
Virtual Playgrounds: Managing Virtual Resources in the Grid

K. Keahey1,2, J. Chase3, I. Foster1,2

1University of Chicago
2Argonne National Laboratory

3Duke University

keahey@mcs.anl.gov

chase@cs.duke.edu
foster@mcs.anl.gov

Abstract

Large Grid deployments increasingly require
abstractions and methods decoupling the work of
resource providers and resource consumers to
implement scalable management methods. We
proposed the abstraction of a Virtual Workspace (VW)
describing a virtual execution environment that can be
made dynamically available to authorized Grid clients
by using well-defined protocols. Virtual workspaces
provide resources in controllable ways that are
independent of how a resource is consumed. A Virtual
Playground may combine many such workspaces, as
well as other aspects of virtual environments, such as
networking and storage, to form virtual Grids. In this
paper, we report on the goals and progress of the
Virtual Playground Project and put in context the
research to date.

1. Introduction

Large and successful Grid deployments such as
Grid3 [1], Open Science Grid (OSG) [2], and TeraGrid
[3], increasingly structure their operations as
interactions between two classes of participant in a
distributed system with distinct roles and goals:
resource providers and resource consumers [4, 5].
Resource providers own and operate physical
resources at some site, and may contribute them to
satisfy consumer demand. Providers require incentives
to participate, low participation costs, protection from
activities performed by the resource consumer, and the
ability to monitor and control the resources. Resource
consumers want on-demand access to computational
resources at modest cost, and the ability to configure
them to meet the needs of the hosted environment. A
resource consumer may be an individual user or some
entity, such as a Virtual Organization (VO) [6] that

operates or manages a distributed service on behalf of a
user community.

Thus requirements of both providers and consumers
converge on the following aspects of interaction:

1) Flexibility in environment configuration: it is
essential to the consumers that they can adapt
a leased environment to their needs while the
provider needs to be able to provide this
ability at a low cost and such that it will scale
in the number of consumers.

2) Environment isolation: the provider needs to
be able to delegate resource usage to
consumers in such a way that their activities
cannot impact the provider -- and therefore
don’t require fine-grained, consumer
infrastructure dependent, and thus costly,
monitoring.

3) Strict enforcement: a provider needs to be able
to grant, constrain, enforce, and account for
consumer resource usage in a way that is
independent of how the resource is consumed
thus avoiding adapting the system of every
individual consumer. Such strict enforcement
capabilities also underpin the feasibility of
incentives.

4) Dynamic creation and management: it is
essential that the creation of such
environments, or environment leases be
negotiated between the provider and consumer
dynamically in order to support on-demand
relationships.

We argue that the key to providing such synergistic
interactions between resource consumers and resource
providers is the ability to create virtual execution
environments: virtual computers whose properties are
negotiated between consumer and provider. The term
“virtual execution environment” can cover a range of
architectural concepts and structures, from a single

1-4244-0054-6/06/$20.00 ©2006 IEEE

environment to a dynamic and distributed collection of
virtual resources in the wide-area. Implementations of
the concept can range from automating methods of
hardware configuration to fulfill the conditions
described above, to using diverse implementations of
the virtual machines concept as well as virtual
networking and storage. Further, mapping such virtual
environments onto multi-dimensional resources
federated across many administrative domains involves
complex strategies in monitoring and resource
brokering.

A key objective of the Virtual Playgrounds project
is to define the abstractions of such virtual execution
environments and develop methods for their
deployment and management that meet the needs of
producers and consumers in the Grid setting. In this
paper, we describe virtual workspaces (representing
environments within one administrative domain) and
virtual playgrounds (collections of workspaces
potentially spanning multiple administrative domains).
Our objective is to develop methods to (a)
dynamically provide isolated execution environments
to Grid clients, (b) enable a fluid assignment of
resources to such environments, and (c) enable
environments to adapt to changing resource
assignments transparently to hosted applications. We
report on progress in modeling and development of
virtual workspaces and their management capabilities,
and discuss ongoing and future efforts in the areas of
resource management, networking and security.

