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Abstract 

Large Grid deployments increasingly require 
abstractions and methods decoupling the work of 
resource providers and resource consumers to 
implement scalable management methods. We 
proposed the abstraction of a Virtual Workspace (VW) 
describing a virtual execution environment that can be 
made dynamically available to authorized Grid clients 
by using well-defined protocols. Virtual workspaces 
provide resources in controllable ways that are 
independent of how a resource is consumed. A Virtual 
Playground may combine many such workspaces, as 
well as other aspects of virtual environments, such as 
networking and storage, to form virtual Grids. In this 
paper, we report on the goals and progress of the 
Virtual Playground Project and put in context the 
research to date.  

1. Introduction 

Large and successful Grid deployments such as 
Grid3 [1], Open Science Grid (OSG) [2], and TeraGrid 
[3], increasingly structure their operations as 
interactions between two classes of participant in a 
distributed system with distinct roles and goals: 
resource providers and resource consumers [4, 5]. 
Resource providers own and operate physical 
resources at some site, and may contribute them to 
satisfy consumer demand. Providers require incentives 
to participate, low participation costs, protection from 
activities performed by the resource consumer, and the 
ability to monitor and control the resources. Resource 
consumers want on-demand access to computational 
resources at modest cost, and the ability to configure 
them to meet the needs of the hosted environment.  A 
resource consumer may be an individual user or some 
entity, such as a Virtual Organization (VO) [6] that 

operates or manages a distributed service on behalf of a 
user community.  

Thus requirements of both providers and consumers 
converge on the following aspects of interaction: 

1) Flexibility in environment configuration: it is 
essential to the consumers that they can adapt 
a leased environment to their needs while the 
provider needs to be able to provide this 
ability at a low cost and such that it will scale 
in the number of consumers.  

2) Environment isolation: the provider needs to 
be able to delegate resource usage to 
consumers in such a way that their activities 
cannot impact the provider -- and therefore 
don’t require fine-grained, consumer 
infrastructure dependent, and thus costly, 
monitoring. 

3) Strict enforcement: a provider needs to be able 
to grant, constrain, enforce, and account for 
consumer resource usage in a way that is 
independent of how the resource is consumed 
thus avoiding adapting the system of every 
individual consumer. Such strict enforcement 
capabilities also underpin the feasibility of 
incentives. 

4) Dynamic creation and management: it is 
essential that the creation of such 
environments, or environment leases be 
negotiated between the provider and consumer 
dynamically in order to support on-demand 
relationships.   

We argue that the key to providing such synergistic 
interactions between resource consumers and resource 
providers is the ability to create virtual execution 
environments: virtual computers whose properties are 
negotiated between consumer and provider. The term 
“virtual execution environment” can cover a range of 
architectural concepts and structures, from a single 
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environment to a dynamic and distributed collection of 
virtual resources in the wide-area. Implementations of 
the concept can range from automating methods of 
hardware configuration to fulfill the conditions 
described above, to using diverse implementations of 
the virtual machines concept as well as virtual 
networking and storage. Further, mapping such virtual 
environments onto multi-dimensional resources 
federated across many administrative domains involves 
complex strategies in monitoring and resource 
brokering.   

A key objective of the Virtual Playgrounds project 
is to define the abstractions of such virtual execution 
environments and develop methods for their 
deployment and management that meet the needs of 
producers and consumers in the Grid setting. In this 
paper, we describe virtual workspaces (representing 
environments within one administrative domain) and 
virtual playgrounds (collections of workspaces 
potentially spanning multiple administrative domains). 
Our objective is to develop methods to  (a) 
dynamically provide isolated execution environments 
to Grid clients, (b) enable a fluid assignment of 
resources to such environments, and (c) enable 
environments to adapt to changing resource 
assignments transparently to hosted applications. We 
report on progress in modeling and development of 
virtual workspaces and their management capabilities, 
and discuss ongoing and future efforts in the areas of 
resource management, networking and security.  

