
In the workshop on NSF Next Generation Software (NGS) Program; held in conjunction with IPDPS, Rhodes Island, Greece, April 2006.
Also available as an Ohio State University technical report.

Designing Next Generation Data-Centers with Advanced Communication
Protocols and Systems Services ∗

P. Balaji K. Vaidyanathan S. Narravula H. -W. Jin D. K. Panda

Department of Computer Science and Engineering
The Ohio State University

{balaji, vaidyana, narravul, jinhy, panda}@cse.ohio-state.edu

Abstract

Current data-centers rely on TCP/IP over Fast- and Gigabit-Ethernet
for data communication even within the cluster environment for cost-
effective designs, thus limiting their maximum capacity. Together with
raw performance, such data-centers also lack in efficient support for in-
telligent services, such as requirements for caching documents, managing
limited physical resources, load-balancing, controlling overload scenar-
ios, and prioritization and QoS mechanisms, that are becoming a common
requirement today. On the other hand, the System Area Network (SAN)
technology is making rapid advances during the recent years. Besides
high performance, these modern interconnects are providing a range of
novel features and their support in hardware (e.g., RDMA, atomic oper-
ations, QoS support). In this paper, we address the capabilities of these
current generation SAN technologies in addressing the limitations of ex-
isting data-centers. Specifically, we present a novel framework compris-
ing of three layers (communication protocol support, data-center service
primitives and advanced data-center services) that work together to tackle
the issues associated with existing data-centers. We also present prelim-
inary results in the various aspects of the framework, which demonstrate
close to an order of magnitude performance benefits achievable by our
framework as compared to existing data-centers in several cases.

1 Introduction
There has been an incredible growth of highly data-intensive ap-
plications such as nuclear research, medical informatics, genomics
and satellite weather image analysis in the recent years. Sources
such as nuclear physics research instruments, simulations, bio-
medical studies, network data analysis, online transactions and
other instruments routinely generate multi-terabytes of data. With
technology trends, the ability to store and share these datasets
is also increasing, allowing scientists and institutions to create
such large dataset repositories and making them available for use
by others, typically through a web-based interface forming web-
based data-centers. Such data-centers are not only becoming ex-
tremely common today, but are also increasing exponentially in
size, currently ranging to several thousands of nodes.

Figure 1 shows the common components involved in design-
ing such a web-based data-center. Requests from clients (over
Wide Area Network (WAN)) first pass through a load balancer
which attempts to spread the requests across multiple front-end
proxies (Tier 0). These proxies perform basic triage on each re-
quest to determine if it can be satisfied by a static content web

∗This research is supported by NSF grant #CNS-0509452 and NSF RI equip-
ment grant #CNS-0403342.

server or if it requires more complex dynamic content generation.
The proxies also usually do some amount of caching of both static
and dynamic content. Tier 1 is generally the most complex as it
is responsible for all application-specific processing such as per-
forming an online purchase or building a query to filter some data.
At the back end of the processing stack (Tier 2) is the data reposi-
tory/ database server with the associated storage. This is the prime
repository of all the content that is delivered or manipulated.

Figure 1: Web-based data-centers

With increasing interest in web-based data-centers, more and
more datasets are being hosted online. Several clients request
for either the raw or some kind of processed data simultane-
ously. However, current data-centers are becoming increasingly
incapable of meeting such sky-rocketing processing demands with
high-performance and in a flexible and scalable manner.

Current data-centers rely on TCP/IP for data communication
even within the cluster-based data-center. These data-centers pri-
marily use Fast or Gigabit Ethernet networks for cost-effective de-
signs. The host-based TCP/IP protocols on these networks have
high latency, low bandwidth, and high CPU utilization limiting
the maximum capacity (in terms of requests they can handle per
unit time) of data-centers. Together with raw performance, cur-
rent data-centers also lack in efficient support for intelligent ser-
vices that are becoming a quite common requirement today. For
example, requirements for caching documents, managing limited
physical resources, load-balancing, controlling overload scenar-
ios, and prioritization and QoS mechanisms today are more strin-
gent than ever before. Not only are current data-centers expected
to handle these with high-performance, but also in a scalable man-
ner to be utilized with minimal degradation on clusters ranging to
thousands of nodes. However, currently there is no mechanism to
achieve this. In summary, with exponentially increasing demands,
the gap between what current data-centers can provide and what
end-users demand is increasingly continuously; the primary rea-

1
1-4244-0054-6/06/$20.00 ©2006 IEEE

sons being: (i) low performance due to high communication over-
heads and (ii) lack of efficient support for advanced features that
are required today.

On the other hand, the System Area Network (SAN) technol-
ogy is making rapid advances during the recent years. SAN in-
terconnects such as InfiniBand (IBA) [3] and 10-Gigabit Ethernet
(10GigE) [18, 16, 7, 15] have been introduced and are currently
gaining momentum for designing high-end computing systems
and data-centers. Besides high performance, these modern inter-
connects are providing a range of novel features and their support
in hardware, e.g., Remote Direct Memory Access (RDMA), Re-
mote Atomic Operations, Offloaded Protocol support, Quality of
Service support and several others.

