An Automated Approach to Improve Communication-Computation Overlap in
Clusters

Lewis Fishgold, Anthony Danalis, Lori Pollock and Martin Swany
Department of Computer and Information Sciences
University of Delaware, Newark, DE 19716
{fishgold, danalis, pollock, swany } @cis.udel.edu

Abstract

Applications that execute on parallel clusters face
scalability concerns due to the high communication
overhead that is usually associated with such envi-
ronments. Modern network technologies that sup-
port Remote Direct Memory Access (RDMA) can offer
true zero copy communication and reduce communi-
cation overhead by overlapping it with computation.
For this approach to be effective the parallel appli-
cation using the cluster must be structured in a way
that enables communication computation overlapping.
Unfortunately, the trade-off between maintainability
and performance often leads to a structure that pre-
vents exploiting the potential for communication com-
putation overlapping. This paper describes a source-
to-source optimizing transformation that can be per-
formed by an automatic (or semi-automatic) system
in order to restructure MPI codes towards maximizing
communication-computation overlapping.

1 Introduction

Clusters of workstations are in common use among
engineers and domain scientists due to their high pro-
cessing power to cost ratio. The major drawback
of cluster-based parallel computing as compared to
shared memory multiprocessors is the delay of pass-
ing messages over the cluster network. Several in-
terconnection technologies such as Myrinet, Quadrics
and Infiniband can improve cluster message-passing
performance by providing specialized low latency,
high bandwidth networks for clusters. Such tech-

1-4244-0054-6/06/$20.00 ©2006 IEEE

nology can theoretically reduce communication la-
tency by overlapping communication with computa-
tion through handling network traffic solely on a net-
work co-processor, freeing the CPU to perform useful
computations.

Unfortunately, many existing scientific applications
implement a structure where the computation is sepa-
rated from the communication. Although such an ap-
proach makes the code easier to maintain and alter, it
prevents communication-improving network technol-
ogy from being fully utilized.

To overcome the restrictions imposed by such
overlap-naive code, a program can be transformed
so as to aggressively send data as soon as it is gen-
erated. In particular, the computationally expensive
part of many scientific applications consists of a loop
(commonly with multiple levels of nesting) that exe-
cutes some basic computation kernel. In this paper
we present a transformation that aims to achieve “pre-
pushing” by performing the communication within the
computation loop using non-blocking, asynchronous
I/O operations to transfer data elements among the par-
allel tasks as soon as it is safe to do so. To evaluate
the potential of this transformation, Danalis et al. [3]
transformed potentially benefiting applications man-
ually and experimented with the resulting variations
to study the performance gains. Those results show
that near maximum communication-computation over-
lap can be achieved, resulting in reduction of the
communication overhead and significant performance
improvement in comparison to the original code, as
shown in Figure 1.

Although the suggested pre-push transformation
can be performed by an experienced programmer,

MPICH Original Original
MPICH Prepush
7 I MPICH-GM Original
[7ZZ1 MPICH-GM Prepush

Q
E
=6
=
i
=
o 5
o}
o
K Prepush
=4
O
e
=
£3
o . .
Z. Original

2

Prepush
1

Communication Scheme

Figure 1. Performance improvement achieved by “pre-pushing”

there are several reasons to build an automated system.

e Asynchronous communication can be error prone
and difficult to program, particularly when many
processors and corresponding outstanding mes-
sages are involved creating a need for explicit
synchronization.

e The performance of the transformed code de-
pends on several cluster and application param-
eters. These parameters have to be recomputed
(or rediscovered through extensive profiling) ev-
ery time the code changes, or the cluster CPUs,
memory, or network changes.

e The suggested transformations have a negative
impact on the maintainability of the code and in
the case where low level communication primi-
tives (eg., Myrinet’s GM) are used, portability is
also affected.

e Having an automated system perform the trans-
formation opens the optimization to a wider au-
dience of applications such as legacy codes, and

those whose programmers are unaware of the de-
tails of the optimization.

