
A Parallel Memetic Algorithm Applied to the Total Tardiness

Machine Scheduling Problem

Vińıcius Jacques Garcia1, Paulo Morelato França1, Alexandre de Sousa Mendes2, Pablo Moscato2

1Faculdade de Engenharia Elétrica 2School of Electrical Engineering

e de Computação and Computer Science

Universidade Estadual de Campinas The University of Newcastle

C.P. 6101, 13083-852, Campinas, SP, Brazil Callaghan, 2308, NSW, Australia

{jacques,franca}@densis.fee.unicamp.br {mendes,moscato}@cs.newcastle.edu.au

Abstract

This work proposes a parallel memetic algorithm ap-

plied to the total tardiness single machine scheduling

problem. Classical models of parallel evolutionary algo-

rithms and the general structure of memetic algorithms

are discussed. The classical model of global parallel ge-

netic algorithm was used to model the global parallel

memetic analogue where the parallelization is only ap-

plied to the individual optimization phase of the algo-

rithm. Computational tests show the efficiency of the

parallel approach when compared to the sequential ver-

sion. A set of eight instances, with sizes ranging from

56 up to 323 jobs and with known optimal solutions, is

used for the comparisons.

1. Introduction

In the past decades the Genetic Algorithms (GAs)
approach has dramatically improved and became a
popular methodology to deal with a wide variety of
problems. A very important contribution comes from
Hybrid GAs, which apply some form of problem do-
main knowledge, generally in the form of good local
search operators, in order to improve the search pro-
cess. Recognizing that the addition of problem-domain
knowledge results in important differences and in new
practical algorithmic design issues to face, a generaliza-
tion of hybrid GAs was pointed out by Moscato in [14]
as a new methodology, and the creation of the new de-
nomination of Memetic Algorithm (MA) was justified
for them.

Several applications of MAs have shown that, al-
though a larger computational effort is required by the

local search operators, the adoption of such operators
leads to better results when compared to those cre-
ated by an ordinary GA [1], [7], [13], [6]. The good
performances obtained in all these works is due to a
well-tailored local search procedure for the problem be-
ing solved, an adequate representation for the chromo-
some, and the “synergy” of the local search with the
recombination operator.

A major challenge found in such algorithms is the
design of good local search operators for large in-
stances, since the associated neighbourhood might be-
come extremely large. One of the ways to avoid this
problem is to adopt neighbourhood reduction tech-
niques. Nevertheless, in some cases, even with a good
reduction, the exploration of the neighbourhood is still
very time-consuming. Then, the development of par-
allel approaches, using parallel execution techniques,
becomes a suitable alternative.

In this work is presented a new implementation for
master-slave memetic algorithms with hierarchically-
structured population, emphasizing on design issues
related to load balance and synchronism. This model
is applied to solve a set of eight instances of the well-
known single machine scheduling problem. Next is pre-
sented how this paper is structured: in section 2 we
present a description of the problem being addressed;
in section 3, the concepts of Parallel GAs are described;
the sequential and the parallel MAs are presented in
sections 4 and 5, respectively; computational results
are presented in section 6, followed by the conclusions
in section 7.

1-4244-0054-6/06/$20.00 ©2006 IEEE

2. Problem statement

The single machine scheduling problem (SMS) is one
of the most studied problems in the combinatorial opti-
mization field. The interest derives from the frequency
it is found in real industry environments. The works
of [9] and [10] were among the first articles to address
this type of scheduling problem.

There are several variants of the SMS problem, de-
pending on the input data and the objective function.
A very common one found in the literature is the task
of scheduling n jobs, each one with a specific process-
ing time and due date. The objective function is to
minimize the total tardiness, characterized by the sum
of each individual tardiness in turn related to the jobs’
due dates. This problem can become more “complex”
if it adds sequence-dependent setup-times for the jobs,
precedence constraints, etc.

