
A Physical Particle and Plane Framework for Load Balancing in Multiprocessors 
 

Navid Imani
1
, Hamid Sarbazi-Azad

1,2 

 
1 

IPM School of Computer Science 

Tehran, Iran. 

navid_imani@softhome.net 
 

 

2 
Sharif University of Tech.  

Dept. of Computer Engineering 

Tehran, Iran. 

azad@ipm.ir

Abstract 
Different models for load balancing have been proposed 
before, each of which has its own features and advantages 
when considered for a specific scenario. Yet, nearly all of 
the existing techniques have assumed an oversimplified 
model of the system which is often not the case of the real 
world. In this paper, a new gradient based algorithm for 
dynamic load balancing on multiprocessors is proposed. 
This algorithm is an analogy of a classical physical model 
of a Particle & Plane system which operates based on the 
classic laws of physics dictated by the nature. 
 

 

1. Introduction 
 

One of the important issues concerning the 
multiprocessors is the problem of how to allocate/reallocate 
particular tasks to processors to achieve low response times. 
Generally, two classes of approaches are envisioned in the 
literature answering the solution to this problem: Static 
Mapping and Dynamic Load Balancing. 

Given a parallel program with m communicating tasks 
and a multicomputer with n<m processors, the problem of 
static mapping is to find a mapping of the tasks to the 
processors such that the program's execution time be 
minimized. This problem can be reduced to a sophisticated 
version of the Knapsack problem and hence it lies in the 
region of NP-hard problems. Heuristic algorithms for this 
problem try to find a balanced allocation with minimal 
communication delays. They are often based on graph 
partitioning techniques [14] and use modern optimization 
heuristics such as Simulated Annealing or Genetic 
Algorithms [3,13]. However, they are designed to be 
executed off-line and consider neither the actual load 
situation (due to multiprogramming) at run-time nor the data 
dependent behavior of the program. The major disadvantage 
of such algorithms is that they are unable to deal with the 
dynamic changes in the state of the system such as dynamic 
task creation and deletion during program execution. 

The second class of approaches is designed to adapt the 
distributed systems where new tasks may enter the system at 
any time and at any node. Dynamic load balancing proposes 
a solution to the problem of how to distribute the tasks as 
evenly as possible to avoid idling nodes and to minimize 
overall response times. Since the allocation is done at run-
time, the basic mechanism is the migration of a task from 
one node to another which usually means the transfer of a 
considerable amount of data. Most of the proposals use a 
decentralized algorithm where load balancing agents at the 
particular nodes negotiate the possible transfer of tasks from 
overloaded to under-loaded nodes. Most of the dynamic 
load balancing algorithms reported in the literature have 
been put forth to operate on local area networks where all of 
the processors can be considered as adjacent nodes [5,7,17]. 
Hence, it is not strange to see that in most of the cases the 
proposed algorithms have ignored some of the issues like 
inter-process communication, resource dependency and 
fault-tolerance which are deemed to be critical in certain 
multiprocessor systems. 

Another reason for the lack of in depth studies on these 
issues is the fact that considering task and resource 
dependencies and occurrence of fault in the system makes 
the model too much complicated to be handled.  

In this paper, in an attempt to fill the previous gaps in the 
study of dynamic load balancing in multiprocessors we 
propose a dynamic load balancing algorithm which takes 
into account all the important issues of a real system. In 
order to evade from the intricacies of modeling a real world 
system, we envision a physical system as an analogy for the 
load balancing system. Modeling the physical system is 
much simpler as it only deals with the evidences we 
practice in our every day life. This paper can be considered 
as a base towards a design methodology of optimal 
schemes for modeling dynamic load balancing systems. 

Throughout this paper we use the terms task and load 
interchangeably to refer to the same entity. In particular, 
when we are interested in the dynamic nature of the loads 
as the dependency or affinity to a processor, we use the 
term task. The word load on the other hand is used when 
the size of a task is considered. 

The rest of this paper is organized as follows. In section 
2, we will review the related works in the field of dynamic 
load balancing. Section 3 mainly deals with a classic 
problem in physics which will later serve as an analogy for 
our load balancing system while in section 4 we show that 
how good the physical model can be mapped to the load 
balancing problem. In section 5, we propose our load 
balancing algorithm and derive its equations by inspiration 
from the physical model.  Some heuristics and 
improvements for the algorithm are also put forth in this 
section. Finally, section 6 concludes the paper. 
 

2. Related Works 
 

The most common approaches to dynamic load balancing 
are the nearest neighbor based methods. While this family 
of load balancing algorithms has been studied early in the 
literature with concentration on the problem of reaching a 
balanced state as in [4,5,16], recent works are mostly 
dedicated to the problem of convergence. Some of the most 
important load balancing algorithms are the diffusion 
method, dimension exchange method and gradient-based 
method [6,10,12,15]. 