In our ongoing research we actively interact with
scientists from OSG and TeraGrid to both understand
their requirements as well as obtain feedback on the
developed methods. With support from deployment-
oriented projects, we have already been able to see
prototype deployment of the ideas developed on this
project and were given a positive evaluation of the
infrastructure proposed to date.

2. The Virtual Workspace Abstraction

A virtual workspace is an abstraction of an
execution environment that can be made dynamically
available to authorized clients by using well-defined
protocols. The abstraction captures the resource quota
assigned to the execution environment (e.g., CPU,
network share, or memory) as well as its software
configuration (e.g., operating system installation,
provided services). Workspaces may be implemented
in many different ways; examples include a physical
machine configured as an ATLAS Grid 3 [1] node
using the Pacman configuration software [7], a
physical cluster configured with the Xen hypervisor

[8], or a set of virtual machines representing a service
node for an OSG resource.

2.1. Workspaces on Physical Resources

One way of providing on-demand access to
customized workspaces is the to allow for automated
boot of physical nodes based on a configuration
description and boot images (as implemented for
example in bcfg [9]), thus allowing a site to manage its
nodes in a more flexible and controlled manner. The
Cluster on Demand (COD) project [10] was one of the
first examples of this approach: it allowed a remote
client, identified by a token, to provision and deploy an
isolated virtual cluster based on database-driven
network booting.

Many Grid deployments today prefer to provide a
base configuration but allow clients to refine it using
configuration management software (such as Pacman
[7]) to deploy pre-defined software configurations
automatically. One can thus treat the availability of
base images as a precondition and schedule the
deployment of environments building on that base.

However, deploying workspaces as physical
resources offers little flexibility in determining the
workspace’s configuration (it is still largely provider-
dependent and likely to remain so for security reasons)
or shaping the resources that can be allocated to it at
the required granularity (the physical machine is
essentially the unit of granularity in this case). Further,
the more configuration can be done at workspace
creation time the greater the flexibility but also the
longer the deployment time. In the case of real-world
complex configuration this difference can be
significant and add up to a few hours [11].

2.2. Workspaces on Virtual Resources

Virtual machines (VMs) [12] provide a promising
implementation option for workspaces. A VM provides
a virtualization of a physical host machine. Software
running on the host, typically called a virtual machine
monitor (VMM) or hypervisor, is responsible for
supporting this abstraction by intercepting and
emulating instructions issued by the guest machines. A
hypervisor also provides an interface allowing a client
to start, pause, serialize, and shut down multiple
guests. In addition, many modern hypervisors offer
fine-grained enforcement of resource usage. A VM
representation (VM image) is composed of a full image
of a VM RAM, disk images, and configuration files.
Thus, a VMs can be paused, its state serialized, and
later resumed at a different time and in a different
location, decoupling image preparation from its

deployment and enabling migration. Recent
exploration of paravirtualization techniques [8] has led
to substantial performance improvements in
virtualization technologies, making virtual machines an
attractive option for high-performance applications.

Virtual machines allow a client to create a custom
execution environment configured with a required
operating system, software stack, and access policies
and then deploy it on any resource running a
hypervisor. Since VMs provide strong isolation, the
risk to provider is small. The deployment flexibility
stems from the VM concept, which provides an
abstract representation of state that can be deployed
anywhere a hypervisor is present. In modern
hypervisors such deployment is quick: we show that
deploying a VM can take less than a second [13],
which is comparable to the overhead induced by the
Grid tools. In addition to this, hypervisor’s ability to
provide fine-grain enforcement makes virtual machines
an ideal solution for short-term deployment of
uniquely configured workspaces requiring controlled
resource usage. We note however that VM deployment
relies strongly on the availability of a hypervisor of a
compatible type; in effect on an underlying deployment
of another workspace.