The simplest total tardiness SMS problem, without
setup times, is already NP-hard as shown in [5]. Many
solution techniques that focus on this problem have
been proposed. The references [15] and [11] use dis-
patch rules together with a priority index to build an
approximate sequence, which later will be optimized by
a local search procedure. In reference [16], a new re-
combination operator is created to be used in a GA. In
[17] a method based on Simulated Annealing is devel-
oped and in [7] a MA with a hierarchically-structured
population was presented.

The problem addressed in this paper can be defined
as:

1. Input: A set of n jobs to be processed in one ma-
chine, a list {t1,. . . , tn} of processing times for
each of the jobs and another list {d1,. . . , dn} of
due dates for each one of them. A matrix {sij} of
setup times, where sij is the setup time of job j

after the machine has processed the job i.

2. Output: A permutation of the jobs that mini-
mizes the total tardiness of the schedule. Tardi-
ness is given by equation 1, where ck represents
the time when job k was finally processed, or in
other words, it is the job’s completion time, and
dk is the due date of the respective job.

n∑

k=1

max[0, ck − dk] (1)

Fig. 1 shows a possible schedule for an instance with
five jobs (1-4-3-2-5), as well as a graphical representa-
tion of the total tardiness.

d 1 d 2 d 3 d 4 d 5

d2c2 − c5 d5−

1tt 1 s1 4 s4 3 s3 2 s2 54t t 3 t 2 t 5

Figure 1. Gantt diagram of a solution for
the total tardiness single machine scheduling
problem.

3. Parallel population-based algorithms

Many classical forms of parallel genetic algorithms
are found in the literature, as shown in [3] and, more
recently, in [4]. In [14], a pioneer work in the MA field,
the importance of such methods was already outlined.
Of special importance is Ref. [8], where an MA with a
matrix-layout population is proposed. Each individual
is assigned to a processing unit, occupying a position in
this bi-dimensional space. Selection and recombination
are done independently after a limited neighbourhood
is set.

The parallel model used in this work is called Global
Parallel Memetic Algorithm (GPMA) (see also [3]).
The name derives from the fact that the selection, re-
combination and mutation operators are applied over
the entire population, in contrast with other parallel
MA approaches where the population is broken into
subpopulations. The implementation is generally car-
ried out using master-slave programs; a master unit
assigns some functions of the algorithm to other slave

units, which execute them and return the result.

The function that is usually distributed to the slaves
is the evaluation of individuals, given its independent
character. Following this scheme, fractions of the pop-
ulation are assigned to each slave and communication
occurs only when they are sent or received. When the
master waits for the answer of all slave units, the al-
gorithm is called synchronous , preserving all the char-
acteristics of the evolutionary behavior of a sequential
method, but with better performance. Another possi-
bility is that the master unit does not need to wait for
all the answers, thus characterizing an asynchronous

method. We note that the MAs proposed by Norman
and Moscato [14] and ASPARAGOS [8] were of this
type. In this case, there is a clear difference with the
sequential algorithm: individuals from the same gen-
eration can jump to another generation, as if they had
migrated, modifying the evolutionary behavior of the
algorithm.

slave 1 slave nslave 2 slave 3

master

Figure 2. Basic structure of a Global Paral-
lel Memetic Algorithm, each slave would run
some individual optimization step on its as-
sociated solutions.

The GPMAs do not require a specific computational
architecture. They can be efficiently implemented in
computers with shared or distributed memory. In the
first case, the population is stored in the shared mem-
ory and each unit of the multi-processor system access
parts of it. When distributed memory is used, the pop-
ulation is stored in the processing unit responsible for
sending the individuals to the others and for collecting
the answers. In both cases there is a cost associated
to the communication, resulting in a trade-off between
number of slave units and efficiency. This compromise
is analyzed in detail in [2]. Fig. 2 outlines a GPMA.

