
Predicting Failures of Computer Systems: A Case Study for a
Telecommunication System

Felix Salfner, Michael Schieschke and Miroslaw Malek
Institut für Informatik, Humboldt-Universität zu Berlin

Unter den Linden 6, 10099 Berlin, Germany
{salfner|schiesch|malek}@informatik.hu-berlin.de

Abstract

The goal of online failure prediction is to forecast
imminent failures while the system is running. This pa-
per compares Similar Events Prediction (SEP) with two
other well-known techniques for online failure predic-
tion: a straightforward method that is based on a reli-
ability model and Dispersion Frame Technique (DFT).
SEP is based on recognition of failure-prone patterns
utilizing a semi-Markov chain in combination with clus-
tering. We applied the approaches to real data of
a commercial telecommunication system. Results are
presented in terms of precision, recall, F-measure and
accumulated runtime-cost. The results suggest a signif-
icantly improved forecasting performance.

1. Introduction

Software is becoming the main reason for system
failures. As a study by Candea suggests, the cause for
downtime shifted significantly from hardware to soft-
ware over the past 20 years [3]. The main reason for
this development is that software complexity is increas-
ing faster than new technologies emerge that try to
avoid software failures during design and programming.
Therefore, additional mechanisms have to be applied.
One promising direction potentially being less expen-
sive than traditional fault tolerance methodologies is
to predict the occurrence of failures in order to prevent
them or to prepare repair mechanisms for an upcoming
failure. We call this approach proactive fault handling.
In [9] we provide a list of different mechanisms together
with a formula to compute steady-state availability for
such systems.

This paper is focused on the prediction part of proac-
tive fault handling: the online prediction of failures.
It compares our prediction technique called Similar

Events Prediction (SEP) to two other well-known fail-
ure prediction mechanisms: a straightforward predic-
tion based on an exponential reliability model and the
dispersion frame technique (DFT) developed by Lin
and Siewiorek [8]. SEP is an error pattern recogni-
tion algorithm that is based on a semi-Markov chain
and clustering. In contrast to the techniques SEP is
compared with, it builds on the time of error occur-
rence plus the information that is contained in the er-
ror messages. Comparison of the three techniques is
accomplished by application to real data of a complex
commercial telecommunication system.

2. Defining Online Failure Prediction

The goal of online failure prediction is to forecast
while the system is running whether a failure occurs at
some time in the future. This is quite different from
reliability prediction in software engineering where it
is intended to predict reliability metrics such as failure
rates from characteristics of the software or the devel-
opment process. The main difference between both is
that software engineering predictions deal with long-
term predictions while online failure prediction deals
with comparatively short time intervals and is based
on the current system state.

Online (short-term) prediction of eventually upcom-
ing failures is shown in Figure 1. If we perform a pre-
diction at time t we would like to know whether at time
t + ∆tl a failure will occur or not. We call ∆tl the lead
time. ∆tl has a lower bound ∆tw, which is called warn-
ing time: If, for example, a preventive restart of a com-
ponent should be triggered by failure prediction, ∆tw is
the time needed to restart the component. Therefore,
the lead time must be at least as long as the warning
time. On the other hand, if ∆tl is too large, predictions
will be inaccurate.

The prediction period ∆tp describes the length of

1-4244-0054-6/06/$20.00 ©2006 IEEE

Figure 1. Online Failure Prediction. Defini-
tion of lead time (∆tl), warning time (∆tw)
data window size (∆td), and prediction period
(∆tp)

the time interval for which the prediction holds. If
∆tp becomes large, the probability that a failure occurs
within ∆tp increases.1 On the other hand, a large ∆tp
limits the use of predictions.

As online failure prediction takes into account the
current state of the system, some prediction techniques
rely on data that was evaluated earlier. The length of
the data window from which data is used is denoted
by ∆td. In the case of DFT, occurrence times of the
last five errors are used, therefore, ∆td is the time in-
terval between the last five errors. Within SEP, ∆td is
constant and determines the maximum length of error
patterns.