In our ongoing research we actively interact with 
scientists from OSG and TeraGrid to both understand 
their requirements as well as obtain feedback on the 
developed methods. With support from deployment-
oriented projects, we have already been able to see 
prototype deployment of the ideas developed on this 
project and were given a positive evaluation of the 
infrastructure proposed to date.  

2. The Virtual Workspace Abstraction 

A virtual workspace is an abstraction of an 
execution environment that can be made dynamically 
available to authorized clients by using well-defined 
protocols. The abstraction captures the resource quota 
assigned to the execution environment (e.g., CPU, 
network share, or memory) as well as its software 
configuration (e.g., operating system installation, 
provided services). Workspaces may be implemented 
in many different ways; examples include a physical 
machine configured as an ATLAS Grid 3 [1] node 
using the Pacman configuration software [7], a 
physical cluster configured with the Xen hypervisor 

[8], or a set of virtual machines representing a service 
node for an OSG resource.  

2.1. Workspaces on Physical Resources 

One way of providing on-demand access to 
customized workspaces is the to allow for automated 
boot of physical nodes based on a configuration 
description and boot images (as implemented for 
example in bcfg [9]), thus allowing a site to manage its 
nodes in a more flexible and controlled manner. The 
Cluster on Demand (COD) project [10] was one of the 
first examples of this approach: it allowed a remote 
client, identified by a token, to provision and deploy an 
isolated virtual cluster based on database-driven 
network booting.  

Many Grid deployments today prefer to provide a 
base configuration but allow clients to refine it using 
configuration management software (such as Pacman 
[7]) to deploy pre-defined software configurations 
automatically. One can thus treat the availability of 
base images as a precondition and schedule the 
deployment of environments building on that base. 

However, deploying workspaces as physical 
resources offers little flexibility in determining the 
workspace’s configuration (it is still largely provider-
dependent and likely to remain so for security reasons) 
or shaping the resources that can be allocated to it at 
the required granularity (the physical machine is 
essentially the unit of granularity in this case). Further, 
the more configuration can be done at workspace 
creation time the greater the flexibility but also the 
longer the deployment time. In the case of real-world 
complex configuration this difference can be 
significant and add up to a few hours [11].   

2.2. Workspaces on Virtual Resources  

Virtual machines (VMs) [12] provide a promising 
implementation option for workspaces. A VM provides 
a virtualization of a physical host machine. Software 
running on the host, typically called a virtual machine 
monitor (VMM) or hypervisor, is responsible for 
supporting this abstraction by intercepting and 
emulating instructions issued by the guest machines. A 
hypervisor also provides an interface allowing a client 
to start, pause, serialize, and shut down multiple 
guests. In addition, many modern hypervisors offer 
fine-grained enforcement of resource usage. A VM 
representation (VM image) is composed of a full image 
of a VM RAM, disk images, and configuration files. 
Thus, a VMs can be paused, its state serialized, and 
later resumed at a different time and in a different 
location, decoupling image preparation from its 



deployment and enabling migration. Recent 
exploration of paravirtualization techniques [8] has led 
to substantial performance improvements in 
virtualization technologies, making virtual machines an 
attractive option for high-performance applications. 

Virtual machines allow a client to create a custom 
execution environment configured with a required 
operating system, software stack, and access policies 
and then deploy it on any resource running a 
hypervisor. Since VMs provide strong isolation, the 
risk to provider is small. The deployment flexibility 
stems from the VM concept, which provides an 
abstract representation of state that can be deployed 
anywhere a hypervisor is present. In modern 
hypervisors such deployment is quick: we show that 
deploying a VM can take less than a second [13], 
which is comparable to the  overhead induced by the 
Grid tools. In addition to this, hypervisor’s ability to 
provide fine-grain enforcement makes virtual machines 
an ideal solution for short-term deployment of 
uniquely configured workspaces requiring controlled 
resource usage. We note however that VM deployment 
relies strongly on the availability of a hypervisor of a 
compatible type; in effect on an underlying deployment 
of another workspace.  