2.3. Nesting Workspaces

As the last section outlines, a workspace requires a
specific deployment capability (e.g., in the case of a
VM: a compatible hypervisor). The deployment of a
specific workspace implementation may therefore
depend on the deployment of another workspace
providing such deployment capability. This enables
providers and consumers to find a mutually satisfactory
solution to hosting workspaces: provider provides base
images configured with hypervisors; then consumers
can use deployed hypervisor workspaces to deploy a
nesting workspace customized to support the
consumer’s application. Base images, would still be
owned and maintained by a site to reflect site policies.
Virtual machines, on the other hand, whose
deployment and shutdown can easily be controlled by a
site without impairing the availability of its resources,
can be configured by communities wishing to support
specific applications. A site can still impose
restrictions on their configuration, for example by
deploying only images attested and versioned by
trusted sources (as we explain in Section 4.1), but it is
no longer responsible for providing and maintaining
complex community-specific configurations.

This strategy can make a significant difference in
the variety of environments that a site can support:
while it is difficult for a site to maintain a community-
specific workspace for every community wishing to

work with that site, it is much easier to maintain
several generic hypervisor images. Thus, we argue that
it is advantageous for sites to support deployment
capability platforms for the deployment of VM
workspaces rather than end-user capabilities. This also
enables a site to react to supply and demand in a more
dynamic fashion: while today a site typically simply
advertises the supported deployment capability, such
advertisements are static and do not allow much
flexibility in the support of deployment capabilities.

In general, we can envision supporting many layers
of nested workspaces. Such workspaces can be
deployed as a result of n-tiered scheduling where the
deployment of one layer has a strong dependency on
the other. We are working on developing general
scheduling algorithms enabling this capability.

3. Virtual Workspace Management

In this section, we describe two different
approaches to implementing virtual workspaces: the
Workspace Project at the University of Chicago [14]
and the Cluster on Demand (COD) Project at Duke
University [10]. Both projects provide management of
virtual workspaces but emphasize its different aspects
and thus develop different interfaces and tools. The
COD Project initially focused on physical node
imaging; this was recently generalized to virtual
machines. The Workspace Project implements
management of individual and clustered workspaces
using the WSRF protocols while the COD project uses
a protocol based directly on SOAP [15]. One of the
goals of the Virtual Playgrounds project is to explore
the affinities of the interfaces and methods developed
by the two projects and establish a common base.

3.1. Workspace Service

We describe virtual workspaces and the supporting
architecture in [16]; here, we summarize the key
concepts of this technology. At its core is the
workspace service, whose protocols are based on the
Web Services Resource Framework (WSRF) [17],
which provides standard methods for the creation and
management of state descriptors, called “WS
resources.” A Workspace Factory Service exposes a
“create” operation that allows Grid clients to
dynamically request deployment of a customized and
isolated Grid execution environment. The create
operation also results in the creation of a WS resource
representing the newly deployed environment.
Associated with each WS Resource are a limited
lifetime and other resource properties that can be
inspected, queried, and managed in standard ways, and

that can be used in conjunction with WS-Notifications
[18] to provide updates on change. A WS resource
(and thus also the workspace it describes) can be
destroyed either explicitly, or by allowing its lifetime
to expire.

Workspaces are deployed based on workspace
meta-data, provided by the client, which contains all
the information necessary for enacting workspace
deployment (i.e., in the VM case, VM image and
configuration information). Along with the workspace
meta-data, the client sends a request for a resource
allocation that describes resources that should be
bound to the workspace at deployment time. Resource
allocations describe values such as percentage of CPU
assigned, memory and disk size or available
bandwidth; their definition and implementation is
discussed in detail in [5]. This requested resource
allocation is typically expressed in terms of constraints
and can be concretized by the service based on
available resources. Once a deployment request is
accepted, the client can verify the assigned resource
allocation (as well as other as well as deployment-time
details such as the assigned IP address) by inspection
of the WS resource corresponding to the deployed
workspace. Further, the client can renegotiate the
workspace resource allocation by requesting changes
to the workspace resource property.

