
cision. With longer round intervals the rate adoption
algorithm is even expected to become more precise due
to a better time interval to jitter ratio. We are working
on evaluating this.

6. Conclusion

We presented an evaluation of a clock synchroniza-
tion protocol which is suited for sensor networks. It
profits from low frequencies of synchronization rounds,
which reduces network utilization significantly. Fur-
thermore, this protocol allows for adjusting clock val-
ues across broadcast domains, making it well-suited
for sensor-networks. We will evaluate this more thor-
oughly in some following work.

References

[1] O. Babaoglu and R. Drummond. (almost) no cost clock
synchronization. In Proc. 17th Annual International

2]

(3]

[4]

[5]

20 T
Client1 ——
Client2 ------

deviation (us)
o

-20
0 50 100 150 200 250 300 350

time (s)

Figure 8. Indicated synchronization: 650KB/s

20

" Client 1 ——
Client2 ------
Client3 -------

deviation (us)

0 50 100 150 200 250 300 350 400 450
time (s)

Figure 9. Master failure: no traffic

Symposion on Fault-Tolerant Computing (FTCS 87),
pages 42-47, July 1987.

J. Elson, L. Girod, and D. Estrin. Fine-grained net-
work time synchronization using reference broadcasts.
In Proc. Fifth Symposium on Operating Systems Design
and Implementation (OSDI 2002), volume 36, pages
147-163, 2002.

M. Gergeleit and H. Streich. Implementing a dis-
tributed high-resolution real-time clock using the can-
bus. In Ist international CAN-Conference, 1994.

J. Lundelius and N. Lynch. An upper and lower bound
for clock synchronization. In Information and control,
volume 62, pages 190-204, 1984.

M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Clock
synchronization for wireless local area networks. In
12th Euromicro Conference On Real Time Systems
(ECRTS), pages 183-189, June 2000.

[6]

[7]

(8]

[9]

20

Client 1 ——
Client2 ------
Client 3 -------

deviation (us)
=)

0 50 100 150 200 250 300 350
time (s)

Figure 10. Master failure: 650KB/s

M. Mock, R. Frings, E. Nett, and S. Trikaliotis. Con-
tinuous clock synchronization in wireless real-time ap-
plications. In Symposium on Reliability in Distributed
Software (SRDS), pages 125-132, Oct. 2000.

B. Sundararaman, U. Buy, and A. D. Kshemkalyani.
Clock synchronization in wireless sensor networks: A
survey. In Ad-Hoc Networks, volume 3(3), pages 281—
323, May 2005.

P. Verissimo and L. Rodrigues. A posteriori agree-
ment for fault-tolerant clock synchronization on broad-
cast networks. In D. Pradhan, editor, Proceedings of
the 22nd Annual International Symposium on Fault-
Tolerant Computing (FTCS 92), pages 527-536. IEEE
Computer Society Press., July 1992.

Y. Zhao, W. Zhou, J. Huang, S. Yu, and E. J.
Lanham. Self-adaptive clock synchronization based
on clock precision difference. In Proceedings of the
Twenty-Sixth Australasian Computer Science Confer-
ence (ACSC2003), pages 181-187, Feb. 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