In the diffusion method, each processor of the system 
balances the total quantity of load on itself with the 
immediate neighboring nodes, i.e. the extra loads of a 
processor are distributed evenly between the local 
neighboring processors. Under the synchronous 
assumption, the diffusion method has been proven to 
converge in polynomial time for any initial workload 
distribution given the quiescent assumption that no new 
workload is generated and no existing workload is 
completed during execution of the algorithm [1,6]. Also 
optimal parameters that maximize the convergence rate 
have been derived on the mesh, torus, and n-D hypercube 
[19]. 

In the dimension exchange method each processor 
balances its loads with its neighbor’s one at a time. It has 

1-4244-0054-6/06/$20.00  ©2006 IEEE



been proven that on a hypercube, the entire system is 
balanced when every processor has exchanged workload 
with all its neighbors once [6].  

In the gradient based method the workload variations in 
the system are maintained in gradient maps for each 
processor in the system. Tasks are moved toward the 
processors with the steepest gradient. In the gradient model 
(GM) method, a pressure surface that represents the 
propagated pressure of the workload is defined [12]. In the 
contracting within a neighborhood (CWN) method, on the 
other hand the workload index is used directly and the tasks 
are sent to the processor with the smallest index [15]. 
Various stochastic techniques such as randomized methods 
and simulated annealing and algorithms based on 
evolutionary algorithms have been researched extensively in 
the literature [18,19]. Load balancing using the models 
inspired from physics has also been studied in [8,9,11]. 

Most of the work mentioned above, have not considered 
data dependencies between the tasks, resource constraints or 
the probability of the occurrence of fault in the links or 
nodes of the network. The algorithm proposed here, 
however, takes into account all of the mentioned issues by 
analogy from a classic problem in dynamic physics. 
 

3. Particle and Plane Problem in Physics 
 

In this section, we consider a classic problem in dynamic 
physics, which we will later show that despite its simplicity 
it can be well adapted to serve as a good model for load 
balancing in multiprocessors. Our problem of interest is the 
motion of an object on a bumpy plane under the physical 
laws governing the environment. 
 

3.1. System Scenario  
 

Let us assume a box is placed on a bumpy yard which 
consists of high positions or hills and low points or valleys. 
Let us represent each position in the yard with an ordered 
triple (x,y,z) corresponding to a mapping of that point to a 
3d Cartesian space. Further, we assume that an object is 
initially placed on a hill so that it may gently slide down 
towards a valley. As the object traverses its path down to a 
proximate valley its velocity increases and hence its kinetic 
energy grows, while it loses its potential energy. As the 
object reaches the bottom of the valley it poses kinetic 
energy and thus its inertia make it climb up the steep 
towards the peak of the hill on its way. If the hill is not 
much steep and high and the object has enough velocity 
(and kinetic energy as a result) then it may reach to the peak 
of that hill and take its path down to another neighboring 
valley or otherwise the object bounces back towards the 
bottom of the first valley and oscillates there until after 
some time, it stops at the bottom of valley. 

The yard’s surface and the surface of the object are not 
smooth; thus there exist some friction between the object 
and the face of the yard which causes the object in motion to 
lose some of its velocity. We denote this kind of friction 
force by fk which depends on a constant value which itself is 
representative of the roughness properties of the surfaces (of 
the object and the yard). Friction also shows itself when the 
object is stationary (at the start of the game) and resists the 
gravity forces which are tending to move the object down 
the slope. Therefore, the object moves only if the slope is 
steep enough. We call this force the static friction, fs, which 
is again a function of a constant sµ and the Natural force N 
which ground applies to the object as a result of the third 
principle of Newton. 

The force fk causes the object to lose some of its kinetic 
energy while moving. Thus, as the object makes more 
distance from its origin, its overall energy (kinetic and 
potential) decreases; this guarantees that the object does not 

go too far from its initial position. It also lets the object be 
trapped in a local valley; for once it could not climb up the 
face of the fronting hill and bounced back to the valley, it 
might not have enough energy to climb the hill from which 
it used to come down. 