All workspace service operations are subject to
authorization. Since our implementation of the WSRF
protocols described above is based on the Globus
Toolkit 4 [19] (GT4, we were able to leverage Globus
security mechanisms including attribute-based
credentials (VOMS [20] as well as Shibboleth-based
[21]) and authorization callouts. However, in general
workspace deployment requires more sophisticated
security methods including vetting and verification of
images as well as providing credentials to deployed
workspaces. We discuss them in Section 4.1.

The current Workspace Service is implemented as a
gateway to a set of resources located within a Trusted
Computing Base (TCB) and serving as deployment
pool for workspaces. At present we assume that this
resource pool has already been configured with the
required deployment capability (in our current
implementation: the Xen hypervisor) and we use
hypervisor-dependent methods on workspace service
back-end to implement workspace deployment. We are
currently working on providing effective scheduling,
monitoring and management tools to map workspaces
onto this set of resources. In general, as discussed in
Section 2, the deployment of a workspace may take the
form of deploying a nested workspace, i.e. first
deploying a hypervisor-based workspace and then
stacking a VM-based workspace on top of it.

The protocol outlined above fulfills many of our
basic design requirements: it provides the control
necessary to deploy and shutdown workspaces, request
and manage the resource allocation assigned to them,
and support desirable behaviors, such as migration
(which can be accomplished by pausing and serializing
a workspace and restarting it in a different location).
Our main current thrust is work on developing
techniques to schedule workspaces onto the resource
backend effectively, as well as facilitating flexible
resource configuration. Using different
implementations of workspaces will allow us to
implement “tiered scheduling” referred to above.

3.2. Virtual Workspace Clusters

Atomic workspaces can be combined to form
virtual clusters [22]. To describe them we extended
workspace description to include aggregate
workspaces: sets of sets composed of atomic
workspaces with the same configuration. A
combination of such sets can be used to define
complex heterogeneous clusters – for example, a
typical OSG cluster is composed of two workspace
sets: a set containing one or more of service nodes
(with service node configuration) and a set of worker
nodes (all with the same worker node configuration).
To match the resource needs of aggregate workspace,
we have defined a corresponding type for resource
allocation allowing the user to specify resource
allocation for groups of workspaces. An aggregate
resource allocation is a set of homogeneous sets of
atomic resource allocations (CPU, memory, etc.). For
example, an aggregate resource allocation for an OSG
cluster might be a set of identical resource allocations
(if the requirements for the service node and all the
worker nodes are the same), reflect a different resource
allocation for the service node and identical ones for
the worker nodes, or yet another configuration. The
structure of the aggregate workspace type and the
aggregate resource allocation need not be the same –
differently configured workspaces may require the
same type of resource allocation, and vice versa. For
the purpose of matching workspaces to resource
allocations an ordering has been imposed on both sets.

Virtual Cluster Workspace creation uses the same
mechanisms as atomic workspace creation described in
the previous section. A workspace is deployed through
submission of workspace back-end scripts to local
schedulers (our current implementation works with
SLURM [23] and PBS [24]). The first step of
workspace deployment involves propagating the
images to target deployment: workspace scripts
executing on each node download the images from a
specified location. To deploy a workspace, the back-

end scripts work with the Xen hypervisor and complete
the configuration of the workspace. Configuration
information that can’t be processed by Xen (such as
networking) is set up by calling an OS startup script
preinstalled in the VM images. After a workspace is
deployed, it can be managed through invoking start and
stop operations with different parameters to
pause/unpause or shut down a workspace. These
operations are simply broadcast to all participating
nodes.

In [22] we described the results of our initial
experiments with virtual clusters. Our experiments
with virtual cluster management highlight the
importance of treating staging as an important
operation that, depending on the granularity of
considered deployments, should preferably be
independently scheduled. Our experiments with OSG
applications are promising: we find that the
performance impact of executing in VMs is negligible
even for the data-parallel applications and thus virtual
clusters are an acceptable platform for this community.
Further, we plan to use virtual clusters to provide
scientific gateways for TeraGrid applications.