2.3. Nesting Workspaces 

As the last section outlines, a workspace requires a 
specific deployment capability (e.g., in the case of a 
VM: a compatible hypervisor). The deployment of a 
specific workspace implementation may therefore 
depend on the deployment of another workspace 
providing such deployment capability. This enables 
providers and consumers to find a mutually satisfactory 
solution to hosting workspaces: provider provides base 
images configured with hypervisors; then consumers 
can use deployed hypervisor workspaces to deploy a 
nesting workspace customized to support the 
consumer’s application. Base images, would still be 
owned and maintained by a site to reflect site policies. 
Virtual machines, on the other hand, whose 
deployment and shutdown can easily be controlled by a 
site without impairing the availability of its resources, 
can be configured by communities wishing to support 
specific applications. A site can still impose 
restrictions on their configuration, for example by 
deploying only images attested and versioned by 
trusted sources (as we explain in Section 4.1), but it is 
no longer responsible for providing and maintaining 
complex community-specific configurations.  

This strategy can make a significant difference in 
the variety of environments that a site can support: 
while it is difficult for a site to maintain a community-
specific workspace for every community wishing to 

work with that site, it is much easier to maintain 
several generic hypervisor images. Thus, we argue that 
it is advantageous for sites to support deployment 
capability platforms for the deployment of VM 
workspaces rather than end-user capabilities. This also 
enables a site to react to supply and demand in a more 
dynamic fashion: while today a site typically simply 
advertises the supported deployment capability, such 
advertisements are static and do not allow much 
flexibility in the support of deployment capabilities.  

In general, we can envision supporting many layers 
of nested workspaces. Such workspaces can be 
deployed as a result of n-tiered scheduling where the 
deployment of one layer has a strong dependency on 
the other. We are working on developing general 
scheduling algorithms enabling this capability.  

3. Virtual Workspace Management 

In this section, we describe two different 
approaches to implementing virtual workspaces: the 
Workspace Project at the University of Chicago [14] 
and the Cluster on Demand (COD) Project at Duke 
University [10]. Both projects provide management of 
virtual workspaces but emphasize its different aspects 
and thus develop different interfaces and tools. The 
COD Project initially focused on physical node 
imaging; this was recently generalized to virtual 
machines. The Workspace Project implements 
management of individual and clustered workspaces 
using the WSRF protocols while the COD project uses 
a protocol based directly on SOAP [15]. One of the 
goals of the Virtual Playgrounds  project is to explore 
the affinities of the interfaces and methods developed 
by the two projects and establish a common base.  

3.1. Workspace Service 

We describe virtual workspaces and the supporting 
architecture in [16]; here, we summarize the key 
concepts of this technology.  At its core is the 
workspace service, whose protocols are based on the 
Web Services Resource Framework (WSRF) [17], 
which provides standard methods for the creation and 
management of state descriptors, called “WS 
resources.” A Workspace Factory Service exposes a 
“create” operation that allows Grid clients to 
dynamically request deployment of a customized and 
isolated Grid execution environment. The create 
operation also results in the creation of a WS resource 
representing the newly deployed environment. 
Associated with each WS Resource are a limited 
lifetime and other resource properties that can be 
inspected, queried, and managed in standard ways, and 



that can be used in conjunction with WS-Notifications
[18] to provide updates on change. A WS resource 
(and thus also the workspace it describes) can be 
destroyed either explicitly, or by allowing its lifetime 
to expire.  

Workspaces are deployed based on workspace 
meta-data, provided by the client, which contains all 
the information necessary for enacting workspace 
deployment (i.e., in the VM case, VM image and 
configuration information). Along with the workspace 
meta-data, the client sends a request for a resource 
allocation that describes resources that should be 
bound to the workspace at deployment time. Resource 
allocations describe values such as percentage of CPU 
assigned, memory and disk size or available 
bandwidth; their definition and implementation is 
discussed in detail in [5]. This requested resource 
allocation is typically expressed in terms of constraints 
and can be concretized by the service based on 
available resources. Once a deployment request is 
accepted, the client can verify the assigned resource 
allocation  (as well as other as well as deployment-time 
details such as the assigned IP address) by inspection 
of the WS resource corresponding to the deployed 
workspace. Further, the client can renegotiate the 
workspace resource allocation by requesting changes 
to the workspace resource property.  