3. Prediction Techniques

Two principal approaches to failure prediction ex-
ist: One class of techniques analyzes periodic mea-
surements of system parameters like workload, memory
consumption, etc. Examples are the Multivariate State
Estimation Technique (MSET) [10] and trend analysis
techniques like [5]. A second class of prediction tech-
niques builds on time series of errors or failures. One
well-known example is the Dispersion Frame Technique
(DFT) developed by Lin and Siewiorek [8]. A more
recent publication by Levy et al. [7] proposes further
methods but lacks the ability to predict the time of fail-
ure occurrence and details are not yet available to the
public. Both approaches use time series of error oc-
currence. Estimation of failure probability from time
series of failure occurrence is the objective of classi-
cal reliability models (see [4] for an overview). SEP
extends the second class of prediction algorithms by
augmenting time of error occurrence with information
that is stored in the error messages.

In this paper we compare predictive accuracy of Sim-
ilar Events Prediction (SEP) with two approaches of
the same class: DFT and a straightforward prediction
method that is based on a classical reliability model.

1If ∆tp → ∞, predicting a failure would always be true!

This section provides a detailed description of SEP and
a short recapitulation of the two other prediction tech-
niques.

3.1. Similar Events Prediction (SEP)

The basic assumption behind SEP is that, due to de-
pendencies within a software, special patterns of errors
indicate upcoming failures. To find out what the spe-
cial patterns are, recorded data is used that contains
additional information when failures have occurred. In
machine learing this is called offline supervised train-
ing [1]. The term training addresses the process of
building a model and tuning the model’s parameters.
In the case of SEP the model is a semi-Markov chain
with enriched state characterization.

After training, the model is used for online failure
prediction: During runtime, it is fed with errors that
have occurred within the data window of length ∆td be-
fore present time. The time series of errors is analyzed
in order to compute the probability that it belongs to
a failure-prone pattern. The probability of matching a
pattern is combined with the probability that this pat-
tern leads to a failure. Please note that the analyzed
series can be part of multiple patterns. All matching
patterns are combined to form the output of the model:
a failure probability distribution over time. Looking at
error logfiles of contemporary business-scale software,
it is striking that error messages contain a variety of in-
formation, e.g., the software component that has logged
the error, the type of error or the depth of the stack-
trace. Therefore, error events can be characterized by
their timestamp and a set of additional information –
the so called properties of the event. To deal with the
fact that error patterns are almost never fully identi-
cal, SEP builds on a notion of similarity between error
events that is based on a distance metric. Therefore,
similar error events are grouped by clustering forming
the states of the model.

Description of the model. Each state in the semi-
Markov chain encodes restrictions on properties of er-
ror events and on their “position” in the event pattern.
The semi-Markov chain is determined by three proba-
bilities: for each state i, si denotes the initial proba-
bility. pij is the probability that the process transits
from state i to state j and the probability distribution
Dij(t) describes the duration of the transition. In SEP,
Dij(t) are uniform distributions bounded by minimum
and maximum delay.

Figure 2 presents a small exemplary model. In order
to be able to draw the model in 2D space, error events
are only characterized by their timestamp (x-axis) and

Figure 2. A simple SEP model. pij denotes
the probability that the process transits from
state i to state j and Dij(t) denotes the distri-
bution of the transit’s duration.

a single property (y-axis). Since each state in the model
puts restrictions on events, and transition durations
put bounds on the delay between successive events, the
states of the small model can be depicted as boxes.

Training the model. Construction of the model is
accomplished in two steps: The first step constructs
the states of the semi-Markov chain and defines tran-
sition durations Dij while the second step estimates
transition probabilities pij .

In order to determine the states of the semi-Markov
chain in the first step, all patterns of errors that lead
to a failure have to be identified in the training data
set. Each pattern of maximum length ∆tw forms a
path of points determined by the properties contained
in the error message and the delay between them. Each
path ends with a failure. All paths are right-aligned to
the time of failure so that they represent the “history”
of the training data set before occurrence of a failure.
This is shown in Figure 3.