 

3.2. The Exerted Forces 
 

At the start of the game, the net force exerted to the 

object initiates its movement down the slope. Let 
if
���

 be the 

different forces that act on the object. Then, the question of 

whether or not the object moves and if so in which 

direction it is ought to move can be answered after the 

calculation of the net force as 
iF f= ∑

�� ��
. The direction of 

the force F
��

 gives the direction along which the object will 

move. Let an object of mass m be placed on a slope which 

builds an acute angle ofα with the perpendicular line. fi 

forces, as fig.1 shows, generally encompass two types of 

forces: the maximum friction force which for the system 

can be derived as fs = µs mg sinα and the thrust force i.e. the 

force of gravity along the slope which can be calculated as 

cosf mg α+ = . Parameters fs and f+ are exerted to the object 

in opposite directions along the slope and hence the criteria 

for the movement of the object is fs  < f+. After replacing the 

previous equations for fs and f+ in this inequality we get 

cos sinsmg mgα µ α>  or 

    
1

tan
s

α
µ

<   (1) 

µs is solely related to the environment and the object and 
hence is constant for the whole life time of the system; this 
fact implies that the important factor which determines the 
object’s motion is the steepness of the slope, 1/tanα. More 
formally, there exists some tα  for the system 
corresponding to the threshold value for the angleα , 

tα α∀ ≥ , where force F
��

would not be enough to initiate 
the movement of the object.  

Suppose that the surface is steep enough to cause the 
object to move then at any given instant when the object is 
moving, the net force exerted to the object determines the 
possible direction of acceleration of the object. The net 
force vector along the steep again is composed of two 
forces of kinetic frictional force fk which can be calculated 
as fk = µk mgsinα and the force of gravity along the steep 
i.e. cosmg α . The forces which act on the object in motion 
are depicted in Fig.1. 

 

3.3. The Energy Model 
 

According to the laws of conservation of energy, the 
overall energy of a system is constant over time while 
different forms of energy can be converted to each other. 
Each physical object at any instant has two types of energy, 
namely Potential Energy and Kinetic Energy. The kinetic 
energy, Ek, is a direct consequence of the velocity of the 
object and can be calculated as 

2

2
k

mv
E =  

where v and m denote the magnitude of velocity and the 
mass of the object, respectively. This equation implies that 
a stationary object has no kinetic energy. 

The potential energy Ep on the other hand, is the amount 
of energy stored in the object due to its position related to 
the base level and equals by the amount of the energy that 



would be released if the object be moved by the gravity 
force to the base level. Thus, the potential energy of an 
object at a height h of the base level is pE mgh= ; Hence, the 
total energy of the object would be 

2

2
k p

mv
E E E mgh= + = +  

 
 

For the system under discussion, the total energy of the 
object E derived in this equation determines whether or not 
the object can escape a local minimum (valley). 

As there exists friction between the object and the 
surface, when the object moves, the friction force fk tries to 
decrease its velocity, i.e. in the presence of fk it wastes some 
of its kinetic energy in the form of heat in the environment 
(see fig.2). Let us assume that 

kµ  is constant over time; the 
total energy that is lost due to friction in a path of distance d 
on a slope can then be calculated as 

sinh k k k kE f d Nd mgd mgdµ µ α µ ⊥= = = =  

d ⊥ is the perpendicular distance between the source and 

the destination. This equation implies that when the object 

moves from a source to a destination on a steep slope, the 

energy which is wasted in the form of heat equals the energy 

which is lost as if the object were to move on a flat surface 

between the same source and destination. 

Let us assume that the object is placed at the top of a hill 

with a height h0 at the time 0. Let ht and vt be the height of 

the object’s position and the velocity of the object at a given 

instant t, respectively. Furthermore, Let Eh,t and ET,t denote 

the amount of energy that object has lost due to friction 

from the time t − 1 to t for a given instant t and the total 

energy of the object at t, respectively. 

 
Then the total energy of the object at the instant t can be 

calculated as 
2

1
, , 1 , 1 ,

2

t
T t T t h t t h t

mv
E E E mgh E−

− −= − = + −  

knowing that 

0 ,0 0hE mgh=  

The height of the highest point where the object can be at 

time t, i.e. the potential height of the object at time t, is 

derived as 

0 , ,
* 1 1

0

t t

h i h i

i i

t

m gh E E

h h
m g m g

= =

−
= = −

∑ ∑
 

Definition 1: We say an object is trapped inside a contour 

c at a given time t if it cannot exit that contour at any given 

time t’ > t. 

Definition 2: Given a contour c, the Peak of c, Pc, is 

defined as the maximum height of any point within c. 

Definition 3: Given a contour c and a position p(x,y), the 

Escape Radius of c at p, rc,p, is defined as the minimum 

distant of p from a point p’ outside c on xy plane. The 

escape radius of p has been depicted in fig.3. 

The following two corollaries are the obvious results of 

the definitions 1-3. 

Corollary 1:  If 0
s k

µ µ= =  then for any given contour c 

satisfying the condition pc < h0, the object is not trapped 

inside c at any given time instant.  

Corollary 2:  If 0kµ ≠  then there exist some contour c and 

time instant t such that the object is trapped inside c at the 

time t. 
Theorem 1: Let the object be in a position p at a instant t 

then the object is not trapped in a contour c at t if 
*

,c t k c pP h rµ≤ − . 