Significant research has focused on optimizing
communication latency in cluster environments but
none can handle explicitly parallel codes written us-
ing MPI. Many compiler or language-based techniques
translate higher-level parallel constructs into message
passing primitives as appropriate. Examples of this in-
clude UPC [4], Co-Array Fortran [11], HPF [6], and
Fortran-D [7]. While these approaches allow program-
mers to write their code in SPMD style, they focus on
parallel optimization in the large, rather than focus-
ing on optimization of messaging on a single host and
do not deliver the performance that can be achieved
by carefully tuned, manually parallelized applications.
Systems such as Polaris [2] and PARAMAT [9] per-
form source-to-source transformations to achieve par-
allelization of serial programs that are written in For-
tran 77 or C without any special annotation. Nev-
ertheless, these systems do not accept input code al-
ready parallelized with the use of MPI, but rather ex-
pect code written as a serial program. Projects such

as CC-MPI [8] attempt to extend the standard MPI
in order to provide support for the compiled commu-
nication model [16]. In this way, communications
that lend themselves to static analysis can be sepa-
rated from those which do not, and optimizations can
be performed as appropriate. The main difference be-
tween our project and the alternative solutions is that
we aim to offer a complete system able to automat-
ically (or semi-automatically) restructure parallel ap-
plications, explicitly parallelized with the use of MPI,
in order to minimize their communication overhead by
performing communication-computation overlapping.

2 Communication-Computation
ping Transformation

Overlap-

The structure of many scientific codes, in which
some data is computed, stored in an array, and then
sent over the network, leaves no opportunity for
communication-computation overlap. Often, as soon
as the data is ready to be sent, it needs to be used (by
the receivers). We propose a transformation for such
codes so that the data is pre-pushed, or sent as it is
generated, before it is needed.

To achieve such an early transfer model, the compu-
tation loop is restructured into blocks, or tiles, in which
each tile executes only part of the iteration space and
therefore performs only part of the original computa-
tion. Consequently, each tile generates only a subre-
gion of the original array and depending on the data
dependencies of the loop, it could be the case that at
the end of the tile execution, the generated array subre-
gion is not altered by future iterations (i.e., consecutive
tiles). In addition, asynchronous send and receive op-
erations are inserted at the end of each tile so that the
transfer of the array subregion generated by the cor-
responding tile is initiated. This transfer is completed
by the network co-processor, while the CPU contin-
ues computing the next tile of the array. In order for
such a transformation to preserve the correctness of the
original code, the subject application needs to first be
analyzed. In general, to restructure code to pre-push
the results of its computation, we must first determine
the following information:

e the communication operations in the original
code and the corresponding computation loop(s)
that write(s) to the array being sent

e the pairs of matching send and receive opera-
tion(s), since both the send and the receive must
be transformed in concert

o the earliest execution point where it is safe to re-
ceive pre-pushed data (This is important in cases
where the receiver uses the receive array prior to
the part of the code we are trying to transform.
In such a case, it is only safe to transfer the data
after the latest point of such use.)

The last two are difficult to determine and in some
cases they can be statically undecidable. Therefore,
our transformation effort focuses on cases that reveal
more information about the communication and do not
exhibit such undecidability. Such information is stat-
ically known in the case of collective communication
operations such as MPI_ALLTOALL. In such opera-
tions, both sending and receiving are implemented in-
ternally and the function call appears as an atomic, or
indivisible, operation at the level of the application.
In addition, the semantics of MPI_ALLTOALL require
that all participating nodes have to call it. Therefore,
we do not need to match the sending and receiving
calls statically; we know that all nodes exchange data,
and they do so in a predetermined pattern. Regarding
the computation, our current analysis focuses on com-
putation loops where every node executes the same
code. In other words, there can be no branches (i.e.,
if statements) in the code that stores data into the
array that is being exchanged. Many scientific codes
contain frequently executed sections consisting of a
multiply-nested loop in which the inner loops execute
some computation kernel and store the results in an ar-
ray which is then exchanged using MPI_ALLTOALL
at the end of each iteration of the outer loop (see Fig-
ure 2(a)). This communication-computation pattern is
the domain on which our current transformation is fo-
cused. Sorting, LU Factorization, Finite differences,
and multi-dimensional FFT constitute examples of al-
gorithms that could fit this abstract form, and can be
transformed to exploit pre-pushing.

To demonstrate the result of the transformation,
Figure 2 shows an abstract target code before and af-
ter being transformed. The tiling of the computation
loop nest is controlled by the parameter K which sets
the number of iterations of the tile loop per tile. De-
termining the optimal tile size is not a trivial task, and

is best performed by an automated system, since the
value may change as applications migrate across plat-
forms. However, finding the optimal value for K is
beyond the scope of this paper. A discussion about the
issues related to the performance critical parameters
can be found in [3].