Figure 3. Three error event paths preceding
failures – each is right-aligned to the time of
failure occurrence

Figure 4. Resulting model after analyzing the
complete data set. Error sequences that
do not precede a failure leave the pattern
at some point and transit to the non-failure
state F .

After alignment, a hierarchical clustering algorithm
runs “backwards”2 over the data and groups error
events that are similar in their event properties as well
as in time-before-failure. Each group forms a state in
the semi-Markov chain. The clustering algorithm pre-
serves connections between corresponding states.

The second step of model training aims at estimating
the transition probabilities pij . To achieve this, the
whole training data set including error event sequences
that do not precede any failure is analyzed. Transition
probabilities are determined by the number of error
patterns that follow a transition divided by the number
of times, the source state of the transition has been
reached. Note that sequences that do not result in a
failure “leave the path” at some point and transit to a
“non-failure state” F . Figure 4 shows an example.

Predicting failures. The output of SEP online pre-
diction is a curve specifying failure probability over
lead-time PF (t). A failure is predicted if PF (t) exceeds
a threshold θ(t).

Computation of PF (t) comprises two parts: estima-
tion of state probabilities πi and computation of FiF (t),
which is the first passage time distribution to the fail-
ure state given that the process is in state i at present
time:

PF (t) =
∑

i

FiF (t) πi (tl ≤ t ≤ tl + ∆tp) (1)

FiF (t) is a common quantity in Markov theory that can
be computed by

FiF (t) = GiF (t) +
∑
k �=F

∫ t

0

dGik(x)FkF (t − x) (2)

2From time of failure occurrence backward in time.

where Gij(x) is the kernel of the semi-Markov process
(see [6] for details). Please note that FiF (t) can be
pre-computed at training time.

In order to estimate πi, the time series of error events
that have occurred during runtime have to be compared
to the patterns of the semi-Markov chain. They have to
fit both in event properties as well as in delays between
the events. πi can be computed using a dynamic pro-
gramming approach by keeping track and updating of
the set of possible states and their probabilities. Note
that πi increases towards the failure while maintaining
the condition that

∑
i πi = 1.

Computational complexity. The most time-con-
suming parts of SEP are the clustering of error events
and computation of FiF (t). Both clustering and com-
putation of FiF (t) can be precomputed during model
training and do not affect complexity of online fail-
ure prediction, which is more time-critical. Cluster-
ing proceeds backwards through the graph and keeps a
list of predecessors that have to be checked for group-
ing. Therefore, most of the nodes are considered sev-
eral times until they are merged into a state of the
semi-Markov chain. Computation of FiF (t) can be
time-consuming as it requires order of O(n2) opera-
tions where n is the number of (clustered) states. But
due to the left-to-right structure of the model the tran-
sition matrix is sparse and complexity can be reduced.
The convolution in Equation 2 can be solved explic-
itly using Laplace transformations since the kernel G
is made up of bounded uniform distributions Dij .

During prediction, πi’es have to be estimated and
failure probabilities Fif (t)’es have to be computed. Ap-
plying a dynamic programming approach the first has
maximum complexity O(n) in the unlikely case that
the system might be in all states of the semi-Markov
process. Then Equation 1 has to be computed. The
complexity is exactly n − 1. But as the sum consists
of scaled probability distributions, complexity is also
dependent on the prediction period ∆tp and the gran-
ularity of evaluation. Hence, if T denotes the number
of time evaluation points, the overall complexity of on-
line prediction is O(nT).