In this paper, we address the capabilities of these current gen-
eration SAN technologies in dealing with the limitations of ex-
isting data-centers. Specifically, we present a novel framework
comprising of three layers, namely, communication protocol sup-
port, data-center service primitives and advanced data-center ser-
vices. For the advanced data-center services, we further present
two specific services, namely, dynamic content caching and active
resource adaptation and reconfiguration. We also present prelimi-
nary results in the various aspects of the framework, showing the
promise demonstrated by the proposed framework. Our results
show close to an order of magnitude performance benefits achiev-
able by our framework as compared to existing data-centers in
several cases.

2 Proposed Framework
To satisfy the needs of the next generation data-center applica-
tions, we propose a three-stage research framework for designing
data-centers as shown in Figure 2. This framework is aimed to
take advantage of the novel features provided by advances in net-
working technologies.

Shared
 Soft

 State
Memory
 Global

Aggregator

Advanced
Communication

Protocols
and

Subsystems

 Data Center Components (Existing)

Advanced
System
Services

Service
Primitives

Data−Center

NetworkProtocol
Offload RDMA Atomic Multicast

ZSDPSDP AZ−SDP

 Point
 To
 Point Manager

Lock
 Distributed

Dynamic Content
Caching

Active Resource
Adaptation

Figure 2: Proposed Framework

The framework is broken down into three layers, namely, com-
munication protocol support, data-center service primitives and
advanced data-center services as illustrated in the figure. Broadly,
in the figure, all the colored boxes are the components which ex-
ist today. The white boxes are the ones which need to be de-
signed to efficiently support next-generation data-center applica-
tions. Amongst these, for this paper, we concentrate on the boxes

with the dashed lines by providing either complete or partial solu-
tions. The boxes with the solid lines are aspects which are deferred
for future work.

Existing data-center components such as Apache, PHP,
MySQL, etc., are typically written using the sockets interface over
the TCP/IP communication protocol. The advanced communica-
tion protocols layer aims at transparently improving the commu-
nication performance of such applications by taking advantage of
the mechanisms and features provided by modern networks such
as IBA and 10GigE. The goals of these advanced protocols are to
maintain the sockets semantics so that existing data-center com-
ponents do not need to be modified. More details about this layer
are presented in Section 3.

The data-center service primitives and advanced data-center
services layers aim at supporting intelligent services for current
data-centers. Specifically, the data-center primitives take advan-
tage of the advanced communication protocols as well as the
mechanisms and features of modern networks to provide higher-
level utilities that can be utilized by applications as well as the
advanced data-center services. For the most efficient design of
the upper-level data-center services, several primitives such as soft
shared state, enhanced point-to-point communication, distributed
lock manager, and global memory aggregator are necessary. In
this paper, however, we limit our study to only the soft shared
state primitive as described in Section 4.

The advanced data-center services are intelligent services that
are critical for the efficient functioning of data-centers. For exam-
ple, requirements for caching documents, managing limited phys-
ical resources and prioritization and QoS mechanisms are handled
by these. In Sections 5 and 6, we discuss two of these services: (i)
dynamic content caching and (ii) active resource adaptation and
reconfiguration. Specifically, the dynamic content caching service
deals with efficient and load-resilient caching techniques for dy-
namically generated content, while the active resource adaptation
(used interchangeably with resource reconfiguration) service deals
with on-the-fly and scalable management and adaptation for vari-
ous system resources.

3 Communication Protocol Support
Several traditional applications used in the data-center environ-
ment such as Apache, PHP, MySQL, etc., have been developed
over a span of several years using the sockets interface over the
TCP/IP protocol suite. However, due to the high host processing
overhead and copies associated with TCP/IP, this approach cannot
be expected to give the best performance. Due to the inability of
traditional sockets over TCP/IP in coping with the exponentially
increasing network speeds, IBA and other network technologies
recently proposed a new standard known as the Sockets Direct
Protocol (SDP) [1]. SDP is a pseudo sockets-like implementa-
tion designed to meet two primary goals: (i) to directly and trans-
parently allow existing sockets applications to be deployed on to
clusters connected with modern networks such as IBA and (ii) al-
low such deployment while retaining most of the raw performance
provided by the networks.

In our previous work [6], we revealed the benefits of SDP
on sockets-based applications in a data-center environment. We
showed that SDP can not only provide a better communication
performance, but also significantly reduce the amount of host CPU

2

Ping-Pong Latency (Event-based)

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size (bytes)

La
te

nc
y

(u
s)

BSDP

ZSDP

AZ-SDP

Uni-directional Throughput (Event-based)

0

2000

4000

6000

8000

10000

12000

1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size (bytes)

T
hr

ou
gh

pu
t (

M
bp

s)

BSDP

ZSDP

AZ-SDP

Figure 3: AZ-SDP Performance: (a) Latency and (b) Unidirectional Throughput

cycles used for protocol processing. However, the basic imple-
mentation of SDP itself has several disadvantages. For example,
overheads such as memory copies that are associated with the SDP
implementation can result in severe limitations in its capabilities
for achieving high performance. Thus, a zero-copy implementa-
tion of SDP which tackles these overheads allowing various sock-
ets applications, including those in the data-center environment,
to take advantage of the benefits of high-speed networks is highly
desirable.