3 Automated Transformation Technique

3.1 Opportunities for Transformation

The first step toward modifying the code is identi-
fying opportunities for transformation. To do so, the
following information needs to be collected:

e C,acall to MPT_ALLTOALL.

e A, the array sent by C, which is the first argu-
ment to C.

e A,, the array received by C, which is the fourth
argument to C.

e /, the loop nest executed by all nodes, which fi-
nalizes all elements in Ay before C is called. £ is
the last loop nest not in a conditional statement,
lexically preceding C, that mutates 4. A, can be
mutated directly by assignment, or indirectly by
passing A by reference to a called procedure. In
the former case, if the source code for the proce-
dure is unavailable, it cannot be guaranteed that
A is written. To resolve this uncertainty, the
user must be queried (making the system semi-
automatic), but if ¢ is the only loop preceding C,
then it is a conservative assumption to consider £
to be a mutator.

3.2 Compute-Copy Pattern

For each transformation opportunity, we determine
the pattern by which values are computed and copied
into A;. We currently consider two cases:

direct A, is the LHS of an assignment statement
where the RHS is not an array reference, as seen
in Figure 2. Section 3.3 describes how to analyze
codes fitting this pattern.

indirect In this case, the contents of A4 are computed
indirectly in the sense that they are first computed
in a procedure, P, which stores them in a tempo-
rary array, and are then copied to A, afterwards.
As in Figure 3(a), A appears on the LHS of an
assignment where the RHS contains a reference
to a different array, A;. Each call computes a
portion of the final results and writes them to Ay
which is passed by reference. After the call to
P, the contents of A; are copied to A in a copy
loop, £.,. The purpose of this pattern is to aggre-
gate the partial results computed by each call to
‘P so that they can be sent together at the end of
£. The goal of Section 3.4 is to remove /., and
directly send the contents of .4;, as this avoids the
copy and is thus more efficient.

3.3 Handling the Direct Pattern

If A is written directly, we first determine which
parts of the send array, A, can be safely sent at a
given point in the iteration space of ¢. If an array ref-
erence, As, overwrites elements previously written by
another array reference, 41, then those elements are
unsafe to send between A; and A,. Using array de-
pendence analysis to find output dependences [15], we
determine whether the element referenced by a given
array reference is safe to send after that reference is
reached during execution. A safe array reference, de-
noted A£ , is one with no output dependences on it and
represents the latest element to be finalized.

We could transform the program so that elements
referenced by .Af.: are sent one at a time, as each is
computed. Although correct, it is desirable for rea-
sons of efficiency to aggregate these single element
sends into fewer, larger send operations. Array ac-
cess analysis [12] can enable this aggregation, by de-
termining the region of 4 written during a single tile.
To simplify our prototype implementation, we use the
simplest, most course-grained access representation,
known as a partial triplet, which contains the symbolic
upper and lower bound of an index expression, i, de-
noted as u(iy) and [(iy) respectively. This analysis de-
termines the size, denoted size, of the blocks of con-
tiguously accessed array elements, or blocks, written
during the runtime of K iterations of ¢, and the offsets
of the blocks, denoted of fsets.

integer Ag(1:NX)
integer A, (1:NX)

do iy=1, NX !outer loop
do ix=1, NX !inner computation loop

As(ix) = ... !RHS is not array ref.
enddo
!sends As; and receives into A,
call collective-comm(.As,Ar)
enddo

(a) Before

integer A (1:NX)
integer A, (1:NX)

do iy=1, NX !outer loop
do ix=1, NX !inner computation loop nest

As(ix) = ...
!wait for comm of prev. tile to complete
if(ix mod K == 0) then

to=...

size=K

call async-send(As(...),size,to,...)
call async-recv(A,(...),size,from,...)
endif
enddo
enddo

(b) After

Figure 2. Abstract target code segment before and after transformation

Using the results from this analysis, a communica-
tion loop nest can be generated to iterate through all
0 € of fsets in order to initiate the appropriate asyn-
chronous communication calls to transmit the gener-
ated blocks. Note that if the array access pattern is
regular, all the data might be in just one continuous
block. This is the optimal case, as the transfer of the
data can be performed with a single transfer, achieving
minimal overhead and high bandwidth.