Proof. At time t the total energy of the object is 

0 ,

1

t

h i

i

mgh E
=

−∑ . The object is not trapped in c if despite the 

energy it looses due to the friction it can still afford to 

climb the hills of c on the shortest path. The wasted 

energy can be calculated as ,k c pmgrµ . Let us assume that 

the object exits c at t + te. The total energy of the object at 

t + te would be 

, 0 , ,

1
e

t

T t t h i k c p

i

E mgh E mgrµ+
=

= − −∑  

If we can guarantee that the object with energy 

, cT t tE + can climb the highest hill in c, we have shown that 

the object is not trapped in c. Therefore, we 

want
*

cc t t
P h +≤ while we have 

, , ,
* *1 1

0 0 , ,e

t t

h i k c p h i

i i

t t k c p t k c p

E mgr E

h h h r h r
mg mg

µ
µ µ= =

+

+
= − = − − = −

∑ ∑
 

and hence *

,c t k c pP h rµ≤ − . 

Theorem 1 implies that the farther the object goes the 

smaller the height of the hills it can climb; this property 

prevents the object from getting too far from its initial 

position. 

Corollary 3: Given an object in a position p at a time t, 

the object is trapped in any contour c whose escape radius 

satisfies
*

,
t

c p

k

h
r

µ
> . 

Proof. According to the inequality given for the Pc in 

theorem 1, if we have 
*

,

t

c p

k

h
r

µ
>  then we reach Pc < 0, 

which is impossible. This can be interpreted as the fact 

that if kµ and ,c pr are big enough, then regardless of the 

���������	�	
	��	�����	�����������	��������	������

d

N=mg sinα 

mg 

sind d α⊥ =  

���������	��������������	���	�	��	�������������

����	��

α 

β 

fs 

mg cos α 

W=mg 

N=mg sinα 

α�  
fk 

W=mg 

α�  

N=mg sinα 

mg cos α 



hills that the object may not be able to climb the object 

looses all its energy as heat due to friction and will stop at 

the bottom of some valley within c.  
 

4. Analogy of the Physical Problem in Load 

Balancing  
 

In this section, we draw an analogy of the physical 
scenario discussed in section 3 to model the problem of 
dynamic load balancing. This study is interesting in the 
sense that many of the rather virtual concepts in load 
balancing can be well represented with tangible physical 
evidences drawn from the real would. As we may show 
later this analogy may help us to put forth new solutions to 
some of the problems in load balancing. While the 
proposed solutions in the physical model may seem trivial, 
the corresponding solutions in load balancing could have 
been considered out of reach without considering this 
analogy. 
 

4.1. From Physical Parameters to Load Balancing 

Concepts 
 

Given a set of processors connected via an 
interconnection network and a set of tasks of a program 
assigned to each processor, the problem of load balancing 
is how to redistribute the tasks of the processors over the 
network to other processors with the minimum 
communication cost so that the execution time of the 
program minimizes. 

Let us assign to each node v in the network a number lv 

indicating the quantity of load assigned to that processor. 

Furthermore, let us map each node of the network graph to 

a point in 2D space via an arbitrary mapping 

function 2

2
: ( )M V G → � . Such a mapping function always 

exists for any G ; more specifically, if G is planer there 

exists a mapping function which let us draw the edges 

between the nodes as non-crossing lines between the 

corresponding points in the 2D plane.  

Taking into account the load quantity of the nodes, the 

network can be mapped via 3

3 : ( )M V G L× → �  to a 3D 

space, such that each given node v can be identified via an 

ordered triple (x,y,z) where the first two elements identify 

the node in the network and the z element determines the 

quantity of load on v, i.e. 3 2( , ) ( ( ), )v vM v l M v l= . 

 

 
���������	�	
��	������
�������������

������������������
 

Hence, the network can be modeled as a discrete 3D 

manifold (surface), where the slopes of the manifold 

contribute to the differences in the load quantities of two 

neighboring nodes. 

We can further consider a load lv assigned to a 

processor in a node v as an object placed in the point 

3 ( , )vM v l of the manifold. Each object has a mass m which 

is representative of the quantity of the corresponding load 

(either in terms of computational complexity or memory 

size of the task), i.e. a more complex task is presented as a 

heavier object. 