The SDP standard supports two kinds of sockets semantics,
viz., Synchronous sockets and Asynchronous sockets. In the syn-
chronous sockets interface, the application has to block for every
data transfer operation whereas, in the asynchronous sockets inter-
face, the application can initiate a data transfer and check whether
the transfer is complete at a later time providing a better overlap
of the communication with the other computation going on in the
application. Due to the inherent benefits of asynchronous sockets,
the SDP standard also allows several intelligent approaches such
as source-avail and sink-avail based zero-copy for these sock-
ets. However, most of these approaches that work well for the
asynchronous sockets interface are not as beneficial for the syn-
chronous sockets interface [4]. Further, due to its portability, ease
of use and support on a wider set of platforms, the synchronous
sockets interface is the one used by most sockets applications to-
day. Thus, a mechanism in which the approaches proposed for
asynchronous sockets can be used for synchronous sockets would
be very beneficial for such applications.

In this paper, we propose one such mechanism, termed as
AZ-SDP (Asynchronous Zero-Copy SDP) which allows the ap-
proaches proposed for asynchronous sockets to be used for syn-
chronous sockets while maintaining the synchronous sockets se-
mantics. In order to transparently provide asynchronous capabil-
ities for synchronous sockets, two goals need to be met: (i) the
interface should not change; the application can still use the same
interface as earlier, i.e., the synchronous sockets interface and (ii)
the application can assume the synchronous sockets semantics,
i.e., once the control returns from the communication call, it can
read or write from/to the communication buffer. In our approach,
the key idea in meeting these design goals is to memory-protect
the user buffer (thus disallow the application from accessing it)
and to carry out communication asynchronously from this buffer,
while tricking the application into believing that we are carrying
out data communication in a synchronous manner. More details

about the design of the AZ-SDP scheme can be found in [4].
We evaluate the AZ-SDP implementation and compare it with

the other two implementations of SDP, i.e., Buffered SDP (BSDP)
and Zero-copy SDP (ZSDP). BSDP and ZSDP are the copy-based
SDP and synchronous zero-copy SDP implementations, respec-
tively. We present ping-pong latency and uni-directional through-
put micro-benchmarks results.

Figure 3(a) shows the point-to-point latency achieved by the
three stacks. As shown in the figure, both zero-copy schemes
(ZSDP and AZ-SDP) achieve a superior ping-pong latency as
compared to BSDP. However, there is no significant difference
in the performance of ZSDP and AZ-SDP. This is due to the way
the ping-pong latency test is designed. In this test, only one mes-
sage is sent at a time and the node has to wait for a reply from
its peer before it can send the next message, i.e., the test itself is
completely synchronous and cannot utilize the capability of AZ-
SDP with respect to allowing multiple outstanding requests on the
network at any given time, resulting in no performance difference
between the two schemes.

Figure 3(b) shows the uni-directional throughput achieved by
the three stacks. As shown in the figure, for small messages BSDP
performs the best. The reason for this is two fold: (i) Both ZSDP
and AZ-SDP rely on control message exchange for every message
to be transferred. This causes an additional overhead for each data
transfer which is significant for small messages and (ii) Our BSDP
implementation uses an optimization technique known as reverse
packetization to improve the throughput for small messages. For
medium and large messages, on the other hand, AZ-SDP and
ZSDP outperform BSDP because of the zero-copy communica-
tion. Also, for medium messages, AZ-SDP performs the best
with about 35% improvement compared to ZSDP. More micro-
benchmark results such as communication and computation over-
lap and impact of page faults on the performance of AZ-SDP can
be found in [4].

4 Data-Center Service Primitives
As mentioned in the proposed framework (Figure 2), multi-tier
data-centers need efficient support for many higher level data-
center primitives. These data-center service primitives are used
to build more advanced services such as dynamic content caching,
active resource adaptation and reconfiguration, etc. Current data-
centers can benefit from several higher level system primitives
such as soft shared state, distributed lock manager and global

3

memory aggregator.
The soft shared state primitive deals with efficient sharing of in-

formation across the cluster by creating a logical shared memory
region using IBA’s RDMA operations. The global memory aggre-
gator integrates system wide memory and provides applications
with free memory from other nodes to utilize. The distributed
lock manager provides for efficient locking capabilities allowing
for access arbitration and managing sharing of data and resources
across the data-center. While all these aspects are important for
the efficient functionality of the advanced data-center services, in
this paper, we limit our scope to the discussion about just the soft
shared state primitive.

Proxy
Server

Proxy
Server

Proxy
Server

Read

Read

Write

Write

Write

Read

Load Information

Current System
Configuration

Server
App

Server
App

Server
App

 Shared State

Figure 4: A Soft Shared State Scenario

The soft shared state primitive relies on two basic ideas: (i)
Avoiding to maintain strict consistency to minimize overhead (ap-
plications need to explicitly maintain this) and (ii) Asynchronous
reads and writes to the shared state without involving other CPUs.
Figure 4 shows a sample soft shared state scenario with proxy
servers writing certain information into the soft shared state and
application servers reading this information from the soft state
shared. All the operations shown are asynchronous operations.