3.2. Reliability-based prediction

A straightforward method to estimate the probabil-
ity of failures is to use a standard reliability model since
by definition the probability of a failure before time t
is

F (t) = P [T ≤ t] = 1 − R(t) (3)

Many models exist that try to estimate R(t) (see,
e.g., [4] for an overview). Nevertheless, Brocklehurst

and Littlewood [2] have shown, that none of the exist-
ing models really get close to reality. This is especially
true for online failure prediction because the models are
targeted at long-term behavior (in the order of system
lifetime) rather than short-term predictions (in the or-
der of minutes or few hours). They take into account
properties of the software development and fault re-
moval process, etc. but do not analyze the current
state of the system such as, e.g., the number of users
that are currently logged in.

In order to compare SEP to a reliability-based pre-
diction technique, we use a standard reliability model
that assumes a Poisson failure process and hence ap-
proximates reliability by an exponential distribution:

F (t) = 1 − e−λt (4)

The distribution is fit to the short-term behavior of the
system by setting the failure rate to:

λ =
1

MTTF
(5)

where MTTF is mean-time-to-failure of the data set
that is used to assess the predictive accuracy of the
technique. This yields an optimistic assessment of pre-
dictive accuracy since in a real environment, MTTF of
the training data set will be different from MTTF of
the production system.

Using this model, a failure is predicted according to
the median of the distribution:

Tp =
1
λ

ln(2) (6)

After each failure that occurs in the test data set, the
timer is reset and the next failure is predicted at time
Tp in the future.

3.3. Dispersion Frame Technique (DFT)

DFT is a well-known heuristic approach to analyze
a trend in error occurrence frequency developed by Lin
and Siewiorek [8]. In their paper, the authors have
shown that DFT is superior to classic statistical ap-
proaches like fitting of Weibull distribution shape pa-
rameters. We use DFT as a reference prediction tech-
nique that analyzes time of error occurrence.

A Dispersion Frame (DF) is the interval time be-
tween successive error events. Therefore, ∆td is the
sum of the last four DFs. The Error Dispersion Index
(EDI) is defined as the number of error occurrences in
the later half of a DF. A failure is predicted if one of
five heuristic rules fires that account for several system
behaviors. For example, one rule puts a threshold on

error-occurrence frequencies, another one on window-
averaged occurrence frequency. Yet another rule fires
if the EDI is decreasing for four successive DFs and at
least one is half the size of its previous frame.

3.4. Comparison of the techniques

The three prediction techniques can be ordered ac-
cording to the extent how much information from the
running system is used. Reliability-based prediction re-
lies only on time of failure occurrence. DFT analyzes
the time of error occurrence, which means that much
more data is analyzed. In contrast to only analyzing
the time when errors have occurred, SEP additionally
exploits the information that is contained in the error
message itself. For example, the type of an error or the
name of the process that caused the error can also be
taken into account.

It is not surprising that the computational complex-
ity of the prediction techniques increases along with
the amount of information that is analyzed. To per-
form online prediction, the reliability-based algorithm
consumes almost no computational power while SEP is
the most costly prediction algorithm of the three being
linear in the number of states of the semi-Markov chain:
For every error message the set of possible states has to
be updated and the failure-passage distributions have
to be looked up. But as Section 6 will show, this ad-
ditional complexity pays off by significantly improved
prediction quality.

The same ordering holds for the complexity of set-
ting up the prediction techniques. While reliability-
based prediction requires only the estimation of λ, some
more parameters have to be determined for DFT. SEP
involves heavy computations during the learning phase:
Error patterns have to be clustered, transition proba-
bilities have to be estimated from a training data set
and failure-passage distributions have to be computed,
which has quadratic complexity in terms of the number
of clustered states.

4. Metrics

In order to investigate the quality of online failure
prediction a test dataset is used for which the occur-
rence of failures is known. A perfect failure prediction
would achieve a one-to-one matching between predicted
and actual failures. Several metrics exist to measure
the goodness of fit for prediction algorithms. We fo-
cused on metrics that have an intuitive interpretation:
precision, recall, F-measure and accumulated runtime-
cost.

Figure 5. Classification of failure prediction
situations. Gray boxes indicate failure pre-
dictions and arrows actual failures.

