Web Server Protection by Customized Instruction Set Encoding

Bernhard Fechner, Jorg Keller, and Andreas Wohlfeld

FernUniversitat in Hagen
FB Informatik — LG Parallelitat und VLSI
58084 Hagen, Germany
{bernhard.fechner joerg.keller,andreas.wohlfeld } @fernuni-hagen.de

Abstract

We present a novel technique to secure the execu-
tion of a processor against the execution of malicious
code (trojans, viruses). The main idea is to permute
parts of the opcode values so that it gets a different
semantic meaning. A virus which does not know the
permutation is not able to execute and will cause a fail-
ure such as segmentation violation, whereby the execu-
tion of malicious code is prevented. The permutation
is realized by a lookup table. We develop several vari-
ants that require only small changes to microprocessors.
We sketch how to bootstrap a system such that all in-
tended applications (including operating system) are re-
versely permuted, and can execute as intended. While
this will be cumbersome for typical personal comput-
ers, it will work for web servers, because the number
of applications and frequency of installation is lower.
Furthermore, web servers are particularly endangered:
they cannot be protected as good as personal comput-
ers, because by the very nature of their duty they are
more openly connected with the internet than any other
computer in an organization’s network.

1. Introduction

Today’s computer systems face a huge amount of
threats (malicious e-mail, viruses, worms and trojan
horses) causing huge costs. For a classification of com-
puter viruses, see [5]. Table 1 shows the estimated
costs caused by worms [3]. The huge costs result from
a rapid infection rate [9, 10].

Web servers are particularly in danger, as they are
on the forefront of any organization’s network. Typi-

1-4244-0054-6/06/$20.00 ©2006 IEEE

Program Est. cost [10% US$]
Melissa 1.10
ILOVEYOU 8.75
CodeRed 2.62
SirCam 1.15
Nimda 0.63

Table 1. Estimated Cost per Worm.

cally, they are only separated by one firewall from the
internet, being placed in the so-called DMZ (demilita-
rized zone). In 2001, the worm “Code-Red v2” probed
randomly chosen Internet hosts for a vulnerability in
the Microsoft Internet Information Service (IIS) web
server. Infected hosts tried to contaminate other hosts
reaching an infection rate of almost 360,000 hosts in
no more than 14 hours (2,000 hosts per minute be-
fore peaking [9]). The direct costs of recovering from
Code-Red and its derivations have been estimated to
US$ 2.6 billion [3]. To fight this harassment seems
to be an everlasting battle in which the developers of
malicious software are always one step ahead. Con-
temporary computer systems have at least a personal
firewall, a virus scanner or an intrusion detection sys-
tem installed. The tools have been developed since
the late eighties [2, 4]. However, a firewall is of no
use if a valid protocol (typically http via port 80) is
used and an application vulnerability is exploited. A
virus scanner often is useless as well, as it can only de-
tect a virus whose pattern is present in its data base,
which is updated at most once a day from a central
database, where the pattern can only be added one or
a few days after the occurrence of the virus (so-called
zero-day response problem). If the virus performs only

legitimate actions, such as reading the current user’s
address book, and sending emails, the intrusion detec-
tion system also cannot help.

The aim of this work is the development of a code
permutation which enables the defenders of secure
computing systems to prevent malicious code from ex-
ecuting and detect where that code is located. Our
main idea is to provide a web server with a unique
instruction set encoding, and appropriately compiled
applications, such that a virus that does not know the
particular encoding has no chance to execute on that
machine. Execution of a virus code will almost immedi-
ately violate some operating system protection means,
which stops the execution and creates a log file entry.
We are aware that this measure does not help against
a macro virus, but it is a first step. We are also aware
that application of our idea may be too cumbersome
for normal personal computers. Web servers are special
because the installed code base is much smaller than in
an ordinary desktop PC, and the rate of change much
slower.

We will reveal that the changes in a microprocessor
to accommodate a personalized instruction set encod-
ing are small. We will detail how to provide appropri-
ately encoded applications, and we will report on the
results of some preliminary experiments.

The idea to personalize instruction set encodings is
not completely new. In [1] a binary-to-binary transla-
tor is used at load time of an application to scramble
the opcodes, to prevent binary code injection attacks.
As this approach considers any executable on the local
disk as trustworthy, it cannot protect against viruses.
In [8] a technique to change the semantics of opcodes
according to the state of a finite state machine running
as part of the application is used. Yet, this can only
be used to protect against code re-engineering, and is
not directly applicable to prevent codes from executing.
In [12] and the many references it contains, measures
to protect a hardware from physical tampering are re-
vealed. We assume that the physical integrity of the
web server is guaranteed by organizational measures.