Typically in a multi-tier data-center, the performance of the
servers in the proxy tier and applications server tier is depen-
dent largely on the processor load. In our earlier work [24] we
had shown that one sided operations like Remote Direct Memory
Access (RDMA), perform better than two sided operations under
high load conditions. Hence, protocols based on RDMA can help
in achieving our goals of a load resilient soft shared state.

Leveraging the benefits of one sided RDMA operations of In-
finiBand, we have designed efficient mechanisms to share infor-
mation [34]. In particular, our RDMA based Notice Board like
mechanism for sharing of information has been very effective in
providing an efficient load resilient soft shared state primitive. In
this approach, we mark a region of memory as the primary means
of sharing of information between the different data-center pro-
cesses. There are two primary operations used on this memory re-
gion: (a) put operation to update state information and (b) get op-
eration to access state information. These operations use RDMA
when accessing remote memory and direct memory accesses when
accessing local memory.

In our experiments, we have observed that the benefits of
RDMA in simple get or put operations is better than the two sided
sockets (over IPoIB) based operations. Figure 5 shows RDMA
read and corresponding sockets based get operation with increas-
ing load on the remote server. We clearly observe that both the
latency and the throughput of the sockets based get operations is

significantly affected by remote side load where as RDMA can
sustain its performance.

In our work elaborated in the following sections, we utilize the
soft shared state primitive to enable smooth and efficient coopera-
tion of different nodes in the data-center.

5 Dynamic Content Caching
Trends in current generation data-centers show that computation
and communication overheads impact the performance and scala-
bility of data-centers significantly. Caching dynamic content, typ-
ically known as Active Caching [11] at various tiers of a multi-
tier data-center is a well known method to reduce the computation
and communication overheads within the data-center. However,
it has its own challenges; primarily due to issues such as cache
consistency and cache coherence. In the state-of-art data-center
environment, these issues are handled based on the type of data
being cached. For dynamic data, for which relaxed consistency or
coherency is permissible, researchers have proposed several meth-
ods like TTL [17], Adaptive TTL [13], and Invalidation [21] in the
literature. However, for data like stock quotes or airline reserva-
tion, where old quotes or old airline availability values are not
acceptable, strong cache consistency and coherency is essential.

Providing strong consistency and coherency is a necessity for
Active Caching in many web applications, such as on-line bank-
ing and transaction processing. In the current data-center envi-
ronment, two popular approaches are used. The first approach is
pre-expiring all entities (forcing data to be re-fetched from the ori-
gin server on every request). This scheme is similar to a no-cache
scheme. The second approach, known as Client-Polling [24], re-
quires the front-end nodes to inquire from the back-end server if
its cache entry is valid on every cache hit. Both approaches are
very costly, increasing the client response time and the processing
overhead at the back-end servers. The costs are mainly associated
with the high CPU overhead in the traditional network protocols
due to memory copy, context switches, and interrupts [29, 14, 6].
Further, the involvement of both sides for communication (two-
sided communication) results in performance of these approaches
heavily relying on the CPU load on both communication sides.
For example, a busy back-end server can slow down the commu-
nication required to maintain strong cache coherence significantly.

Recent trends have seen rapid growth of content composed of
multiple dynamic objects. Documents of this nature are typically
generated by processing one or more data objects stored in the
back-end database, i.e., these documents are dependent on several
persistent data objects. These persistent data objects can also be a
part of multiple dynamic documents. So in effect these documents
and data objects have several many-to-many mappings between
them. Thus, any change to one individual object can potentially
affect the validity of multiple cached requests.

Simple architectures are sufficient to provide strong cache co-
herency which only deals with a file level granularity for co-
herency, i.e., each update affects an object which can be a part of
one or more cached requests. However, most data-centers allow
and support more complex web documents comprising of multi-
ple dynamic objects. These additional issues necessitate more in-
tricate protocols to enable dynamic content caching and make the
design of strongly coherent caches extremely challenging. Fur-
ther, since an updated object can potentially be a part of multi-

4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16 32 64

La
te

nc
y

(u
se

c)

Number of background threads

64byte RDMA read
64byte IPoIB

0

200

400

600

800

1000

1 2 4 8 16 32 64

B
an

dw
id

th
 (

M
by

te
/s

ec
)

Number of background threads

32K RDMA
32K IPoIB

Figure 5: Performance of IPoIB and RDMA Read with background threads: (a) Latency and (b) Bandwidth

ple documents across several servers, superior server coordination
protocols take a central role in these designs.

In our work [23], we present a complete architecture to support
strong cache coherency for dynamic content caches. Our archi-
tecture, which is based primarily on the soft shared state primitive
using one sided RDMA operations, is designed to handle caching
of responses composed of multiple dynamic dependencies. We
propose a complete architecture to handle two issues: (i) caching
documents with multiple dependencies and (ii) being resilient to
load on servers. In our work, we have explored mechanisms for
maintaining necessary information on the application servers to
achieve the above objectives.