Figure 5 defines three cases: A failure prediction is
a true positive if a true failure in the test data occurs
within the prediction period ∆tp of a failure prediction.
If no failure occurs, the prediction is a false positive. If
the failure predictor missed to predict a true failure, it
is a false negative.

4.1. Precision, Recall and F-Measure

Precision and recall, originally defined to evaluate
information retrieval strategies, are frequently used to
express classification quality. They have been used in
similar studies [13] and can also be utilized to compute
steady state system availability [9].

Precision is the ratio of the number of correctly iden-
tified failures to the number of all positive predictions:

precision =
true positives

true positives + false positives
(7)

Following [12], we use discounted false positives.
Recall is defined as the ratio of the number of cor-

rectly predicted failures to the total number of failures
that actually occurred. Recall is sometimes also called
true positive rate.

recall =
true positives

true positives + false negatives
(8)

Consider the following example for clarification: If
a prediction algorithm achieves precision of 0.8, the
probability is 80% that any generated failure warning
is correct (refers to a true failure) and 20% are false
positives. A recall of 0.9 expresses that 90% of all ac-
tual failures are predicted (and 10% are missed).

There is often an inverse proportionality between
high recall and high precision. Improving recall mostly
lowers precision and vice versa. A widely used metric
integrating the trade-off between precision and recall is
the F-measure [11]:

F − measure =
2 ∗ precision ∗ recall

precision + recall
∈ [0, 1] (9)

4.2. Accumulated Runtime-Cost

In many environments not all false predictions have
the same consequences. For example, in some appli-
cation it might be tolerable to have false alarms while
a system failure is very costly. Accumulated runtime-
cost graphs account for that.

To produce an accumulated cost graph, costs for
true positives, false positives and false negatives have
to be assigned. Then a system run is analyzed and to-
tal runtime costs are plotted as they accumulate over
time. One advantage of the accumulated cost graph
is that there is no averaging in place as it is the case
with precision and recall. Therefore, the accumulated
cost graph may, e.g., reveal whether false positives oc-
curred uniformly distributed over the entire run or if
the prediction algorithm performed really well most of
the time except for a short period where hundreds of
false positives occurred. This information cannot be
revealed from precision and recall.

A drawback of accumulated runtime-cost graphs is
that the cost of false positives, true positives and false
negatives can be chosen arbitrarily, which can alter the
graph significantly. We tried to use a realistic setting
where a true positive costs 10 units, false positive costs
20 units and the price for false negatives was 100 units.

5. Experiment Description

All three prediction techniques presented in this pa-
per have been applied to data of a commercial telecom-
munication system. The main characteristics of the
software platform are its distributed component-based
software architecture running on top of a full-featured
container runtime environment. Specification of fail-
ures is usually application specific. In our case, a failure
is defined as the situation if within five minutes more
than 0.01% of calls exhibit a response time over 250ms,
which falls into the class of performance failures. In or-
der to find out, when failures occurred during the tests
(to label the data sets) we had access to logs of an ex-
ternal stress generator keeping track of both the call
load put onto the platform and the time when failures
occurred. See Figure 6.

We used error-logfiles of two one-day runs recorded
from tests that are applied immediately before cus-
tomer delivery. Data of one day were used for train-
ing of the models and evaluations were performed with
data of the second day. The amount of data is admit-
tedly limited and not sufficient for a full-fledged analy-
sis of SEP but gives a first impression of its prediction
potential. The large variety of logged information in-
cludes 55 different, partially non-numeric variables of

Figure 6. Experimental setup

several architectural layers. The amount of log data
per time unit varies from 2 to 30.000 log records per
hour. Figure 7 shows number of errors per 100 seconds
and the occurrence of failures in the test data.

Training data contained 354 errors and 22 failures
whereas test data had 616 errors and 22 failures.