4. Sequential Memetic Algorithm

The MAs were categorized and described as a new
class of evolutionary algorithms in [14]. As the GAs,
the MAs are based on the benefits of selection, repro-
duction of characteristics of previously discovered good
solutions (i.e. forms of generalized recombination) and
mutation. What differentiates them is the adoption of
a cultural evolution analogy. The most common way
that cultural information is transmitted to individuals
of the population is to individually evolve them to be-
came fitter individuals by means of a local search pro-
cedure. Therefore new individuals are then optimized,
leading to a better population. The search in the space
of solutions is done with several solutions (individu-
als/agents) like in other population-based algorithm,
making it a concurrent search process. The terminol-
ogy “sequential” is adopted when the algorithm does
not use any explicit parallel mechanism and runs on a
single processing unit.

The MA implementation presented in this work is
described in detail in [7]. A simplified pseudo-code is
shown in Fig. 3.

In the pseudo-code of Fig. 3, we emphasize that the

Procedure Sequential_Memetic_Algorithm(P)

1. Inicialize(P);

2. Evaluate(P);

3. For i=1 to maxGenerations do

4. For j=1 to maxNewInd do

5. parents=selectIndividuals(P);

6. newInd=recombine(parents);

7. optimize(newInd);

8. mutate(newInd);

9. optimize(newInd);

10. AddToPopulation(newInd);

11. End.

Figure 3. Procedure of a sequential memetic
algorithm.

optimization procedure (the local search in this case)
in step 7 and 9 is executed independently for each in-
dividual.

5. Parallel Memetic Algorithm (PMA)

The main motivation for this work comes from the
MA presented in [7], which has been relatively success-
ful in dealing with the SMS problem. Nevertheless,
the method has shown some limitations, mainly due
to the CPU time required to solve larger instances. A
study on the time spent by each step of the algorithm
confirmed that the individual optimization step is re-
sponsible for over 90% of the total computational effort
spent by the algorithm, making it the obvious choice
for parallelization. Moscato and Norman like to say
that MAs constitute a clear example of agent-driven

parallelism.
Therefore, the individual optimization steps will be

performed in parallel and all the other steps of the al-
gorithm (Fig. 3) are sequential. The most adequate
model in this case is the GPMA that, as described in
section 3, uses a master unit. The master will then dis-
tribute the optimization task to the slave units. More
specifically, the optimization of each individual consti-
tutes a job to be distributed to the slave units. Each
slave receives the job, makes the processing and returns
the result (the optimized individual) to the master unit.

As mentioned before, our available parallel hardware
is a computer network, with several processing units,
each one with an independent memory. In order to
make an algorithm that centralizes all the jobs and
only distributes the individuals’ optimization, we need
to simulate a shared memory (Fig. 4). That is, all
individuals to be optimized must be kept in a memory
that is shared by all processing units.

This simulation is accomplished with sockets and,
given the communication structure, each socket can
only be used by two points, or two processing units.

Shared memory

Requests queue Responses queue

Job 6
Job 7
Job 8
Job 9
Job 10

Job 1
Job 2
Job 3
Job 4
Job 5

Figure 4. Shared Memory for the parallel
memetic algorithm.

Thus, it is necessary as many sockets as the number of
slave units being used. The use of such communication
channels does not solve the problem. There is still an-
other one to be considered: how to distribute these jobs
to the slave socket units. An important characteristic
is that the jobs are built one after the other, due to
the concentration of such activities in the master unit.
Since the nature of the units might be heterogeneous,
with different processor speeds and memory configura-
tions, the goal is to distribute the jobs as to minimize
the time required to solve all of them. This problem is
very similar to the multiprocessor scheduling problem
with makespan minimization (P ||Cmax) [9]. As the
P ||Cmax is NP-hard, it is very difficult to be solved
to optimality. Moreover, this problem repeats itself
in each generation of the algorithm and any computa-
tional effort reduction becomes precious.