3.3. Cluster on Demand

Cluster-on-Demand is a cluster management service
for mixed-use clusters [10]. A COD server partitions
cluster resources into isolated virtual clusters, each
comprising some set of computing nodes with attached
storage resources. COD provides basic services for
booting and imaging, naming and addressing, and
binding storage volumes and user accounts on a per-
virtual cluster basis. It also provides external SOAP
interfaces to deploy and control virtual workspaces on
virtual clusters.

COD was initially designed to control physical
machines with database-driven network booting
(PXE/DHCP), in a manner similar to Emulab, Oceano,
Rocks, or bcfg. The physical booting machinery is
now familiar: in addition to controlling the IP address
bindings assigned by PXE/DHCP, a COD server for
the cluster site (called the site authority) controls boot
images and options by generating configuration files
served via TFTP to standard bootloaders (e.g., grub).

As part of the Virtual Playgrounds project, we
extended COD to manage virtual machines using the
Xen hypervisor [8], as well as physical machines. In
addition, we have added facilities to manage resources
across multiple cluster sites, to allow composition of
virtual workspaces into distributed virtual playgrounds.
A COD site administrator may delegate control over
specified portions of the cluster resources for a
specified period of time to an external management
authority (a broker). The broker has power to allocate

resources across multiple sites in a coordinated way,
and is an essential element for extending virtual
workspaces to virtual playgrounds, as discussed in the
next section. We are currently exploring policy
interfaces for brokers, and common resource
management APIs that allow resource consumers to
negotiate with brokers to obtain resource to adapt to
dynamic resource demands [25].

Resource consumers invoke SOAP [15] interfaces
on each COD authority to configure the workspaces at
each site, in the style previously described. The COD
site authority accepts meta-data attributes passed with
the create request for the virtual workspaces, and
interprets them to drive configuration. An important
goal of the Virtual Playgrounds project is to construct a
common configuration formalism that is sufficiently
rich to express a full range of resource configuration
requirements, and amenable to static checking for
internal consistency and conformance to site policies
and security policies.

To enable flexible control over configuration, we
are experimenting with a scriptable back-end virtual
workspace manager in COD. As resources are added
or removed from a virtual workspace, a resource-
specific setup or teardown handler is invoked within
the authority server. To represent the wide range of
configuration actions that may be needed in production
clusters, the handlers are scripted using Ant, an open-
source OS-independent XML scripting package. Ant
scripts invoke a library of packaged tasks for remote
command execution and network management, and to
build, configure, deploy, and launch software packages
on various operating systems and Web application
servers. Ant is in wide use, and new plug-in tasks
continue to become available. The scripting
architecture may also be used by the resource
consumer to specify actions that take place when a new
resource (e.g., a virtual machine) joins or leaves a
workspace.

Like the virtual workspace servers, the Ant tasks
and the Ant interpreter are written in Java, so the
setup/teardown drivers invoke the Ant interpreter
directly. Java exception handling is a good basis for
error detection, reporting, attribution, and logging of
configuration actions scripted with Ant. Our
continuing work is investigating methods to select
appropriate response, notification, and repair actions
for failures during configuration, or in operating virtual
workspaces.

 The scripted post-configuration architecture will
allow COD to interoperate with other widely used
cluster management tools. For example, as an initial
step, we have instantiated automatically PBS and SGE
batch schedulers and an operating Globus grid—with a
GRAM/PBS head node with GridFTP staging space

exported to the PBS worker nodes via NFS—in a Xen
virtual cluster.

We emphasize that COD is intended to facilitate the
use of such middleware where desired, and not to
replace it. COD enables flexible, safe affiliation with
external grids by encapsulating grid services in virtual
clusters whose sizes and access to local resources are
constrained by site policies, to allow a suitable degree
of isolation and control over how local resources are
used.

The combination of support for both physical and
virtual machines offers useful flexibility: it is possible
to assign blocks of physical machines dynamically to
boot Xen hypervisors, and then add them to a resource
pool for dynamic instantiation of virtual machines.
Another area of continuing work is to extend the
external interfaces to allow broker policies greater
control the resources assigned to each virtual machine.