6. Results

Average predictive accuracy3 is reported in terms
of precision and recall while a more detailed behavior
is shown by an accumulated runtime-cost graph. All
results are computed for a warning-time ∆tw of 30 sec-
onds resulting in an elimination of predictions with a
lead-time of less than 30 seconds. The output of SEP is
a failure probability distribution over time, hence SEP
can predict failures with a lead-time ∆tl from zero up
to the maximum pattern length ∆td. In our studies, a
lead-time of 1 minute was chosen. The two other pre-
diction techniques show varying lead-times. The pre-
diction period ∆tp was set to 60 seconds.

6.1. Precision, Recall and F-Measure

Values for precision, recall and F-measure are re-
ported in Figure 8. SEP clearly outperforms the two
comparative approaches. We think that this is due
to the exploitation of more fine-grained information
contained in the error logs. Of course, this implies
higher computational overhead. However, our imple-
mentation of the SEP algorithm, which is not perfor-
mance optimized, was able to compute predictions of
the whole-day test run within 20 minutes on a contem-
porary workstation. It should also be mentioned that
values for the reliability-based prediction are optimistic
estimates since the parameter λ was estimated from the
same data the tests were conducted with. The results
for DFT refer to a set of parameters where all param-
eters have been optimized separately. If two choices
were almost equal in precision and recall we took the
one with less false positives.

3Not meant in the strict sense of the definition: true predic-
tions vs. all predictions

Figure 7. Number of errors per 100 seconds in test data. Diamonds indicate occurrence of failures.

Prediction technique Precision Recall F-Measure
Similar Event Prediction 0.800 0.923 0.8571
DFT 0.389 0.538 0.4515
reliability-based 0.214 0.154 0.1791

Figure 8. Precision, recall and F-measure of the three prediction algorithms applied to the test data.

6.2. Accumulated Runtime-Cost

Figure 9 shows accumulated runtime-cost for the
telecommunication system. In order to prevent that
details of the cost plot are obscured by too many data
points, we used only a part of the test dataset for the
accumulated runtime-cost graph. The plot shows a run
of five hours containing 13 failures. For comparison, we
added two curves: “perfect prediction” and “no predic-
tion”. The first refers to the case where a “perfect fail-
ure predictor” would predict all failures without any
mispredictions. With such a predictor in place, each
upcoming failure would be prevented causing minimum
cost. The curve “no prediction” refers to a system with
neither a predictor nor any reaction schemes in place:
Each time a failure occurs, costs increase by 100, which
is the price for false negatives.

SEP outperforms all prediction techniques and is
close to the cost curve of perfect prediction – only miss-
ing to predict one single failure. As could have been ex-
pected from precision and recall, DFT performs worse
than SEP but better than reliability-based prediction.
It is also noteworthy that reliability-based prediction is
quite close to the reference curve for a system without
prediction suggesting that it cannot be used to enhance
system availability.

7. Conclusion and Future Work

Similar Events Prediction (SEP) is an approach to
online failure prediction that is based on the recogni-
tion of failure-prone patterns of error events. In this
paper we compared SEP to two failure prediction tech-
niques of the same class that evaluate event logs such as

error or failure logs. SEP was compared to a straight-
forward prediction method based on a well-known re-
liability model and to the Dispersion Frame Technique
(DFT) by Lin and Siewiorek. The first is based on
reliability approximation by a Poisson failure process
predicting failures at the median of the resulting ex-
ponential distribution. DFT is an approach exploiting
the times of error occurrence applying heuristic rules
for prediction.

All three models have been applied to data of a com-
plex commercial telecommunication system. Predic-
tive power of the approaches is compared in terms of
precision, recall, F-measure and accumulated runtime-
costs. SEP outperformed the other failure prediction
techniques in all measures. It achieved a precision of
80% and recall of 92% which is strongly supporting the
thesis that a proactive handling of faults has the po-
tential to improve system availability up to an order of
magnitude.