We have designed two schemes to handle different data-center
scenarios: (i) Invalidate All and (ii) Dependency Lists. Both the
schemes use the protocols shown in Figure 6 for validating and
updating of cache/caching information, as the basic mechanism
for providing the caching support. Figure 6(a) shows the proto-
col the proxy caches use to verify the validity of a cache entity.
Figure 6(b) elaborates the protocol used by the application servers
to disseminate invalidation information among themselves upon
receiving updates to the cached objects.

Figure 7(a) shows the performance of a data-center with our de-
signs for dynamic content traces with increasing update rates. Our
experimental results show more than 20 times improvement for
the overall data-center throughput using our caching techniques
(in particular Dependency Lists). Figure 7(b) shows that our de-
signs can sustain high performance for overall data-center requests
while maintaining strong coherency with multiple object depen-
dencies even under heavy load. In addition, we also study the ef-
fects of varying dependencies on these cached responses. Detailed
design descriptions and additional performance numbers can be
found in [23].

6 Active Resource Adaptation
A multi-tier data-center is truly a collection of a vast number
of system resources from different nodes connected over a high-
speed network such as IBA or 10GigE. However, as described in
Section 1, each data-center is logically broken down into several
tiers or sub-clusters which handle different aspects of the data-
center functionality. Further, several ISPs and other web service
providers host multiple unrelated web-sites on their data-centers.
The increase in such services and partitions results in a grow-

ing fragmentation of the resources available and ultimately in the
degradation of the performance provided by the data-center.

While the large number of resources present in the data-center
provide a great potential with respect to the performance achiev-
able, harnessing their truly aggregate benefits requires them to
function together without being fragmented by the various data-
center imposed partitions. However, doing this in an unorga-
nized and uncoordinated manner might result in further degra-
dation in the performance. Thus, it is desirable that we have
a technique to actively coordinate the various resources of the
data-center so as to make the partitions fuzzy, i.e., while the re-
sources are broken down into different partitions, they are not
completely bound to their partition but instead are capable of mi-
grating to other partitions on demand. Several researchers have
focused on the design of adaptive systems that can manage clus-
ters and/or react to changing workloads in the context of web
servers [22, 19, 28, 10, 26, 12, 20, 30]. In order to achieve high
performance, though, such coordination needs to be done with low
overhead and high performance. Further, with the exponentially
increasing sizes of data-centers (ranging to several thousands of
nodes today), the solution provided needs to be highly scalable
with the increasing data-center sizes.

In this section, we describe our approach for actively coordi-
nating the usage of the various CPU resources in a data-center to
achieve two broad goals: (i) to better utilize the limited resources
in the data-center environment to improve the performance and ca-
pacity of current data-centers (in terms of number of requests they
can handle per unit time) and (ii) to avoid unnecessary wastage
of resources in order to provide resource guarantees to end users.
In our previous work [8] we have shown the strong potential of
using the advanced features of high-speed networks in designing
such techniques. In this work, we extend the knowledge gained
from our previous study in designing and implementing schemes
to improve the utilization of resources and provide a better perfor-
mance and at the same time allow for resource guarantees for end
users.

Over-provisioning of Resources: Over-provisioning of re-
sources in the data-center for each service provided is a widely
used approach. In this approach, resources are alloted to each ser-
vice depending on the worst case estimates of the load expected
and the resources available in the data-center. For example, if a
data-center hosts two web-sites, each web-site is provided with a

5

Client
Request

Cache
Hit

Client
Response

RDMA Read

Version Check

Response

Actual Request

Application Server
ModuleProxy Module

Application
Server

Application
Server

Application
Server

Database
 Server

HTTP
Request

DB Query (TCP)

Notification

Update

HTTP
Response

DB Response

Ack (Atomic)

(Vapi Send)

 Search and
Coherant
invalidate

Local

Figure 6: Design for (a) RDMA based Strong Cache Coherence Validation and (b) Coherent Invalidations

0
2000
4000
6000
8000

10000
12000
14000
16000

Trace 2 Trace 3 Trace 4 Trace 5

Traces with Increasing Update Rate

T
P

S

No Cache Invalidate All Dependency Lists

Effect of Load

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 4 8 16 32 64
Compute Threads

T
P

S

No Cache Dependency List

Figure 7: Performance of Data-Center with (a) Increasing Update Rate and (b) Increasing Load

fixed subset of the resources in the data-center based on the traf-
fic expected for that web-site. It is easy to see that this approach
would suffer from severe under utilization of resources especially
when the traffic is bursty and directed to a single web-site.

Active resource adaptation and reconfiguration alleviates this
problem of wastage of resources by dynamically mapping appli-
cations to resources available inside the data-center. It enables the
data-center resources to efficiently adapt their functionality based
on system load and traffic pattern. In our work [5], we focus on the
design of coarse-grained constraint-based active resource adapta-
tion and reconfiguration techniques using the advanced features
offered by high-performance networks. Tasks related to system
load monitoring, maintaining global state information, etc., are
handled using the data-center primitives like soft shared state as
mentioned in Section 4.