All workspace service operations are subject to 
authorization. Since our implementation of the WSRF 
protocols described above is based on the Globus 
Toolkit 4 [19] (GT4, we were able to leverage Globus 
security mechanisms including attribute-based 
credentials (VOMS [20] as well as Shibboleth-based 
[21]) and authorization callouts. However, in general 
workspace deployment requires more sophisticated 
security methods including vetting and verification of 
images as well as providing credentials to deployed 
workspaces. We discuss them in Section 4.1.  

The current Workspace Service is implemented as a 
gateway to a set of resources located within a Trusted 
Computing Base (TCB) and serving as deployment 
pool for workspaces. At present we assume that this 
resource pool has already been configured with the 
required deployment capability (in our current 
implementation: the Xen hypervisor) and we use 
hypervisor-dependent methods on workspace service 
back-end to implement workspace deployment. We are 
currently working on providing effective scheduling, 
monitoring and management tools to map workspaces 
onto this set of resources. In general, as discussed in 
Section 2, the deployment of a workspace may take the 
form of deploying a nested workspace, i.e. first 
deploying a hypervisor-based workspace and then 
stacking a VM-based workspace on top of it.  

The protocol outlined above fulfills many of our 
basic design requirements: it provides the control 
necessary to deploy and shutdown workspaces, request 
and manage the resource allocation assigned to them, 
and support desirable behaviors, such as migration 
(which can be accomplished by pausing and serializing 
a workspace and restarting it in a different location). 
Our main current thrust is work on developing 
techniques to schedule workspaces onto the resource 
backend effectively, as well as facilitating flexible 
resource configuration. Using different 
implementations of workspaces will allow us to 
implement “tiered scheduling” referred to above.   

3.2. Virtual Workspace Clusters 

Atomic workspaces can be combined to form 
virtual clusters [22]. To describe them we extended 
workspace description to include aggregate 
workspaces: sets of sets composed of atomic 
workspaces with the same configuration. A 
combination of such sets can be used to define 
complex heterogeneous clusters – for example, a 
typical OSG cluster is composed of two workspace 
sets: a set containing one or more of service nodes 
(with service node configuration) and a set of worker 
nodes (all with the same worker node configuration). 
To match the resource needs of aggregate workspace, 
we have defined a corresponding type for resource 
allocation allowing the user to specify resource 
allocation for groups of workspaces. An aggregate 
resource allocation is a set of homogeneous sets of 
atomic resource allocations (CPU, memory, etc.). For 
example, an aggregate resource allocation for an OSG 
cluster might be a set of identical resource allocations 
(if the requirements for the service node and all the 
worker nodes are the same), reflect a different resource 
allocation for the service node and identical ones for 
the worker nodes, or yet another configuration. The 
structure of the aggregate workspace type and the 
aggregate resource allocation need not be the same – 
differently configured workspaces may require the 
same type of resource allocation, and vice versa. For 
the purpose of matching workspaces to resource 
allocations an ordering has been imposed on both sets. 

Virtual Cluster Workspace creation uses the same 
mechanisms as atomic workspace creation described in 
the previous section. A workspace is deployed through 
submission of workspace back-end scripts to local 
schedulers (our current implementation works with 
SLURM [23] and PBS [24]). The first step of 
workspace deployment involves propagating the 
images to target deployment: workspace scripts 
executing on each node download the images from a 
specified location. To deploy a workspace, the back-



end scripts work with the Xen hypervisor and complete 
the configuration of the workspace. Configuration 
information that can’t be processed by Xen (such as 
networking) is set up by calling an OS startup script 
preinstalled in the VM images. After a workspace is 
deployed, it can be managed through invoking start and 
stop operations with different parameters to 
pause/unpause or shut down a workspace. These 
operations are simply broadcast to all participating 
nodes. 