Considering the previous assumptions, now we refine our 
previous physical scenario so that it adapts to our dynamic 
load balancing problem. We assume the surface (yard) to be 
a dynamic surface meaning that the hills and valleys of the 
surface may change their height over the time as the loads 
are transferred between processors (this matches well the 
exchange of loads between the nodes). Initially, some 
objects are placed on some positions of the surface which 
are not necessarily flat. We also presume that the objects 
can only move in the direction leading to a neighboring 
node, i.e. all the positions in proximity in directions other 
than the neighboring nodes have infinite height. As the 
clock ticks the start of the game, the objects that were 
previously held in order to avoid their movement are 
released. Each object in the system operates based on the 
laws of physics as in the simple scenario we envisioned 
before. The dynamic property of the surface comes into 
play when an object moves from a hill down to a valley. In 
such a situation, the hill shrinks its height while the depth of 
valley shrinks as well. The magnitude of this shrinkage 
depends on the mass of the transferred object. 
Theorem 2: The load balancing scheme presented in this 
section converges to a nearly perfect load balance. 
Proof. To prove this theorem we show that 1) Each load 
transfer is completed by a known time bound tmax and 2) 
Each load transfer takes the system to a more balanced 
state. To justify our first argument we consider the physical 
model. As in the physical model of our load balancing 
system parameter µk is not zero, we can conclude from 
corollary 2 that there exist some contour c and time instant 
tmax such that the object is trapped in c at the time tmax. To 
show that after each load transfer the system moves into a 
more balanced state. We should consider that under no 
circumstances a load from a more overloaded node would 
send and reside in a less overloaded node. As the object can 
never climb a hill higher than its last position, if the 
difference of the load quantities between two nodes is large 
enough to compensate the communication delay, 
congestion and other factors which are modeled as static 
friction, the load transfer will be initiated, and as was 
shown in the last two arguments, this transfer after a limited 
time takes the system to a more balanced state. Thus, after 
some iterative load balances the system should reach 
equilibrium which corresponds to a near optimal load 
balancing solution. The fact that the system reaches the 
equilibrium is a result directly inferred from the laws of 
physics. 

In load balancing while we are always interested in a 
perfect distribution of loads, this ideal goal may cost us too 
much due to the communication delay, in a way that 
sometimes we rather prefer to ignore the load balancing 
completely. This can be modeled physically as the presence 
of static friction force. Static friction force hinders the 
object from movement if the slope is not steep enough. 
That is if the tangent of the angle which the slope builds 



with horizon as tan β= cot α, in fig.2 is less than a specific 
value of µs the object won’t move. This is the result derived 
in equation 1. 

The constant µs, then can be interpreted as the 
dependency of a task to a node which can be due to the 
dependency of the task to other tasks or resources in that 
node or in the nodes in its proximity. 

Although a solution for distributing the loads over a 
global scope of the network may result in a better load 
distribution, it demands the task to pass multiple hops over 
the network to reach its final destination which not only 
imposes a high communication delay to the system but 
also increases the congestion in the network. It is why 
most of the successful dynamic loads balancing algorithms 
act locally, i.e. each given node exchanges its additional 
loads with immediate neighbors or with the nodes k hops 
away. This limitation for transferring loads to far away 
nodes is modeled in our physical scenario with the kinetic 
frictional force, fk. 

As discussed in the physical scenario, when the object 
moves along the surface, as a result of the friction it loses 
some of its kinetic energy mostly in the form of heat. The 
object is then more tended to be trapped in a local 
minimum in proximity, unless there is a deep valley 
around. The analogy of a system in the presence of kinetic 
friction in load balancing is that a node’s additional loads 
are more tended to be assigned to the local neighbors, and 
only if no local nodes are under-loaded it will be sent to 
farther nodes. 

Finally, the heat produced in the environment due to the 
friction between the objects and the surface can be 
interpreted as the traffic generated as a result of the 
transport of loads in the network. There are multiple pieces 
of evidence that affirm this choice. The produced heat is a 
function of the mass of the object, a constant µk and the 
lengths of the path that the object takes. On the other hand, 
in a network, the traffic stems from the balk of the loads 
being sent over the network (mass’s analogy), the 
probability of staying in a node (this probability increases 
with the increase of µk, as a high value of µk may exhaust 
the object so that it can not escape the local minimums) 
and the time it takes for a task to be received at the 
destination which is again proportional to the length of the 
path. The mapping of the physical parameters as defined in 
the object model to load balancing concepts is shown in 
table 1.  
 

4.2. Modeling the System Parameters 
 

In order to model the system more accurately, we define 
each of the discussed physical parameters as a function of 
some primary load balancing parameters. 

Let G (V,E) be the graph corresponding to the 
interconnection network which is connecting the processing 
nodes together in a multiprocessor. We denote each given 
node of the network with vi and each link between two given 
nodes of vi and vj with ei,j. The quantity of the load assigned 
to a node vi of the network is identified by li,k. To model the 
system more accurately, we further assume that each task 
may be dependant to some other tasks in the system. This 
dependency can be due to the fact that the former task may 
need the results of the other task and hence some 
communication may be necessary. We model these 
dependencies between the tasks with a task graph T whose 
vertices are the tasks labeled by their load quantity and the 

edges represent the dependency relations between the tasks. 
The edges have different weights which model the amount 
of communication between two tasks. Hence, Ti,j denotes 
the dependency of a task i to another task j. The tasks can 
also be dependent to a node due to the need for the 
resources which are present in that node. We show these 
dependencies with another matrix R|L|×|V|, where |L| is the 
number of tasks in the system. 