The remainder of this work is organized as follows.
Section 2 presents how personalized instruction set en-
coding can be efficiently implemented in microproces-
sors. In Section 3 we develop some schemes how such
a modified hardware could be used with a standard
operating system. We present some preliminary exper-
imental results in Section 4. Section 5 concludes the

paper.

2. Permuted instruction set encoding

An executable in contemporary computer systems
consists of a sequence of assembler instructions en-
coded as opcodes. The opcodes are typically standard-
ized in order to allow executables to run unchanged
on as many platforms as possible, the perhaps most
prominent example being the TA32. If on the other
hand a processor encodes the assembler instructions in
a unique way, then executables can only be executed
with the knowledge of this encoding. Executables com-
piled for the standard encoding will be misinterpreted
and will crash. While there are many ways to change
an instruction set, we would like to keep the format
of assembler instructions as they are and only modify
the opcode encoding. This also allows us to keep all
software tools down to assembler level unaltered.

Consider as an example a very simple microproces-
sor with only four types of instructions: Load (00),
Store (01), Compute (10), Jump (11). We now apply
a permutation 7 : {0,1}" — {0,1}" on the encodings,
n = 2 being the number of bits of an opcode, such
as m(z) = = + 1 mod 4. If we change the processor
hardware accordingly, we get an encoding Load (01),
Store (10), Compute (11), Jump (00). An executable
compiled for the original encoding will have to be sub-
jected to a binary-to-binary translator that performs
the inverse permutation 7' on the opcodes. Then the
modified executable will execute on the modified micro-
processor as the unmodified executable would execute
on the unmodified microprocessor. An unmodified exe-
cutable executed on the modified microprocessor would
form a weird code sequence and very soon violate some
operating system protection means. The permutation
forms a kind of secret key, and only properly encrypted
executables will be properly decrypted during execu-
tion.

The easiest way to incorporate the opcode permuta-
tion into a microprocessor is to provide a lookup table
of modified opcodes, indexed by the unmodified op-
codes. In this manner, only the decoder has to be mod-
ified. Moreover, this implementation will be applicable
to most microprocessors, with hardwired control, mi-
croprogramming, or a hybrid approach. Lookup tables
are widely used in hardware cryptography, see e.g. [6].
Unfortunately, an additional table lookup during de-
coding might either mean another pipeline stage, which
would require a major re-design of the processor, or
would slow down the cycle time. A simpler scheme
can be obtained by restricting the type of permuta-
tion. One possibility is to only permute the n bits of
the opcode. Thus, the permutation 7 is realized via a
second permutation p: {0,...,n—1} — {0,...,n—1}

by performing

T(On—15-++,00) = Op(n—1);- -5 0p(0) »

where 0,,_1, ..., 09 represents the opcode.

A bit permutation can be realized in hardware by
a permutation network such as a Benes-Network [7],
which is a circuit with depth 2 -log(n) to permute n
bits. For an 8-bit opcode, the depth would be only
6, which is a much lower overhead than a 256-byte
lookup table access. Yet, this will lead to the situation
that some opcodes remain unchanged, such as opcodes
consisting of only zeroes or only ones. An even sim-
pler scheme can be obtained by choosing a non-zero
bit string a = an_1,...,ap of the same length as the
opcode, and performing a bitwise exclusive or between
a and each opcode to obtain the permuted opcode:

W(Onfl,...,OO) =0p—1DPan—1,...,00Dag .

The overhead here reduces to the depth of an exor gate.
These simplified implementations still work for hard-
wired and microprogrammed microprocessors. Fur-
thermore they increase the chance to integrate the per-
muting into the existing decode cycle, without a sub-
stantial slowdown of the cycle time.

A comparison reveals the following: if opcodes con-
sist of n bits, then the lookup table variant provides
(2™)! different permutations, while the permutation-
network variant provides n! permutations, while the
exor variant provides 2" different permutations. For
n = 8, the number of permutations for the first variant
is about 22048 whereas for the latter two variants it
is only 40, 320 and 256, respectively. While the simple
schemes perform well for an ordinary virus, the number
of permutations is too small to protect against a virus
that is aware of such a measure. Such a virus could
try to spread in a large number of copies that use all
possible permuted encodings, so that in the end one
copy of the virus would succeed. To protect against
such viruses, the measure can be complemented by an-
other change, such as exchanging the positions of two
register arguments in the code, to increase the num-
ber of encodings to a level which makes it unfeasible
for a virus to spread in such a number of different en-
codings. Still, even a small number of possible opcode
encodings forces a permutation-aware virus to spread
in many different variants with small chances of suc-
cess, thus slowing down its rate of infection.