Figure 8 shows the RDMA based protocol used by active re-
configuration. As shown in the figure, the entire cluster manage-
ment and active reconfiguration is performed by the lightly loaded
load-balancer nodes without disturbing the server nodes using the
RDMA and remote atomic operations provided by InfiniBand.
Some of the other major design challenges and issues involved
in dynamic adaptability and reconfigurability of the system are:
(i) providing a system-wide shared state, (ii) concurrency control
to avoid live-locks and starvation, (iii) avoiding server thrashing
through history aware reconfiguration and (iv) tuning the reconfig-
urability module sensitivity. Further details about the other design
issues can be found in [5].

While capable of achieving high performance, basic active re-
source reconfiguration does not have any concept of service differ-
entiation per se. Thus, it cannot be directly used in a data-center
environment having different service requirements for different
websites in terms of hard and soft QoS guarantees. Hard QoS
guarantees require that the resources guaranteed be available to the

website at all times. Soft QoS guarantees rely on the average load
on the website and client workload pattern studies. To achieve
this capability, we extend the basic active reconfiguration scheme
to allow service differentiation in the shared data-center environ-
ment. In particular, we address the issues associated with the basic
dynamic reconfigurability scheme and propose two extensions to
it, namely (i) dynamic reconfiguration with prioritization (reconf-
P) and (ii) dynamic reconfiguration with prioritization and QoS
(reconf-PQ).

Load
Balancer

Server

Website B Website A

Server

(Loaded)
Load Query

RDMA Read

RDMA Read

Load Query

Successful Atomic

Lock

Change Server Status

Successful Atomic

Unlock

Successful Atomic

(Not Loaded)

(Load Shared)(Load Shared)

Successful Atomic

Shared Update CounterChange

Figure 8: RDMA based Protocol for Dynamic Reconfigurability

Figure 9 shows the capabilities of the active reconfiguration
schemes in two aspects, namely improved performance by better
utilization of resources and capability to provide effective resource
guarantees and prioritization.

Performance of Active Reconfiguration: Figure 9a shows
the performance achieved by reconfigurability, rigid-small and

6

rigid-large scheme. Rigid-small considers a data-center with eight
nodes and allots four nodes to each website (both websites are of
equal priority). Rigid-large considers a data-center with fourteen
nodes and allots seven nodes to each website. We see that for small
burst lengths the dynamic reconfigurability scheme performs com-
parably with the Rigid-small scheme. As the burst length in-
creases, its performance increases and converges with that of the
Rigid-large scheme, i.e., for large burst lengths, a data-center hav-
ing eight nodes can utilize active reconfiguration to achieve a sim-
ilar performance as a data-center having fourteen nodes.

QoS and Prioritization with Active Reconfiguration: In or-
der to evaluate different aspects of the three schemes (reconf,
reconf-P and reconf-PQ), we create three test case scenarios. In
the first case, a load of high priority requests arrives when a load
of low priority requests already exists. In the second case, a load of
low priority requests arrives when a load of high priority requests
already exists. In the third case, both the high priority requests and
low priority requests arrive simultaneously. Figure 9b compares
the QoS meeting capabilities of each of the schemes for the three
cases for a real-world WorldCup trace [2]. We see that the basic
reconfigurability and the prioritization schemes perform well in
some cases for the high priority requests and in some other cases
for the low priority requests. However, these schemes lack the
consistency in providing the guaranteed QoS requirements to both
the websites. The prioritization with QoS scheme on the other
hand meets the guaranteed QoS requirements in all cases for both
the websites. Detailed analysis for the percentage of times the
schemes are able to meet the soft QoS guarantees and other re-
sults are available in [5].

7 Discussion and Work-in-Progress
Our proposed framework mentioned in Section 2 builds multiple
layers of efficient designs. Apart from the services mentioned
in this paper, these different layers can also be utilized to de-
sign other data-center system applications and services as needed.
More importantly, however, our designs have already been in-
tegrated into current data-center applications such Apache, PHP
and MySQL and can be easily integrated to other applications as
well. Also, though this work has been done in the context of In-
finiBand and 10GigE, our designs rely on quite common features
provided by most RDMA-enabled networks and can be easily ex-
tended to work with several other networks such as Myrinet [9],
Quadrics [27], etc.

In the current context, we intend to focus on several aspects
as described in this section. In addition to basic communication
infrastructure and primitives such as soft shared state, multi-tier
data-centers also need efficient support for many other higher level
data-center primitives such as the distributed lock manager. Cur-
rent approaches solve this problem by exchanging explicit two
sided messages with the help of server threads on different nodes
which incurs huge latencies, especially on loaded servers. Re-
mote atomic operation provided by modern interconnects open up
many interesting opportunities to implement a highly efficient dis-
tributed lock manager with minimal overhead. We are currently
looking at several design alternatives in developing such a dis-
tributed lock manager primitive which can be utilized by data-
center services such as resource adaptation and caching.