The proposed solution is to take advantage of the se-
quential way that the jobs are created, assigning them
by demand, that is, the faster a slave unit is, the more
jobs it will process. This distribution function is not
controlled by the algorithm: the use of threads makes
it possible to have concurrent programs in the master
unit, with shared memory. Therefore, the decision of
which program will be executed at a given moment be-
longs to the operating system. The only compromise is
to manage the shared memory in order to avoid data
inconsistency, to prevent that a given program be in-
terrupted when any operation in the shared memory
is being executed. In order to preserve the sequence
of job-sending and job-receiving, this memory is com-
posed of two FIFO queues: the first is used by the
jobs to be processed (requests queue) and the second by
the jobs that were already processed (responses queue),
as show Fig. 4. A simplified diagram of the proposed

Socket 1

Socket 2

Socket n

Slave 1
Client

program

program

Slave 2

Client

Slave n

program
Client

Server
program 1

Server
program 2

program n
Server

R
es

po
ns

es
 q

ue
ue

Master

Shared Memory

R
eq

ue
st

s
qu

eu
e

network
Computer

Figure 5. A simplified diagram of the parallel
memetic algorithm architecture.

PMA architecture is shown in Fig. 5.

In the initialization of the master unit, a server pro-
gram is initialized for each slave unit available. On the
slave unit side a client program is started which makes
a socket connection and waits for a job to be processed.
As soon as the job is received, it is processed and re-
turned to the respective server program. Each one of
the server programs permanently verifies the shared
memory for jobs to be processed. Such memory ac-
cesses are exclusive, that is, only one server program
can access it at a given time.

The process of creating the jobs to be processed by
the slaves repeats itself every generation. In the indi-
viduals’ optimization step, each job will be formed by
an individual plus the specification of the local search
algorithm to be used. Therefore, it is important to
keep the synchronism, that is, after all the jobs were
built and put in the shared memory, it is necessary to
wait for the result (the optimized individuals). In this
way, when the master finishes building all the jobs, it
must wait (or not) for all the results in order to advance
to the next MA step. In the algorithm implemented,
we created a parameter k, which determines the per-
centage of results that must be received by the master
before the algorithm skips to the next step. For in-
stance, suppose that the population is composed of 13
individuals and 20 new individuals are created every
generation. In such case, 20 jobs must be executed by
the slave units. If we set k = 0.4 (40%), this means
that the algorithm will wait for at least 8 jobs (opti-
mized individuals) to be returned before the next phase
of the algorithm starts. As a consequence, value k = 0
corresponds to a master-slave asynchronous algorithm
and k = 1 to a master-slave synchronous one.

The complete pseudo-code is shown in Fig. 6. When
compared to the sequential MA (Fig. 3), it can be no-

Procedure Parallel_Memetic_Algorithm(P,k)

1. Inicialize(P);

2. Evaluate(P);

3. For i=1 to maxGenerations do

4. For j=1 to maxNewInd do

5. parents=selectIndividuals(P);

6. newInd=recombine(parents);

7. mutate(newInd);

8. createJobForSlaves(newInd);

9. newIndividuals=waitProcessedJobs(k);

10. For j=1 to maxNewInd do

11. AddToPopulation(newIndividuals[j]);

12. End.

Figure 6. Procedure of a parallel memetic al-
gorithm.

Tc Tc Tc Tc Tc Tc Tc Tc Tc Tc Tc TcTo_m

To_e 2

To_e 3

To_m

Tp Tp

TpTp

TpTp To_e 1

1 generation

Figure 7. Master-slave parallel memetic algo-
rithm illustration.

ticed that there are just a few modifications. Only
steps 8, 9 and 10 were introduced to transform it into
a parallel algorithm.

For a better understanding of the individual’s
optimization-phase parallelization, consider Fig. 7.
Suppose that there are 6 jobs (individuals) in the re-
quests queue and 3 slave units. Fig. 7 shows the time
events that occur in the master unit during an entire
generation of the PMA. Note that the time to process
a job (Tp) is the same in all slave units. The time
To m indicates the master unit’s idle time and To e

represents the slave unit’s idle time. If we disregard
the amount of time spent in other steps of the algo-
rithm during a generation, and take into account only
the optimization step, the duration of a parallel algo-
rithm’s generation (Tgp) is given by equation 2 and the
sequential algorithm’s duration (Tgs) by the equation
3. For both algorithms, Nt corresponds to the number
of jobs (or individuals) to be distributed to the slaves,
Ne is the number of slave units and Tc represents the
time needed to transmit a job from the master to a
slave or vice-versa.