In [22] we described the results of our initial 
experiments with virtual clusters. Our experiments 
with virtual cluster management highlight the 
importance of treating staging as an important 
operation that, depending on the granularity of 
considered deployments, should preferably be 
independently scheduled. Our experiments with OSG 
applications are promising: we find that the 
performance impact of executing in VMs is negligible 
even for the data-parallel applications and thus virtual 
clusters are an acceptable platform for this community. 
Further, we plan to use virtual clusters to provide 
scientific gateways for TeraGrid applications.  

3.3. Cluster on Demand 

Cluster-on-Demand is a cluster management service 
for mixed-use clusters [10].  A COD server partitions 
cluster resources into isolated virtual clusters, each 
comprising some set of computing nodes with attached 
storage resources.  COD provides basic services for 
booting and imaging, naming and addressing, and 
binding storage volumes and user accounts on a per-
virtual cluster basis.   It also provides external SOAP 
interfaces to deploy and control virtual workspaces on 
virtual clusters. 

COD was initially designed to control physical 
machines with database-driven network booting 
(PXE/DHCP), in a manner similar to Emulab, Oceano, 
Rocks, or bcfg.  The physical booting machinery is 
now familiar: in addition to controlling the IP address 
bindings assigned by PXE/DHCP, a COD server for 
the cluster site (called the site authority) controls boot 
images and options by generating configuration files 
served via TFTP to standard bootloaders (e.g., grub). 

As part of the Virtual Playgrounds project, we 
extended COD to manage virtual machines using the 
Xen hypervisor [8], as well as physical machines.  In 
addition, we have added facilities to manage resources 
across multiple cluster sites, to allow composition of 
virtual workspaces into distributed virtual playgrounds.  
A COD site administrator may delegate control over 
specified portions of the cluster resources for a 
specified period of time to an external management 
authority (a broker).  The broker has power to allocate 

resources across multiple sites in a coordinated way, 
and is an essential element for extending virtual 
workspaces to virtual playgrounds, as discussed in the 
next section.  We are currently exploring policy 
interfaces for brokers, and common resource 
management APIs that allow resource consumers to 
negotiate with brokers to obtain resource to adapt to 
dynamic resource demands [25]. 

Resource consumers invoke SOAP [15] interfaces 
on each COD authority to configure the workspaces at 
each site, in the style previously described.  The COD 
site authority accepts meta-data attributes passed with 
the create request for the virtual workspaces, and 
interprets them to drive configuration.  An important 
goal of the Virtual Playgrounds project is to construct a 
common configuration formalism that is sufficiently 
rich to express a full range of resource configuration 
requirements, and amenable to static checking for 
internal consistency and conformance to site policies 
and security policies. 

To enable flexible control over configuration, we 
are experimenting with a scriptable back-end virtual 
workspace manager in COD.  As resources are added 
or removed from a virtual workspace, a resource-
specific setup or teardown handler is invoked within 
the authority server.  To represent the wide range of 
configuration actions that may be needed in production 
clusters, the handlers are scripted using Ant, an open-
source OS-independent XML scripting package.  Ant 
scripts invoke a library of packaged tasks for remote 
command execution and network management, and to 
build, configure, deploy, and launch software packages 
on various operating systems and Web application 
servers.  Ant is in wide use, and new plug-in tasks 
continue to become available.  The scripting 
architecture may also be used by the resource 
consumer to specify actions that take place when a new 
resource (e.g., a virtual machine) joins or leaves a 
workspace. 

Like the virtual workspace servers, the Ant tasks 
and the Ant interpreter are written in Java, so the 
setup/teardown drivers invoke the Ant interpreter 
directly.  Java exception handling is a good basis for 
error detection, reporting, attribution, and logging of 
configuration actions scripted with Ant.  Our 
continuing work is investigating methods to select 
appropriate response, notification, and repair actions 
for failures during configuration, or in operating virtual 
workspaces.   

  The scripted post-configuration architecture will 
allow COD to interoperate with other widely used 
cluster management tools.  For example, as an initial 
step, we have instantiated automatically PBS and SGE 
batch schedulers and an operating Globus grid—with a 
GRAM/PBS head node with GridFTP staging space 



exported to the PBS worker nodes via NFS—in a Xen 
virtual cluster. 