A quite different idea is to embed the personalization
deeper into the microprocessor. This makes it more ef-
ficient but requires more changes. We exemplify this
idea for microprogrammed processors: we permute the
entry points into the microcode ROM. While execut-
ing, the processor fetches instructions as usual from

Decode

Permutation

Microcode ~ Microprogram
ROM start
Instruction—~ Fetch

Lookup-Table
‘|/ Lookup.\
N B to
execution
[Lookup
S
Signature
Load =
" 1 check AL

Figure 1. Enhanced microcode execution.

the main memory. Instructions are being decoded into
micro-ops. Each microcode entry contains a pointer to
the start of the instruction specific microprogram. This
microprogram can consist of one or multiple micro-ops.
This pointer is looked up in a permutation table. Ac-
cording to the stored permutation, the new micropro-
gram start address will be computed. The permuted
start address will select the correct micro-op from the
microcode which will be then scheduled for execution.
To compute the size of the lookup table, we consider a
microcode ROM with entries of length e and m entries.
The pointer to a micro-op has therefore the length
logy m. Each entry in the permutation lookup table
contains two pointers: the original start address used
for the lookup and the start address according to the
permutation. This allows to switch back to unmodi-
fied execution, and additionally forms a kind of asso-
ciate memory, because not every start address will be
a valid index to the lookup table. Therefore, the size of
the lookup table will be 2-m -log, m. We may also in-
tegrate the lookup table in the microcode ROM, which
will save half of the space and one lookup, because the
table only needs to store the permuted start address,
and we can use the opcode as an index to both memo-
ries (microcode ROM and lookup table), and perform
both accesses in parallel. This still allows to switch be-
tween permuted and non-permuted opcode encoding,
and increases path length only by a multiplexer to se-
lect between both start addresses. Figure 1 details the
procedure for the general case. Note that loading the
permutation either requires knowledge of the original
start addresses, or requires an installation circuit that
reads out each start address ad; and stores it at entry
m(i) of the lookup table.

3. System issues

When deploying a microprocessor with a modified
opcode encoding, the question is how to start the sys-

tem and how to provide appropriate software. At the
start of the processor’s execution, an initial permuta-
tion configuration is activated. Usually this will be a
permutation realizing identity. This enables the ven-
dors to keep their power-up boot code unaltered. Ad-
ditionally, the configuration can be loaded from an ex-
ternal read-only memory (flash ROM) into the permu-
tation lookup table. The permutation table is a write-
only memory. It can only be read out from the pro-
cessor but not from the outside world. To secure the
permutation against modification, a signature check
can be done when loading the permutation. When in-
stalling an operating system (OS), a part of the OS
runs under the identity permutation. At a certain point
of the installation, the user enters a key to activate the
final permutation. The activation can only be done in
supervisor mode of the processor. After this point a
new permutation is written to the processor. When
trying to write a new permutation in user-mode the
processor will signal an error. The code which is exe-
cuted from this point on runs on the new permutation.

This would mean that all software, including the op-
erating system, would have to be modified by a binary-
to-binary translator (see [1] for an example) according
to the inverse permutation. In order to prevent oper-
ating system changes, one could think about running
the processor with the identity permutation in super-
visor mode and with the permutation in user mode.
Upon any syscall, the permuted encoding is switched
off, and upon a return from the syscall, it is switched
on again. The system could provide a database of in-
stalled software. During installation of a software, this
software would be subjected to the inverse permuta-
tion, and added to the data base. In order to prevent a
virus doing that, the database and translator could be
password protected, so that any such action would re-
quire the system administrator to enter the password.
Clearly, there are more things to be handled. Applica-
tions updates, while less frequent than on an ordinary
desktop PC, will occur from time to time. Then, the af-
fected application will have to be translated according
to the permutation first, so that it returns into unmod-
ified state. Then the update can take place, and finally,
the updated application is subjected to the inverse per-
mutation.

Another thing to consider are the parts of the oper-
ating system that run in user mode. They would have
to be modified as well.

4. Experiments

So far, we performed only some very preliminary ex-
periments. Instead of testing unmodified executables

on a modified microprocessor, we tested modified ex-
ecutables on an unmodified microprocessor. To this
end, we compiled a program written in C on a Linux
system with the GNU C compiler gcc, with the -S op-
tion, to stop at assembler instruction level. Then, with
the help of a script, we exchanged pairs of instructions,
such as subl and movl, and then ran the .s file through
assembler and linker. Next, we started the resulting
executable. The original C program did nothing than
opening a file, writing 1000 randomly chosen bytes, and
close the file. In all instances, the execution ended with
a segmentation violation. In one instance, a new file
was created with 0 bytes. This may be attributed to
the fact that we only changed a small number of op-
codes, so that the executable may run for some time
before violating the operating system protection.