We assume each link in the network has a known 
bandwidth, length and fault probability, i.e. the probability 
of occurrence of a fault in a time unit. All of these 
parameters are constant over the life time of the system. 
They are considered as the configuration parameters of 
the system which describe the overall system’s attributes. 
We model these link parameters with BW, D, F matrices 
each of dimensions |V|×|V|. Hereafter, we use Xi,j (or 
equivalently xi,j) to refer to an element (i,j) of a matrix X. 
Now that we defined the primary load balancing 
parameters we can describe each physical parameter as a 
function of the load balancing primary parameters. We 
start with the static frictional constant. As previously 
stated, µs(lj,i,vj) is proportional to the dependency of the 
task to other tasks or resources in a node. Hence, we have 

, 0

, ,

, ,

( , )

( , )

j kl

s j i j i k

k

s j i j i j

l v T

l v R

µ

µ

≠

∝

∝

∑  

The tan β  parameter, on the other hand, determines 

whether or not a load should be send to a specific 

neighboring node; hence it is related to the total quantity 

of the load of both processors of source and destination. 

tan β is also inversely proportional to the cost of the link 

which is represented by ei,j in our model. While 

considering tan β,  the algorithm should take into account 

the changes in total load quantities of the source and 

destination nodes after moving the current load and 

should make decisions accordingly. 
 

����	������������������	�	������������������������	�����
 

 

But as this depends on the size of the load to be 

transferred, it cannot be considered here. It would rather 

be taken into account as a safety bound for µs while 

Parameter Equivalent in Load balancing model 

µs The degree of participation of a node in the 
load balancing and the dependency of the 
task to other tasks or resources in the node. 

µk The communication cost of sending a task 
over a network link due to the bandwidth as 
well as the dependency of the task to other 
tasks or resources in its source node or in its 
neighboring node. 

m The load quantity which is a representation 
of the computational complexity or the 
mnemonic size of the load. 

tanβ The difference between the number of loads 
of two neighboring nodes i and j with respect 
to ei,j , i.e. the gradient. 

h The total load quantity of a node. 

Eh The traffic caused by the transfer of loads on 
a link. 

ei,j The distance between two links, the 
communication delay and/or the probability 
of occurrence of fault in a time unit. 



dealing with a specific load. Hence, tan β(vi,vj,ei,j) can be 

derived as 

,

( ) ( )
tan ( )

i j

i j i ,j

i j

h v h v
v ,v ,e

e
β

−
∝  

It is while in reality after considering the effect of load 

transfer on h, the appropriate relation for tan ( )i j i ,jv ,v ,eβ  

would be 

,

,

,

( ) ( ) 2
tan ( , )

i j i k

i j i ,j i k

i j

h v h v l
v ,v ,e l

e
β

− −
∝  

where h(vi) can be calculated with a summation over the 

quantity of all the loads of vi as 

,
( )

i i k

all k

h v l= ∑  

and is a measure of the total amount of load on a node i. 

The weight of a link ei,j contributes to the cost of 

sending a task from a node i to a neighboring destination 

node j. Hence, ei,j depends on the length of the link 

between i and j while it is inversely proportional to the 

bandwidth of the link. The factors indicating a degree of 

safety of the link can also enter this function, as a higher 

value of ei,j resulting in a less steep slope. Thus, ei,j can be 

derived as 

,

,

, ,

,

,

,

,

1

1

(1 )

i j

i j

i j i j

i j

i j

i j d
c

bw

i j

e d

e
bw

e

f

∝

∝

∝

−

 

where fi,j in the third statement is the probability of 

occurrence of fault in a time unit. Hence, 
,

,

,
(1 )

i j

i j

d
c

bw

i j
f−  is a 

measure of the probability that the load does not encounter 

any faults during its transmission. The constant µk is a 

representative of the dependency of the task to the 

resources in a node or to the other tasks on the same 

processor; hence, it hinders the load from being transferred 

to the far away nodes. Hence, µk and µs generally describe 

the same concept. While the former tries to resist the 

transport of a dependant task over the network, the latter 

demands that if the dependant task is being transferred it 

should stay within some proximity of the source node. 

Therefore, we can conclude 
k sµ µ∝ which is interestingly 

also true in the physical world. 
 