3.4 Handling the Indirect Pattern

In the case that 4, is written indirectly, as in Fig-
ure 3, a copy loop, /.,, aggregates temporary results
into Ay, which will be sent once all computation has
concluded. Since we want to send results as they
are generated in order to overlap communication with
computation, this aggregation is unnecessary. There-
fore, we can directly send the contents of .4;, which
can reduce runtime by eliminating the time taken to
copy A; to Ag. The flow of data from A to A, can

d o
be represented as A; PY A S A, By transitivity,

we can eliminate the copy and still complete the same

operation by the equivalent A; send A,

To determine the region of .4, that has been final-
ized during a tile, we cannot directly analyze the loop
that wrote to .4; since it is inside a procedure with
source code that is unavailable. Therefore, we have
to infer the access pattern of .4, indirectly by analyz-
ing {.p. It is reasonable to assume that the region of

A accessed when being copied to A is the one that
is finalized by one call to the procedure. In addition, if
{.p is executed more than once per tile, which is usu-
ally the case, we need to aggregate the temporary re-
sults, but not to the degree that they were originally
aggregated. To achieve this, we expand the capacity
of A; by adding an extra dimension, and modify the
reference to A; that is passed to the procedure accord-
ingly. Finally, the resulting communication code must
preserve the original mapping from A; to A, that was
induced by /.. In other words, the blocks of .4; must
be sent to A,., in the same order that blocks of .A; were
copied to blocks of A;. Further details for removing
the redundant copy are beyond the scope of this paper,
but can be found in [5].

3.5 Communication

In this paper, we focus on transforming communica-
tion using MPI_ALLTOALL [10], which divides arrays
into IV P partitions along the last dimension, each cor-
responding to a different node. To preserve the seman-
tics and efficiency of MPI_ALLTOALL, we must en-
sure that data is written for each of the nodes to receive
during every tile. We can guarantee that the entirety of
the last dimension is traversed if the loop inducing the
traversal of the last dimension, the node loop, is not
the outer loop, in which iterations are being split into
tiles. If the node loop is the outer loop, we could use
loop interchange [1] to exchange the outermost loop

integer A;(1:10,1:10,1:10)
integer A;(1:100)
do iy = 1, 10 !loop nest /¢
call P(..., A)
do ix = 1, 100 1l
tx = ix % 10

ty = ix/10
As (tx,ty,iy) = Ai(ix)
enddo
enddo
(a) Before

integer A,(1:10,1:10,1:10)

integer A;(1:100)

do iy = 1, 10 !loop nest /
call P(..., Ai)
call async-send(A¢(...),...)
call async-recv(A;(...),...)
enddo

enddo

(b) After

Figure 3. Abstract indirect pattern code segment before and after removing the

redundant copy

with one of the inner loops. If data dependences do
not allow us to perform the interchange, the semantics
of MPT_ALLTOALL can still be preserved by having
all the nodes send to a subset of the nodes during each
tile, but this is not as efficient as network congestion
may ensue if all of the nodes are competing to com-
municate with one or a few nodes. The method for
generating communication code in this case is given
in [5]. In Figure 4, we show the replacement com-
munication code that preserves the semantics and effi-
ciency of MPI_ALLTOALL when the node loop is out-
ermost.

3.6 Transforming the Program

After the previous stages of analysis are performed,
we transform the program according to the following
steps:

1. Insert the communication code shown in Figure 4
at the end of the body of ¢.

2. Insert a blocking call to wait for all outstanding
receives from the previous tile to complete, be-
fore the code inserted in step 1.

3. Insert code after ¢, to exchange any leftover ele-
ments not sent by the last tile, which result from
K unevenly dividing the number of iterations of
f(.e., fmod K).

4. Insert code, after £ and before C to wait for the
arrival of the last blocks of data after the end of /.

5. Remove C, the original communication.

4 Implementation and Evaluation

The automated approach presented in the last sec-
tion was implemented as a Fortran 90 source-to-source
code transformer, called the Compuniformer, using the
Nestor program transformation framework [14]. Using
a source-to-source transformer, we decouple our trans-
formation from the specifics of any particular compiler
designed for a particular architecture, allowing our op-
timization to be complemented with traditional com-
piler optimizations. Nestor is a lightweight framework
for implementing transformations to Fortran 90 code,
providing a parser, a transformable IR, and unparser.
Nestor also includes a data dependence analysis tool
which uses Petit and the Omega Test [13]. At this
time, some portions of the implementation are semi-
automatic, in that they require some user input, due to
limitations in the built-in analysis tools; future work
will develop these capabilities more fully.