Tgp =
Nt.Tp

Ne
+

Nt.T c

Ne
(1 + Ne) (2)

Tgs = Nt.Tp (3)

In order to guarantee that the performance of the
PMA is better than its sequential version, it is needed
that Tgs

Tgp

> 1. After a few mathematical operations in

equations 2 and 3, we obtain equation 4. It shows that
the job processing time Tp must be always larger than
Tc and that the greater is the relation Tp

Tc
, the better

will be the performance.

Tp > Tc.
Ne + 1

Ne − 1
(4)

Equation 4 also shows that the attempt to parallelize
other steps of the MA is not promising. For instance,
making the recombination step become parallel is not
viable because the time necessary to make the recom-
bination is almost negligible, but the communication
time is not.

6. Computational Experiments

In order to show how efficient is the parallel ap-
proach, computational tests were carried out using a
set of instances with known optimal solutions.

The speedup, defined as the quotient between the
time Ts to run the sequential algorithm and the time
Tp for the parallel version, is used as the performance
criterion.

The SMS instances were created from solved Asym-
metric Traveling Salesman Problem (ATSP) instances,
available at TSPLIB

1. The letter after the name of the
instance classify its difficulty and refers to the way the
processing times are created; L represents a harder in-
stance than H. For the L instances, the setup-times be-
come more critical in the scheduling, emphasizing the
ATSP aspect of the problem. For the H instances, the
processing times become more relevant in the schedul-
ing, being such instances much easier to be solved by
the algorithm being used. More information on how
the instances were generated can be found in [12].

The local search used to optimize the individuals
is based on the well known all-pairs neighbourhood.
Given a solution, this neighbourhood is constructed by
interchanging all pairs of jobs. As mentioned in the
introduction, the excessive size of this neighbourhood
needs reduction schemes. In our tests two types of re-
ductions are performed, both of them make use of a
function which approximates the total tardiness con-
sidering setup and processing times without perform-
ing the movement. With this approximated value it is

1http://www.crpc.rice.edu/softlib/tsplib/

kro124pLH

ftv55LH
ftv70LH

rbg323LH

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9

Sp
ee

du
p

Number of processors

Figure 8. Speedups for the 50%-reduction.

possible to choose for evaluation only movements that
yield lower values than the incumbent solution.

The first test was carried out with a 50%-reduction
in the local search neighbourhood. A complete descrip-
tion of the neighbourhood reductions are available in
[7]. Table 1 illustrates the speedup values obtained, as
well as the number of jobs (n) present in each instance,
the average time to perform a local search in an indi-
vidual2 (Tp) and the communication time (Tc). In the
second test we used the same neighbourhood but with
a reduction of approximately 90% of the search space.
The results are shown in Table 2. Fig. 8 and Fig. 9
illustrate the evolution of the speedup for a subset of
instances, and for the first and second test configura-
tions, respectively.

The implementation of this work was done using
JavaTM (Sun Microsystems), JDK version 1.4.1. For
the computational tests, we used a 10-Mbits Ethernet

network, with nine PC-Compatible Intel Celeron 330
MHz computers, each one with 64 MB of RAM. The
operating system was Linux, kernel version 2.4. All
the executions of the sequential and parallel MA spent
20 generations and each one was repeated 10 times.
The memetic parameters are as follow: population size
equal to 13; offspring size equal to 20; and mutation
rate equal to 50%. An important detail is that the
master-slave algorithm used in our experiments is the
synchronous one (i.e. the parameter k is set to 1).