Moreover, simple caching methods are not very effective for
multi-tier data-centers. Servers can achieve higher gains by shar-
ing a common distributed cache (intra-tier, inter-tier) and main-
taining meta-data information about the cached content on the co-
operating nodes. As a part of our current study [25], we have de-
signed and evaluated a remote memory based multi-tier distributed
shared cache and studied the associated trade offs. We plan to ex-
tend the knowledge gained in this study to integrate and evaluate
active and cooperative caching mechanisms proposed in this study.

Furthermore, the basic coarse-grained resource adaptation
schemes can be enhanced to provide fine-grained resource dy-
namism in multi-tier data-centers. As part of the current study [33,
32], we have developed a load monitoring scheme that uses the
RDMA operations for capturing the load information. Preliminary
evaluations show that our scheme can report extremely accurate
and fine-grained load information as compared to existing solu-
tions. Also, we plan to extend the knowledge gained in our pre-
vious study [31] in utilizing the remote memory on a file system
cache miss to avoid cache corruption in designing a full-fledged
active reconfiguration for file management.

To achieve portability, several traditional applications used in
the data-center environment are built over the sockets and inter-
face and do not utilize advanced communication features (such
as one-sided communication) provided by the networks. How-
ever, minor modifications to these applications can yield signifi-
cant performance improvement. We plan to investigate, analyze
these issues and study the associated benefits.

Several of the challenges and solutions described in the previ-
ous few sections are not completely independent. For example,
the active resource adaptation schemes mentioned in Section 6
focus on reallocating resources and adapting the data-center en-
vironment to the varying load. However, blindly reallocating re-
sources might have negative impacts on the caching schemes pro-
posed in Section 5 due to cache corruption that can potentially
occur. Thus, each of these proposed designs cannot be evaluated
in a stand-alone fashion, but needs to be seen in an integrated en-
vironment. We plan to do carry out such integrated evaluation.

8 Concluding Remarks
In this paper, we presented a novel framework for addressing the
two primary drawbacks of current data-centers: (i) low perfor-
mance due to high communication overheads and (ii) lack of ef-
ficient support for advanced features such as caching dynamic
data, managing limited physical resources, load-balancing, con-
trolling overload scenarios, and prioritization and QoS mecha-
nisms. Specifically, we presented a three-layer framework com-
prising of communication protocol support, data-center primitives
and advanced data-center services and preliminary results in each
of these components. Our experimental results demonstrate that
this framework is quite promising in tackling the issues with cur-
rent and next-generation data-centers and can provide close to an
order-of-magnitude performance benefits as compared to existing
solutions.

References
[1] SDP Specification. http://www.rdmaconsortium.org/home.

[2] The Internet Traffic Archive. http://ita.ee.lbl.gov/html/traces.html.

7

Basic Reconfigurability Performance

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1K 2K 4K 8K 16K

Burst Length (requests)

T
ra

ns
ac

tio
ns

 p
er

 S
ec

on
d

Rigid (Small) Reconf Rigid (Large)

Hard QoS Meeting Capability (Low Priority Requests)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Case 1 Case 2 Case 3

%
 o

f t
im

es
 Q

oS
 m

et

Reconf Reconf-P Reconf-PQ

Figure 9: (a) Basic Reconfigurability Performance (b) QoS Meeting capability of Low Priority requests for a World Cup Trace

[3] Infiniband Trade Association. http://www.infinibandta.org.

[4] P. Balaji, S. Bhagvat, H. W. Jin, and D. K. Panda. Asynchronous Zero-
Copy Communication for Synchronous Sockets Direct Protocol (SDP) over
InfiniBand. In CAC 2006; In Conjunction with IPDPS 2006, 2006.

[5] P. Balaji, S. Narravula, K. Vaidyanathan, H. W. Jin, and D. K. Panda. On
the Provision of Prioritization and Soft QoS in Dynamically Reconfigurable
Shared Data-Centers over InfiniBand. In Proceedings of IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS
2005), 2005.

[6] P. Balaji, S. Narravula, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and
D. K. Panda. Sockets Direct Protocol over InfiniBand in Clusters: Is it Ben-
eficial? In ISPASS ’04.

[7] P. Balaji, H. V. Shah, and D. K. Panda. Sockets vs RDMA Interface over 10-
Gigabit Networks: An In-depth analysis of the Memory Traffic Bottleneck.
In Workshop on Remote Direct Memory Access (RDMA): Applications, Im-
plementations, and Technologies (RAIT 2004), 2004.

[8] P. Balaji, K. Vaidyanathan, S. Narravula, K. Savitha, H. W. Jin, and D. K.
Panda. Exploiting Remote Memory Operations to Design Efficient Recon-
figuration for Shared Data-Centers. In RAIT ’04.

[9] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.
Seizovic, and W. K. Su. Myrinet: A Gigabit-per-Second Local Area Net-
work. IEEE Micro ’95.

[10] C. Lu and T. Abdelzaher and J. Stankovic and S. Son. A Feedback Control
Approach for Guaranteeing Relative Delays in Web Servers. In the Real-
Time Technology and Applications Symposium, 2001.

[11] P. Cao, J. Zhang, and K. Beach. Active cache: Caching dynamic contents on
the Web. In Middleware Conference, 1998.