A COD site authority drives cluster reconfiguration
in part by manipulating data stored in a back-end
directory server with the Lightweight Directory Access
Protocol (LDAP) [26]. The COD LDAP schema
extends the RFC 2307 standard for an LDAP-based
Network Information Service. Standard open-source
services exist to administer networks from an LDAP
directory server. The DNS server for the site is an
LDAP-enabled version of the standard BIND9, and for
physical booting we use an LDAP-enabled DHCP
server from the Internet Systems Consortium (ISC). In
addition, guest nodes in a virtual workspace have read
access to an LDAP subtree describing the containing
virtual cluster. Guest nodes configured to run Linux
use an LDAP-enabled version of AutoFS to mount
NFS file systems, and a PAM/NSS module that
retrieves user logins from LDAP. This facilitates
control over user account sets and storage
configurations at the granularity of virtual workspaces
or clusters, or for different sets of nodes within a
virtual cluster.

COD should be comfortable for cluster site
operators to adopt, especially if they already use RFC
2307/LDAP for administration. The directory server is
authoritative: if the COD site authority fails, the
disposition of the cluster is unaffected until it recovers.
Operators may override the COD server with tools that
access the LDAP configuration database directly.

4. From Workspace to Playground

A Virtual Playground (VP) may be obtained by
composing multiple workspaces along with other
virtual resources, such as networks or storage, relating
to the VP as a whole. In this sense, Virtual
Playgrounds are a generalization of the workspace

concept but are not necessarily confined to one TCB
and thus must implement the complex trust
relationships as well as consider the performance
implications of executing in a wide-area network.
Furthermore, unlike workspaces, which focus on
deployment, VPs take a holistic view of the system
including the “hidden costs” of virtualization such as
image distribution and replication.

In this Section, we present a brief outline of
research directions arising in this context.

4.1. Security

The problem of division of labor between providers
and consumers that workspaces are expected to solve
determines the trust relationships they must enable: a
workspace must not maliciously misuse the hosting
resource and the resource must not jeopardize data or
computations taking place inside the workspace. From
the provider’s point of view it is thus important that
their resource be used consistently with site policies.
This can be obtained by vetting a workspace (either by
the resource provider himself or a party it trusts) and
verifying the image on deployment. From the
consumer’s point of view, it is necessary that its trust
relationship with a deployed workspace be rooted both
in the workspace itself and the provider who deployed
it.

In order to satisfy both consumers and providers
constraints the Workspace Project developed an image
management model and a workspace certificate
authority that, in conjunction, cover those constraints
[16]. We focus our efforts on virtual machines. Thus
we developed a model whereby each virtual machine is
represented as a set of partitions describing different
aspects of its configuration that can be combined to
define its image. These partitions may include a variety
of components such as a system module, a community-
specific configuration partition, or an application or
data partitions. These partitions can be attested by
different parties depending on their provenance,
annotated with versioning information, and associated
with different confidentiality levels (for example, a
system partition may need to be only validated while a
data partition containing sensitive data may require
encryption).

We modified workspace meta-data to include
information sufficient to reconstruct the image from
such partitions and equipped the workspace service
with mechanisms allowing for partition validation and
decryption. These operations can be costly, but may
not be significant in practice since it is reasonable to
assume that specific, often used, partitions will be pre-
fetched into the TCB of a site.

 In order to resolve the second issue – providing a
basis of trust establishment between a deployed VM
and its clients – we equipped the workspace service
with the ability to generate proxy certificates based on
its own host certificate. Each workspace has been
assigned a name that is a part of its (attested) meta-
data. After validating workspace information the
workspace service generates a proxy certificate
attesting to its name and deployment site. The
advantage of this method is that it results in
information rich certificates and allows for fine-grain
trust relationships. An alternative is to pre-generate a
host certificate for the workspace, place it on an
encrypted partition, and create policies on where the
workspaces may or may not be deployed. We are in the
process of investigating the trade-offs between the two
methods.