The main reason for achieving better predictive
power is most likely the fact that SEP takes into ac-
count more information about the current system state.
In addition to analyzing solely the time of occurrence,
SEP investigates properties of the error event itself such
as the type of error message, the software component
that reported the event or the depth of the stack trace.
However, taking into account more information has to
be paid for in terms of computational complexity.

Comparing the results of DFT with the original work
by Lin and Siewiorek, performance was worse. The
main reason for that seems to be the difference of inves-
tigated systems: While the original paper investigated
failures in the Andrews distributed File System based
on the occurrence of host errors, our study applied the

 0

 250

 500

 750

 1000

 1250

 1500

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ac
cu

m
ul

at
ed

 c
os

t

time (hours)

perfect prediction

SEP prediction

no prediction

reliability-based prediction

DFT prediction

Figure 9. Accumulated cost for each technique for a five-hour runtime. Cost of 10 has been assigned
to true positives, 20 to false positives and 100 to false negative predictions. Diamonds indicate
failures which have occurred in the data set.

technique to errors that had been reported by software
components in order to predict upcoming performance
failures.

Our study used error data of a one-day test run.
However, computational complexity of training grows
heavily if the amount of training data increases. Lim-
iting the growth will be the major challenge for future
work. Additionally, sensitivity of SEP with respect to
lead-time and changing system configuration as well as
root cause analysis will be investigated.

References

[1] C. M. Bishop. Neural Networks for Pattern Recogni-
tion. Oxford University Press, 1995.

[2] S. Brocklehurst and B. Littlewood. New ways to get
accurate reliability measures. IEEE Software, 9(4):34–
42, 1992.

[3] G. Candea, M. Delgado, M. Chen, and A. Fox. Auto-
matic failure-path inference: A generic introspection
technique for internet applications. In Proceedings
of the 3rd IEEE Workshop on Internet Applications
(WIAPP), San Jose, CA, Jun. 2003.

[4] W. Farr. Software reliability modeling survey. In M. R.
Lyu, editor, Handbook of software reliability engineer-
ing, chapter 3, pages 71–117. McGraw-Hill, 1996.

[5] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S.
Trivedi. A methodology for detection and estimation
of software aging. In Proceedings of the Int’l. Symp.
on Software Reliability Engineering, ISSRE 1998, Nov.
1998.

[6] V. G. Kulkarni. Modeling and Analysis of Stochastic
Systems. Chapman and Hall, London, UK, first edi-
tion, 1995.

[7] D. Levy and R. Chillarege. Early warning of failures
through alarm analysis - a case study in telecom voice
mail systems. In ISSRE ’03: Proceedings of the 14th
International Symposium on Software Reliability En-
gineering, Washington, DC, USA, 2003. IEEE Com-
puter Society.

[8] T.-T. Y. Lin and D. P. Siewiorek. Error log analysis:
statistical modeling and heuristic trend analysis. IEEE
Transactions on Reliability, 39(4):419–432, Oct. 1990.

[9] F. Salfner and M. Malek. Proactive fault handling for
system availability enhancement. In IEEE Proceedings
of the DPDNS Workshop in conjunction with IPDPS
2005, Denver, CO, 2005.

[10] R. M. Singer, K. C. Gross, J. P. Herzog, R. W. King,
and S. Wegerich. Model-based nuclear power plant
monitoring and fault detection: Theoretical founda-
tions. In Proceedings of Intelligent System Application
to Power Systems (ISAP 97), pages 60–65, Seoul, Ko-
rea, Jul. 1997.

[11] C. Van Rijsbergen. Information Retrieval. Butter-
worth, London, second edition, 1979.

[12] G. Weiss. Timeweaver: A genetic algorithm for iden-
tifying predictive patterns in sequences of events. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 718–725, San Francisco, CA,
1999. Morgan Kaufmann.

[13] G. Weiss. Predicting telecommunication equipment
failures from sequences of network alarms. In Hand-
book of Knowledge Discovery and Data Mining, pages
891–896. Oxford University Press, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