[12] I. Chung and J. K. Hollingsworth. Automated Cluster-Based Web Service
Performance Tuning. In HPDC ’04, June 2004.

[13] M. Colajanni and P. S. Yu. Adaptive ttl schemes for load balancing of dis-
tributed web servers. SIGMETRICS Perform. Eval. Rev., 25(2):36–42, 1997.

[14] E. V. Carrera, S. Rao, L. Iftode, and R. Bianchini. User-Level Communica-
tion in Cluster-Based Servers. In the 8th IEEE International Symposium on
High-Performance Computer Architecture (HPCA 8), Feb. 2002.

[15] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda. Performance
Characterization of a 10-Gigabit Ethernet TOE. In Proceedings of the IEEE
International Symposium on High-Performance Interconnects (HotI), Palo
Alto, CA, Aug 17-19 2005.

[16] W. Feng, J. Hurwitz, H. Newman, S. Ravot, L. Cottrell, O. Martin, F. Coc-
cetti, C. Jin, D. Wei, and S. Low. Optimizing 10-Gigabit Ethernet for Net-
works of Workstations, Clusters and Grids: A Case Study. In SC ’03.

[17] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP 1.1. RFC 2616. June,
1999.

[18] J. Hurwitz and W. Feng. End-to-End Performance of 10-Gigabit Ethernet on
Commodity Systems. IEEE Micro ’04.

[19] J. Carlstrom and R. Rom. Application-Aware Admission Control and
Scheduling in Web Servers. In Infocom ’02, June 2002.

[20] A. Jacob, I. Troxel, and A. George. Distributed Configuration Management
for Reconfigurable Cluster Computing. In ERSA ’04.

[21] D. Li, P. Cao, and M. Dahlin. WCIP: Web Cache Invalidation Protocol. IETF
Internet Draft, November 2000.

[22] N. Bhatti and R. Friedrich. Web server support for tiered services. In IEEE
Network, September 1999.

[23] S. Narravula, P. Balaji, K. Vaidyanathan, H. W. Jin, and D. K. Panda. Ar-
chitecture for Caching Responses with Multiple Dynamic Dependencies in
Multi-Tier Data-Centers over InfiniBand. In IEEE/ACM International Sym-
posium on Cluster Computing and the Grid (CCGRID), 2005.

[24] S. Narravula, P. Balaji, K. Vaidyanathan, S. Krishnamoorthy, J. Wu, and
D. K. Panda. Supporting Strong Coherency for Active Caches in Multi-
Tier Data-Centers over InfiniBand. In Proceedings of System Area Networks
(SAN), 2004.

[25] S. Narravula, H. W. Jin, and D. K. Panda. Designing Efficient Cooper-
ative Caching Schemes for Multi-Tier Data-Centers over RDMA-enabled
Networks. Technical report, OSU-CISRC-6/05-TR39, The Ohio State Uni-
versity, 2005.

[26] P. Pradhan and R. Tewari and S. Sahu and A. Chandra and P. Shenoy.
An Observation-based Approach Towards Self-Managing Web Servers. In
IWQoS ’02, 2002.

[27] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics
Network (QsNet): High-Performance Clustering Technology. In HotI ’01.

[28] S. Lee and J. Lui and D. Yau. Admission control and dynamic adaptation
for a proportionaldelay diffserv-enabled web server. In Proceedings of SIG-
METRICS, 2002.

[29] H. V. Shah, D. B. Minturn, A. Foong, G. L. McAlpine, R. S. Madukkaru-
mukumana, and G. J. Regnier. CSP: A Novel System Architecture for Scal-
able Internet and Communication Services. In the Proceedings of the 3rd
USENIX Symposium on Internet Technologies and Systems, pages pages 61–
72, San Francisco, CA, March 2001.

[30] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated Resource Management
for Cluster-based Internet Services. In OSDI ’02.

[31] K. Vaidyanathan, P. Balaji, H. W. Jin, and D. K. Panda. Workload-driven
Analysis of File Systems in Multi-Tier Data-Centers over InfiniBand. In
Computer Architecture Evaluation with Commercial Workloads (CAECW-
8), in conjunction with the International Symposium on High Performance
Computer Architecture (HPCA), 2005.

[32] K. Vaidyanathan, P. Balaji, S. Narravula, H.-W. Jin, and D. K. Panda.
Supporting Dynamic Fine-grained Resource Reconfiguration in InfiniBand-
based Web Data-Centers. Technical report, OSU-CISRC-1/06-TR07, The
Ohio State University, 2006.

[33] K. Vaidyanathan, H.-W. Jin, S. Narravula, and D. K. Panda. Accurate Load
Monitoring for Cluster-based Web Data-Centers over RDMA-enabled Net-
works. Technical report, OSU-CISRC-7/05-TR49, The Ohio State Univer-
sity, 2005.

[34] K. Vaidyanathan, S. Narravula, P. Balaji, H. W. Jin, and D. K. Panda. Soft
Shared State Primitives for Multi-Tier Data-Center Services. Technical Re-
port OSU-CISRC-1/06-TR06, The Ohio State University, 2006.

8