We have performed a preliminary evaluation of our
prototype aimed at testing the correctness and perfor-
mance of the transformation. The evaluation allows us
to not only verify the correctness of the implementa-
tion, but also the techniques that underly it. We wrote
a test program which is simple, yet tests many of the
features of the transformation process. The test code
exhibits the indirect computation pattern, which com-
plicates the transformation since we remove the redun-
dant copy loop. The test code as transformed by our
system compiles and executes, producing output iden-
tical to that of the original, suggesting the correctness
of our technique and implementation.

integer As(...,SZ)
do j = 1,NP-1
to = mod(mynum+3j,NP)

call mpi_isend(As(...

, (to=1)*(NP/SZ)),...)

, (from-1)*(NP/SZ)),...)

from = mod(NP+mynum-7j,NP)
call mpi_irecv(A, (...
enddo

Figure 4. Communication Code

5 Conclusions and Future Work

In this paper, we presented novel techniques to auto-
mate the transformation of explicitly parallel codes to
maximize communication-computation overlap. The
broader impact of this work is the performance im-
provement of parallel MPI codes on networked clus-
ters, enabling more scalable application of the parallel
codes to larger numbers of processors, benefiting the
large community of domain scientists using such tech-
nologies. Future work includes creating heuristics to
deal with some common idiosyncrasies of real-world
codes, strengthening the implementation by incorpo-
rating more sophisticated program analysis, targeting
other types of collective communication, and evalu-
ating the system’s performance on a variety of real-
world codes, which should inform future work on ex-
tending the system’s generality.

References

[1] R. Allen and K. Kennedy. Automatic loop inter-
change. SIGPLAN Not., 39(4):75-90, 2004.

W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoe-
flinger, D. Padua, P. Petersen, W. Pottenger, L. Rauch-
werger, P. Tu, and S. Weatherford. Polaris: The Next
Generation in Parallelizing Compilers. In Seventh
Workshop on Languages and Compilers for Parallel
Computing, 1994.

A. Danalis, K.-Y. Kim, L. Pollock, and
M. Swany. Transformations to Parallel Codes
for Communication-Computation Overlap. Super-
computing, 2005.

T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper.
UPC Specification v. 1.1. http://upc.gwu.
edu/documentation, 2003.

L. Fishgold. An Automated Approach to Improve
Communication-Computation Overlap in Clusters.
Senior Thesis. University of Delaware, 2005.

(2]

(3]

(6]

(7]

(8]

[9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

High Performance Fortran Forum. High Performance
Fortran language specification, version 1.0. CRPC-
TR92225, Rice University, Houston, TX, 1993.

S. Hiranandani, K. Kennedy, and C.-W. Tseng.
Compiler optimizations for Fortran D on MIMD
distributed-memory machines. In Supercomputing,
pages 86—100, 1991.

A. Karwande, X. Yuan, and D. K. Lowenthal. CC-
MPI: A Compiled Communication Capable MPI Pro-
totype for Ethernet Switched Clusters. In ACM SIG-
PLAN Symposium on Principles and Practice of Par-
allel Programming (PPoPP), 2003.

C. Kessler and W. Paul. Automatic parallelization by
pattern matching. In Proceeding of Second Int. Con-
ference of the Austrian Center for Parallel Computa-
tion, pages 166—181, 1993.

MPI Forum. MPI: A message-passing interface stan-
dard, v1.1. Technical report, University of Tennessee,
Knoxville, June 12, 1995.

R. W. Numrich and J. K. Reid. Co-Array Fortran for
parallel programming. ACM Fortran Forum 17, 2, 1-
31, 1998.

Y. Paek, J. Hoeflinger, and D. Padua. Efficient and
precise array access analysis. ACM Trans. Program.
Lang. Syst., 24(1):65-109, 2002.

W. Pugh. The omega test: a fast and practical integer
programming algorithm for dependence analysis. In
ACMI/IEEE Conference on Supercomputing, pages 4—
13. ACM Press, 1991.

G.-A. Silber and A. Darte. The Nestor library: A tool
for implementing Fortran source to source transfor-
mations. In High Performance Computing and Net-
working (HPCN’99), volume 1593 of Lecture Notes
in Computer Science, pages 653—662. Springer Ver-
lag, Apr. 1999.

M. J. Wolfe. High Performance Compilers for Paral-
lel Computing. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

X. Yuan, R. Melhem, and R. Gupta. Algorithms
for Supporting Compiled Communication. [EEE
Transactions on Parallel and Distributed Systems,

14(2):107-118, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