We emphasize that COD is intended to facilitate the 
use of such middleware where desired, and not to 
replace it.  COD enables flexible, safe affiliation with 
external grids by encapsulating grid services in virtual 
clusters whose sizes and access to local resources are 
constrained by site policies, to allow a suitable degree 
of isolation and control over how local resources are 
used. 

The combination of support for both physical and 
virtual machines offers useful flexibility: it is possible 
to assign blocks of physical machines dynamically to 
boot Xen hypervisors, and then add them to a resource 
pool for dynamic instantiation of virtual machines.  
Another area of continuing work is to extend the 
external interfaces to allow broker policies greater 
control the resources assigned to each virtual machine. 

A COD site authority drives cluster reconfiguration 
in part by manipulating data stored in a back-end  
directory server with the Lightweight Directory Access 
Protocol (LDAP) [26].  The COD LDAP schema 
extends the RFC 2307 standard for an LDAP-based 
Network Information Service.  Standard open-source 
services exist to administer networks from an LDAP 
directory server.  The DNS server for the site is an 
LDAP-enabled version of the standard BIND9, and for 
physical booting we use an LDAP-enabled DHCP 
server from the Internet Systems Consortium (ISC).  In 
addition, guest nodes in a virtual workspace have read 
access to an LDAP subtree describing the containing 
virtual cluster.  Guest nodes configured to run Linux 
use an LDAP-enabled version of AutoFS to mount 
NFS file systems, and a PAM/NSS module that 
retrieves user logins from LDAP.  This facilitates 
control over user account sets and storage 
configurations at the granularity of virtual workspaces 
or clusters, or for different sets of nodes within a 
virtual cluster. 

COD should be comfortable for cluster site 
operators to adopt, especially if they already use RFC 
2307/LDAP for administration.  The directory server is 
authoritative: if the COD site authority fails, the 
disposition of the cluster is unaffected until it recovers. 
Operators may override the COD server with tools that 
access the LDAP configuration database directly. 

4. From Workspace to Playground 

A Virtual Playground (VP) may be obtained by 
composing multiple workspaces along with other 
virtual resources, such as networks or storage, relating 
to the VP as a whole. In this sense, Virtual 
Playgrounds are a generalization of the workspace 

concept but are not necessarily confined to one TCB 
and thus must implement the complex trust 
relationships as well as consider the performance 
implications of executing in a wide-area network. 
Furthermore, unlike workspaces, which focus on 
deployment, VPs take a holistic view of the system 
including the “hidden costs” of virtualization such as 
image distribution and replication.  

In this Section, we present a brief outline of 
research directions arising in this context.  

4.1. Security 

The problem of division of labor between providers 
and consumers that workspaces are expected to solve 
determines the trust relationships they must enable: a 
workspace must not maliciously misuse the hosting 
resource and the resource must not jeopardize data or 
computations taking place inside the workspace. From 
the provider’s point of view it is thus important that 
their resource be used consistently with site policies. 
This can be obtained by vetting a workspace (either by 
the resource provider himself or a party it trusts) and 
verifying the image on deployment. From the 
consumer’s point of view, it is necessary that its trust 
relationship with a deployed workspace be rooted both 
in the workspace itself and the provider who deployed 
it.  

In order to satisfy both consumers and providers 
constraints the Workspace Project developed an image 
management model and a workspace certificate 
authority that, in conjunction, cover those constraints 
[16]. We focus our efforts on virtual machines. Thus 
we developed a model whereby each virtual machine is 
represented as a set of partitions describing different 
aspects of its configuration that can be combined to 
define its image. These partitions may include a variety 
of components such as a system module, a community-
specific configuration partition, or an application or 
data partitions. These partitions can be attested by 
different parties depending on their provenance, 
annotated with versioning information, and associated 
with different confidentiality levels (for example, a 
system partition may need to be only validated while a 
data partition containing sensitive data may require 
encryption).  