To validate the scheme from Figure 1, we modeled
this circuit in VHDL and implemented it into a Xil-
inx Virtex-E XCV1000-8 (1.8 V) FPGA [11]. To do
this, we selected a global clock timing constraint of
400 MHz. Then we synthesized the circuit using high
place and route effort. The constraint matched so that
the circuit will effectively run at 400 MHz (internal
clock). For the lookup table, we used 6 bit entries for
the microprogram start and translation addresses, re-
spectively. With 64 entries, the total size of the lookup
table was 64 -2-6 = 768 bit. Besides address, data and
write-enable, we used the supervisor flag as input. If
the supervisor flag is set, no translation will be applied.
If it is not set, we suppose that the processor runs in
user mode and the applied address will be searched in
the lookup table until a match occurs. The correspond-
ing permuted address will be used as the start address
for the microprogram. If no matching address is found
in the lookup table, we signal an error. Table 2 shows
the device utilization summary after place and route.

15 out of 404 | 3%
4 out of 12288 | 1%

Number of External I0Bs
Number of SLICEs

Table 2. FPGA device utilization after place
and route.

To compute the dynamic power consumption, we as-
sumed a change in the address lines with frequencies
of 400, 200, 100, 50, 25, and 13 MHz (least significant
to most significant bit). The power consumption was
computed to be 34.7 mA, 62.45 mW. The results show
that there is a great potential for the proposed circuit
from Figure 1, since we did no optimizations concern-
ing the address matching, and nevertheless reached a
very high clock frequency even for an FPGA imple-
mentation. An ASIC implementation will yield much

higher clock frequencies and much lower power con-
sumption. We conclude that the performance loss due
to the lookup can be minimized. Since the scheme is
very simple, it can be integrated into existing micro-
processors without tremendous efforts.

5. Conclusions

We presented a novel microarchitecture-based tech-
nique to detect and prevent malicious code execution
for contemporary microprocessors. We also sketched
schemes how to provide appropriately compiled appli-
cations, and how to deal with operating system issues.
Further research will be more experimentally, by trying
to change an FPGA-based microprocessor accordingly
and install a simple web server system, which we place
onto the web.

References

[1] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S.
Palmer, D. Stefanovi¢, and D. D. Zovi. Random-
ized instruction set emulation to disrupt binary code
injection attacks. In Proc. 10th ACM Conference
on Computer and Communications Security (CCS),
pages 281-289, Oct. 2003.

[2] F. Cohen. Computer viruses. Computers € Security,
6:22-35, 1987.

[3] Computer Economics.
malicious code attacks.
http://www.computereconomics.com/cei/press/
pr92101.html.

[4] D. E. Denning. An intrusion detection model. IEEE
Trans. On Software Engineering, SE-13(2):222-232,
Feb. 1987.

[5] D. Ferbrache.
Springer, 1992.

[6] A. M. Fiskiran and R. B. Lee. On-chip lookup tables
for fast symmetric-key encryption. In Proc. IEEE 16th
Int. Conf. Application-Specific Systems, Architectures,
and Processors (ASAP), pages 356-363, July 2005.

[7] F. T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes. Morgan
Kaufmann, 1991.

[8] A. Monden, A. Monsifrot, and C. Thomborson. A
framework for obfuscated interpretation. In Proc. 2nd
Workshop on Australasian Information Security, Data
Mining and Web Intelligence, and Software Interna-
tionalisation (CRPIT ’04), pages 7-16, 2004.

[9] D. Moore, C. Shannon, and J. Brown. Code-Red: a
case study on the spread and victims of an internet
worm. In Proc. 2nd Internet Measurement Workshop,
pages 273-284, Nov. 2002.

[10] S. Staniford, D. Moore, V. Paxson, and N. Weaver.
The top speed of flash worms. In Proc. 2004 ACM
Workshop on Rapid Malcode (WORM ’04), pages 33—
42, Oct. 2004.

2001 economic impact of

A Pathology of Computer Viruses.

[11] Xilinx. Virtex-E 1.8 V field programmable gate arrays,
2002. http://direct.xilinx.com/bvdocs/publications/
ds022.pdf.

[12] X. Zhuang, T. Zhang, and S. Pande. HIDE: an in-
frastructure for efficiently protecting information leak-
age on the address bus. ACM SIGPLAN Notices,
39(11):72-84, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