5. The Load Balancing Algorithm 
 

A set of different load balancing algorithms have been 

proposed in the literature. Although the proposed 

algorithms are sometimes very efficient, usually what they 

model is an oversimplified model of the systems we are 

dealing with in the real world. Hence, most of them either 

completely neglected some of the critical and yet 

complicated issues of the problem over-optimistically, or 

their algorithms lacks the necessary details and 

justifications for describing a more generic system in a 

way that it seems necessary to redesign the algorithm from 

the scratch for each and any new system. 

In order to address the problems of the past and also to 

bypass the intricacies of modeling a real world system, we 

try to model the load balancing problem with an 

inspiration from the real world of physics where its facts 

are considered as the tangible evidences as we do practice 

it in our everyday life. 

The algorithm we propose here, in the context of 

dynamic load balancing, can be considered as a variant of 

gradient model algorithm which is modeled in a new way 

with the physical parameters. The presence of the 

underlying physical parameters also gives the algorithm 

an evolutionary nature where the overall system tries to 

converge to a minimal energy and yet a more stable state. 

Some other examples of such algorithms are the 

evolutionary algorithms, such as simulated annealing, 

which also have been studied extensively in the past. 
 

5.1. The Main Algorithm 
 

In the previous section, most of the physical parameters 
in our model have been explained mathematically in terms 
of load balancing parameters. Once we derived all of the 
physical parameters, the load balancing algorithm and 
related equations can be immediately drawn by solving 
the equilibrium equations in the physical scenario. 

Yet, the point that is missed is how to balance the 
different physical forces applied to the object as a result of 
the existence of multiple slopes in its neighborhood. The 
direction of the forces applied to the object varies 
depending on the fact that how the edges of the graph are 
mapped to xy plane. To solve this problem we presume 
that any time an object wants to start its movement, we do 
not apply the net force of all the different force vectors to 
it but after calculating the parameters (angle) of each 
slope independently, the object chooses the choicest slope 
stochastically using an arbiter function. This stochastic 
nature can also be considered for some other parameters 
which are not too much rigid like µs and µk. 

As we want the system to converge to a nearly optimal 

state, as the time passes, the value of system parameters 

will get more rigid. Hence, it seems quite logical to 

decrease the stochastic nature of the parameters when 

time passes. 

The condition for initiating the motion of an object in a 

direction is given as tan sβ µ>  from section 2. By 

replacing the tan β and µs parameters, as derived in the 

previous section, the equivalent condition for transferring 

the load li,k from node i to node j is obtained as 
, 0

, ,

,

( ) ( ) i xl
i j

k i k x

xi j

h v h v
R T

e

≠−
> ∑   

To consider the size of the task in the feasibility 

decision, we should decrease the value of tan β by 2li,j/ei,j 

which is the difference of the load quantities of the source 

and destination nodes before and after transferring li,j. 

Hence, the final relation can be expressed as 
, 0

,

, ,

,

( ) ( ) 2 i xl
i j i k

k i k x

xi j

h v h v l
R T

e

≠− −
> ∑  

After replacing the values of ei,j and h we have 
,

,

,

0

, , ,

, , ,

, ,

2

(1 )

i x

i j

i j

l

i j k i k x

x

i x j x i k d
call x all x

bw

i j i j

d R T

l l l

bw f

≠

− − >

−

∑
∑ ∑  

As i might have more than one neighbors and we have 
to decide the direction of load, we may have many of 



these equations for li,k. We will use tan β parameter as an 
input to the stochastic function which chooses the proper 
link. 

In order to guarantee the validity of our load balancing 
model, we should ensure that nothing is missed while 
transferring from the physical model to our load balancing 
model. The exertion of forces to the object has been 
considered in the last paragraph by checking the necessary 
conditions that will cause the object to move. But we have 
not yet modeled the wasting of energy which is a result of 
the application of the dynamic friction to the object.  

After the proper link (if any) for sending the load has 
been chosen, the object will start its movement down the 
chosen slope. While this movement is taking place, the 
object loses some of its total energy in the form of heat in 
the environment. By the time the load is received at the 
destination node, several properties of the physical model 
such as the energy of object, the total quantity of load of 
the nodes, etc. have been changed. Hence, we need to 
manually apply these changes to the parameters in our load 
balancing model accordingly. In order to monitor the 
changes in the energy state of an object, we store the 
potential height which is a measure of the total energy of 
the object in a flag in the load; this flag is initialized at the 
start of the game with the height of the initial position of 
the object, h0. Let us consider that a load li,k on the node vi 
is being transferred to a node vj. The initial energy of the 
load can be calculated as 

0 , ,. i k i x

all x

mgh g l l= ∑  

Before the load is transferred to another node and 

received on the other side of the link, the algorithm 

updates the flag to reflect the energy which will be wasted 

due to the kinetic frictional force. This energy can then be 

calculated as 

, ,h k i j i kE g e lµ=  

And after replacing the physical parameters we get 
,

,
1

,

0

, , , ,

0

, ,(1 )

i x

i j

i j

l

i j i k k i k x

x
h d

c
bw

i j i j

d l R T

E c

bw f

≠

=

−

∑
 

where c0 and c1 in the last equation are some constants 
which should be configured according to the properties of 
the system being modeled. These properties may 
encompass the system criticality and softness, the desired 
QOS, etc. 