The results show that the greater is the relation Tp
Tc

,
the larger is the speedup, as shown by equation 4. This
fact can be proved when comparing 56 and 100-job
instances: the former class has lower speedups than
the latter one. In addition, speedups less than 1 for
2 processors indicate that it is not promise to apply
the parallel structure proposed: for instances ftv55H,

2When the sequential algorithm is used.

ftv55LH
ftv70LH

kro124pLH
rbg323LH

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9

Sp
ee

du
p

Number of processors

Figure 9. Speedups for the 90%-reduction.

ftv55L, ftv70H and ftv70L on Table 1 and ftv55L and
ftv70L on Table 2 there is a marginal benefit in using
the master-slave algorithm.

Considering the influence of the all-pairs neighbor-
hood reduction on Tp, we could check that the more re-
stricted are the movements, the lower is the local search
time and, thus, the lower will be the speedup. Only for
instances ftv55H and ftv70H there was an increase in
Tp when comparing 50%-reduction to 90%-reduction,
what leads to higher speedups as pointed out on Ta-
bles 1 and 2. For the other instances, in general, we
obtained lower speedup values for the most restricted
reduction (90%) compared to the less restricted one
(50%-reduction). Only do give an idea about the time
required to solve an instance, the worst case for the
instance rbg323H takes 7212 seconds, considering a se-
quential execution (1 processor). For 9 processors, this
time is reduced to 1119 seconds.

7. Conclusions

This paper proposes a new implementation for
master-slave memetic algorithms with hierarchically-
structured population. It is emphasized on design is-
sues related to load balance and synchronism in order
to deal efficiently with time-consuming local search op-
erators. Theoretical results provide a trade-off between
processing and communication time which is associated
with the speedup value.

The application of parallel computation techniques
in memetic algorithms is very promising when the CPU
time is the performance criterion or a critical limita-
tion. The associated complexity is acceptable consid-
ering the resulting performance improvement.

The results also validate the efficiency of the parallel
model for the set of instances tested. It became evident
that the larger is the instance, the greater will be the

Table 1. Parallel memetic algorithm performance for the 50% -reduction.
Speedup

Tp Tc Number of processors
Instances n

10−3
s 10−3

s 2 3 4 5 6 7 8 9

ftv55H 56 27 10 0.00 0.00 0.18 0.26 0.28 0.29 0.30 0.31
ftv55L 56 76 10 0.00 0.00 0.00 0.40 0.56 0.74 0.81 0.76
ftv70H 71 82 12 0.00 0.00 0.73 0.71 0.71 0.75 0.74 0.79
ftv70L 71 175 12 0.00 0.00 0.64 1.25 1.47 1.10 1.06 1.08

kro124pH 100 356 13 1.43 1.95 2.56 2.69 2.88 3.32 3.33 3.43
kro124pL 100 641 13 1.60 2.22 2.66 3.04 3.49 3.78 4.22 4.63
rbg323H 323 28866 20 1.62 2.65 3.28 3.80 4.55 5.21 5.69 6.44
rbg323L 323 23440 20 1.79 2.63 3.26 3.83 4.43 4.85 5.38 5.93

Table 2. Parallel memetic algorithm performance for the 90% -reduction.
Speedup

Tp Tc Number of processors
Instances n

10−3
s 10−3

s 2 3 4 5 6 7 8 9

ftv55H 56 62 10 1.04 1.32 1.48 1.64 1.73 1.77 1.80 1.83
ftv55L 56 22 10 0.58 0.69 0.78 0.80 0.83 0.80 0.83 0.84
ftv70H 71 145 12 1.30 1.81 2.05 2.39 2.58 2.79 2.73 3.04
ftv70L 71 45 12 0.81 1.02 1.17 1.22 1.28 1.33 1.28 1.32

kro124pH 100 355 13 1.59 2.19 2.84 3.30 3.45 3.80 4.12 4.47
kro124pL 100 118 13 1.11 1.59 1.89 2.09 2.22 2.47 2.53 2.66
rbg323H 323 26052 20 1.91 2.68 3.38 3.84 4.23 4.84 5.39 5.97
rbg323L 323 5184 20 1.72 2.49 3.18 3.64 4.14 4.75 5.34 5.91

time spent doing local search and, consequently, the
greater will be the speedup. In this work, the instances
with 323 jobs had the best speedup values.