4.2. Networking

Shared campus clusters and grids often force users
to adapt the way they work to use computing resources
in another administrative domain. A key issue is how
leased resources are integrated into the network IP
address space. Domains often manage their own LAN
segments and IP subnet space; these are frequently
firewalled at the departmental level, and private IP
address spaces are often used to reduce consumption of
scarce public IP space.

Naming issues often interfere with resource access
and sharing. If nodes in the workspace are assigned IP
addresses from the resource provider's space they may
be unable to access internal resources such as network
storage in the consumer's home domain, since these are
often exported only to the internal IP space. Access to
licensed software is sometimes controlled by lower-
level MAC addresses. Regardless of the access control
policy, use of private IP name spaces in either the
provider domain or consumer domain, or both, makes
communication impossible without NAT bridging.

We are working to address these issues with
reconfigurable virtual networks based on a hybrid of
dynamically configured VLANs and SSL tunneling.
The current COD prototype addresses these problems
in a very limited way: it assigns private IP subnets to
slices, which share a common LAN segment, with a
limited number of public IP addresses available (e.g.,
for ``head nodes'') in a common externally visible
subnet. One goal of our ongoing work is to integrate
remote virtual workspaces into the home addressing
domain of the consumer on a temporary and dynamic
basis, to allow for data and resource sharing within the
domain, without compromising isolation from external
attack or data snooping.

4.3. Resource Management

Resource management, understood as combining
resource from both different domains and playground
aspects (computational resources, storage, networking,
etc.) is one of the main thrusts of the project. Our
ongoing thrusts are in fine-grained resource
management and scheduling [5], multi-tiered
provisioning and scheduling (see Section 3),
investigation of methods resource assignment and
scheduling developed in the context of incentive-based
systems such as Tycoon [27, 28], and co-scheduling
multiple aspects (e.g., combining network reservations
with resource reservations).

5. Impact

We are actively working with several communities
and projects to see our ideas tried out in practice and to
bring current requirements and feedback to bear on the
direction of our research. We were fortunate to
establish collaborations with the TeraGrid and OSG
projects; many of our collaborators have deployed or
are in the process of deploying the infrastructure
developed as a result of our research.

The most progress so far has been made by OSG.
Specifically, the Workspace Service has been deployed
by the Edge Services Framework (ESF) developed by
the OSG in order to decouple the process of
configuring and managing service nodes for Virtual
Organization from providing resources. Current ESF
deployment sites include ANL, FNAL, University of
Chicago, UCSD and SDSC. While the deployment is
still in preliminary stages, the experiences to date are
encouraging and the community response has been
very positive.

7. Summary

We have described the abstraction of a virtual
workspace, a customizable execution environment for
Grid environments that can be deployed dynamically
and consume resources in controllable ways. The
Virtual Playgrouds project develops methods to deploy
and manage such workspaces and aims to establish a
reliable framework for their management in the Grid.
This paper surveys our research efforts to that end.

8. References

1. Foster, I. and others. The Grid2003
Production Grid: Principles and Practice. in
IEEE International Symposium on High

Performance Distributed Computing. 2004:
IEEE Computer Science Press.

2. Open Science Grid (OSG). 2004:
www.opensciencegrid.org.

3. The TeraGrid Project.
4. Foster, I., K. Keahey, C. Kesselman, E. Laure,

M. Livny, S. Martin, M. Rynge, and G. Singh,
Embedding Community-Specific Resource
Managers in General-Purpose Grid
Infrastructure. White Paper, 2005.

5. Keahey, K., I. Foster, R.D. Freeman, A. Rana,
B. Sotomayor, and F. Wuerthwein, Division
of Labor: Tools for Growth and Scalability of
the Grids. White Paper, 2006.

6. Foster, I., C. Kesselman, and S. Tuecke, The
Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal
of Supercomputer Applications, 2001. 15(3):
p. 200-222.