We modified workspace meta-data to include 
information sufficient to reconstruct the image from 
such partitions and equipped the workspace service 
with mechanisms allowing for partition validation and 
decryption. These operations can be costly, but may 
not be significant in practice since it is reasonable to 
assume that specific, often used, partitions will be pre-
fetched into the TCB of a site. 



 In order to resolve the second issue – providing a 
basis of trust establishment between a deployed VM 
and its clients – we equipped the workspace service 
with the ability to generate proxy certificates based on 
its own host certificate. Each workspace has been 
assigned a name that is a part of its (attested) meta-
data. After validating workspace information the 
workspace service generates a proxy certificate 
attesting to its name and deployment site. The 
advantage of this method is that it results in 
information rich certificates and allows for fine-grain 
trust relationships. An alternative is to pre-generate a 
host certificate for the workspace, place it on an 
encrypted partition, and create policies on where the 
workspaces may or may not be deployed. We are in the 
process of investigating the trade-offs between the two 
methods.  

4.2. Networking  

Shared campus clusters and grids often force users 
to adapt the way they work to use computing resources 
in another administrative domain. A key issue is how 
leased resources are integrated into the network IP 
address space.  Domains often manage their own LAN 
segments and IP subnet space; these are frequently 
firewalled at the departmental level, and private IP 
address spaces are often used to reduce consumption of 
scarce public IP space. 

Naming issues often interfere with resource access 
and sharing. If nodes in the workspace are assigned IP 
addresses from the resource provider's space they may 
be unable to access internal resources such as network 
storage in the consumer's home domain, since these are 
often exported only to the internal IP space.  Access to 
licensed software is sometimes controlled by lower-
level MAC addresses.  Regardless of the access control 
policy, use of private IP name spaces in either the 
provider domain or consumer domain, or both, makes 
communication impossible without NAT bridging. 

We are working to address these issues with 
reconfigurable virtual networks based on a hybrid of 
dynamically configured VLANs and SSL tunneling.  
The current COD prototype addresses these problems 
in a very limited way: it assigns private IP subnets to 
slices, which share a common LAN segment, with a 
limited number of public IP addresses available (e.g., 
for ``head nodes'') in a common externally visible 
subnet.  One goal of our ongoing work  is to integrate 
remote virtual workspaces into the home addressing 
domain of the consumer on a temporary and dynamic 
basis, to allow for data and resource sharing within the 
domain, without compromising isolation from external 
attack or data snooping. 

4.3. Resource Management 

Resource management, understood as combining 
resource from both different domains and playground 
aspects (computational resources, storage, networking, 
etc.)  is one of the main thrusts of the project. Our 
ongoing thrusts are in fine-grained resource 
management and scheduling [5], multi-tiered 
provisioning and scheduling (see Section 3), 
investigation of methods resource assignment and 
scheduling developed in the context of incentive-based 
systems such as Tycoon [27, 28], and co-scheduling 
multiple aspects (e.g., combining network reservations 
with resource reservations).  

5. Impact 

We are actively working with several communities 
and projects to see our ideas tried out in practice and to 
bring current requirements and feedback to bear on the 
direction of our research. We were fortunate to 
establish collaborations with the TeraGrid and OSG 
projects; many of our collaborators have deployed or 
are in the process of deploying the infrastructure 
developed as a result of our research.  

The most progress so far has been made by OSG. 
Specifically, the Workspace Service has been deployed 
by the Edge Services Framework (ESF) developed by 
the OSG in order to decouple the process of 
configuring and managing service nodes for Virtual 
Organization from providing resources. Current ESF 
deployment sites include ANL, FNAL, University of 
Chicago, UCSD and SDSC. While the deployment is 
still in preliminary stages, the experiences to date are 
encouraging and the community response has been 
very positive.  

7. Summary 

We have described the abstraction of a virtual 
workspace, a customizable execution environment for 
Grid environments that can be deployed dynamically 
and consume resources in controllable ways. The 
Virtual Playgrouds project develops methods to deploy 
and manage such workspaces and aims to establish a 
reliable framework for their management in the Grid. 
This paper surveys our research efforts to that end.  
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