As future works we shall extend this approach to
other problems in order to check if such results hold.
A detailed investigation on the behavior of the asyn-

chronicity to the proposed algorithm is also relevant.

Acknowledgements

This work was supported by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES

- Brazil), Fundação de Amparo à Pesquisa do Estado de
São Paulo (FAPESP - Brazil), and CNPq. The authors
also wish to thank Eder Nicoletti Mathias and Celso
Maciel da Costa by providing us with all the compu-
tational resources necessary for this work. P.M.’s work
is supported by CNPq, Proc. 52.1100/01-1.

References

[1] L. Buriol, P. França, and P. Moscato. A new memetic
algorithm for the asymmetric traveling salesman prob-
lem. Journal of Heuristics, 10(5):483–506, 2004.

[2] E. Cantú-Paz. Designing efficient master-slave parallel
genetic algorithms. Technical Report 97004, Illinois
Genetic Algorithms Laboratory, University of Illinois
at Urbana-Champaign, 1997.

[3] E. Cantú-Paz. A survey of parallel genetic algo-
rithms. Technical Report 97003, Illinois Genetic Al-
gorithms Laboratory, University of Illinois at Urbana-
Champaign, 1997.

[4] E. Cantú-Paz and D. Goldberg. Efficient paral-
lel genetic algorithms: theory and practice. Com-

puter methods in applied mechanics and enginneering,
186:221–238, 2000.

[5] J. Du and J. Leung. Minimizing total tardiness on
one machine is NP-hard. Mathematics of Operations

Research, 15:483–495, 1990.
[6] P. França, J. Gupta, A. Mendes, P. Moscato, and

K. Veltink. Metaheuristic approaches for the pure
flowshop manufacturing cell problem. Computers &

Industrial Engineering, 48(3):491–506, 2005.
[7] P. França, A. Mendes, and P. Moscato. A memetic al-

gorithm for the total tardiness single machine schedul-
ing problem. European Journal of Operational Re-

search, 132–1:224–242, 2000.
[8] M. Gorges-Schleuter. Asparagos: An asynchronous

parallel genetic optimization strategy. In Third Inter-

national Conference of Genetic Algorithms, page 422,
1989.

[9] R. Graham, E. Lawler, J. Lenstra, and A. Rinooy Kan.
Optimization and approximation in deterministic se-
quencing and scheduling: A survey. Annals of Discrete

Mathematics, 5:287–326, 1979.
[10] S. Graves. A review of production scheduling. Opera-

tions Research, 29:646–675, 1981.
[11] Y. Lee, K. Bhaskaran, and M. Pinedo. A heuristic to

minimize the total weighted tardiness with sequence-
dependent setups. IIE Transactions, 29:45–52, 1997.

[12] A. Mendes, P. França, and P. Moscato. Fitness land-
scape for the total tardiness single machine scheduling
problem. Neural Network World, 2(2):165–180, 2002.

[13] A. Mendes, F. Müller, P. França, and P. Moscato.
Comparing meta-heuristic approaches for parallel ma-
chine scheduling problems with sequence-dependent
setup times. Production Planning & Control,
13(2):143–154, 2002.

[14] P. Moscato. On evolution, search, optimization, ge-
netic algorithms and martial arts: towards memetic
algorithms. Technical Report C3P 826, Caltech Con-
current Computation Program, 1989.

[15] N. Raman, R. Rachamadugu, and F. Talbot. Real
time scheduling of an automated manufacturing cen-
ter. European Journal of Operations Research, 40:222–
242, 1989.

[16] P. Rubin and G. Ragatz. Scheduling in sequence de-
pendent setup enviroment with genetic search. Com-

puters and Operations Research, 22–1:85–99, 1995.
[17] K. Tan and R. Narasimhan. Minimizing tardiness on

a single processor with a sequence-dependent setup
times: a simulated annealing approach. OMEGA

- International Journal of Management Science, 25–
6:619–634, 1997.