7. Youssef, S., Pacman: A Package Manager.
2004:
http://physics.bu.edu/~youssef/pacman/.

8. Barham, P., B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebar, I. Pratt, and A.
Warfield. Xen and the Art of Virtualization. in
ACM Symposium on Operating Systems
Principles (SOSP).

9. Desai, N., A. Lusk, R. Bradshaw, and R.
Evrard. BCFG: A Configuration Management
Tool for Heterogeneous Environments. in
IEEE International Conference on Cluster
Computing (CLUSTER'03). 2003.

10. Chase, J., L. Grit, D. Irwin, J. Moore, and S.
Sprenkle, Dynamic Virtual Clusters in a Grid
Site Manager. accepted to the 12th
International Symposium on High
Performance Distributed Computing (HPDC-
12), 2003.

11. Youssef, S., Personal communication. 2004.
12. Goldberg, R., Survey of Virtual Machine

Research. IEEE Computer, 1974. 7(6): p. 34-
45.

13. Keahey, K., I. Foster, T. Freeman, X. Zhang,
and D. Galron, Virtual Workspaces in the
Grid. ANL/MCS-P1231-0205, 2005.

14. Virtual Workspaces:
http://workspace.globus.org.

15. W3C, SOAP. 2002:
http://www.w3.org/TR/SOAP.

16. Lu, W., T. Freeman, K. Keahey, and F.
Siebenlist, Making your workspace secure:
establishing trust with VMs in the Grid. SC05
Poster Presentation, 2005.

17. Czajkowski, K., D. Ferguson, I. Foster, J.
Frey, S. Graham, I. Sedukhin, D. Snelling, S.

Tuecke, and W. Vambenepe, The WS-
Resource Framework. 2004:
www.globus.org/wsrf.

18. Foster, I., J. Frey, S. Graham, S. Tuecke, K.
Czajkowski, D. Ferguson, F. Leymann, M.
Nally, T. Storey, and S. Weerawaranna,
Modeling Stateful Resources with Web
Services. 2004, Globus Alliance.

19. Foster, I., Globus Toolkit version 4: Software
for Service-Oriented Systems. IFIP
International Conference on Network and
Parallel Computing, 2005.

20. The Virtual Organization Management
System:
http://infnforge.cnaf.infn.it/projects/voms.

21. Welch, V., T. Barton, K. Keahey, and F.
Siebenlist. Attributes, Anonymity, and Access:
Shibboleth and Globus Integration to
Facilitate Grid Collaboration. in 4th Annual
PKI Research and Development Workshop.
2004.

22. Zhang, X., K. Keahey, I. Foster, and T.
Freeman, Virtual Cluster Workspaces for
Grid Applications. ANL/MCS-P1246-0405,
2005.

23. Yoo, A.B., M.A. Jette, and M. Grondona,
SLURM: Simple Linux Utility for Resource
Management, in Job Scheduling Strategies for
Parallel Processing, L. Rudolph and U.
Schwiegelshohn, Editors. 2003,
SpringerVerlag. p. 44-60.

24. Portable Batch System. 2003:
http://www.openpbs.org.

25. Irwin, D., J. Chase, L. Grit, A. Yunerefendi,
D. Decker, and K. Yocum, Sharing
Networked Resources with Brokered Leases.
2006: in submission, available at
http://issg.cs.duke.edu/publications/sisyphus.p
df.

26. Howes, T.A., The Lightweight Directory
Access Protocol: X.500 Lite. 95.

27. Lai, K., L. Rasmusson, E. Adar, S. Sorkin, L.
Zhang, and B. Huberman, Tycoon: an
Implementation of a Distributed Market-
Based Resource Allocation System. Technical
Report arXiv:cs.DC/0412038, 2004.

28. Irwin, D., J. Chase, L. Grit, and A.
Yumerefendi, Self-Recharging Virtual
Currency. Proceedings of the Third Workshop
on Economics of Peer-to-Peer Systems (P2P-
ECON), 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