The other parameters that should be updated 
immediately, after the destination of the load is 
determined, are the quantity of the loads of the source and 
the destination nodes, i.e. nodes i and j. 

As the load reaches node j, it has lost some of its energy 
as traffic in the link between i and j. This time the object 
has a velocity which let it climb a hill unless the hill is too 
much high. Again as for the case of the stationary load, we 
have to decide to which neighboring node to send the load. 
This time as a result of the inertia of the object, the 
quantity of the loads on the source and destination nodes 
and the link’s weight are not the only effective factors. In 
order to assess the feasibility of taking a path to a 
neighboring node, we use the energy model. Based on the 
energy model, as discussed in section 2, we can determine 
the height of threshold for a neighboring node as the 
potential height; the object will not be able to climb any 

hill with a bigger height than this threshold. The equation 
for calculating the potential height at a time instant t was 
derived in section 2 as 

0 , ,
* 1 1

0

t t

h i h i

i i

t

mgh E E

h h
mg mg

= =

−
= = −

∑ ∑
 

From this equation the following equation is easily drawn 

,* *

1

h t

t t

E
h h

mg
−= −  

where Eh,t is the energy wasted from time t−1 to t. 
Assuming that at each time unit only a single load is 

transferred over a link, we can conclude the sufficient 

condition for the feasibility of using a link as 

,*

1

,

( )
g

h t

t j

i k

E
h h v

l
− − >  

and after some replacements as 
,

,

1
,

0

, , ,
*

1 0

, ,

( )

g (1 )

i x

i j

i j

l

i j k i k x

x

t jd
c

bw

i j i j

d R T

h c h v

bw f

≠

− − >

−

∑
  

Assuming that the load li,k on a processor i is being sent 

to another processor j. Here, *

1th − denotes the value which 

is previously stored in a flag of the load. 

One interesting thing to consider is that after some 

simple replacements the last inequality could be written as 
*

1 , ( )t s i j jh e h vµ− − >  

which is another representation of the equation derived 

in theorem 1, only if the contour is selected to include the 

nodes located ei,j links away, i.e. rc,p = ei,j . 
 

5.2. Improvements and Heuristics 
 

In the previous section, we probed into the general 
structures and equations under which the load balancing 
algorithm is performed. In this section, we present some 
improvements on the core of the algorithm in order to 
make it more robust. In particular, we will propose an 
approach for obtaining stochastic arbitrator function of a 
parameter from a set of available deterministic results of 
that parameter. This stochastic function, rather than 
constricting itself to a rigid value, in a fuzzy manner 
define correctness function for each parameter and assign 
probabilities to each possible value according to the 
defined measure of correctness. The rigidity of the correct 
values increases over time in an attempt to make the 
system converge to an optimal solution. Hence, the 
algorithm follows an evolutionary approach for 
dynamically configuring the values of parameters. 

The first case of such a stochastic function is used for 
choosing the best neighbor while the load is stationary and 
it is to be transferred from the node to which it was 
assigned (generated). The deterministic value of the 
angle’s tangent for each link is obtained from 

,

,

( ) ( )i j

i j

i j

h v h v
a

e

−
=  

where 0 < j ≤ m , and m is the number of neighboring 
nodes of i satisfying the feasibility criteria. 

Having calculated this value for each link of the node i, 
these values are fed to an arbitrator function which 
stochastically chooses the proper link. Without loss of 
generality, we assume that ai,j values for all j‘s are already 



sorted in the descending order of magnitude, i.e. ai,1  has 
the biggest value. The stochastic arbiter function gives the 
most of the chance to the links which are the steepest 
considers some rare probabilities for choosing the less 
steep slopes. This function calculates the probabilities 
based on a probabilistic model of free trials. Note that the 
probability of success for each trial is not fixed. Let pi,j(t) 
be the probability of choosing the node j as the destination 
for the load li,k at a time t from the beginning of trial. This 
function can be derived as 

( )1 ,0 ,

, ,1
,0 ,

| |
( ) 1 ( ) 1 , 1

| |

k i i k

i k i x

i i m

a a
t t k m

a a
β β

− ⎛ ⎞−
= − − < ≤⎜ ⎟⎜ ⎟−⎝ ⎠

∑  

with the initial value of 

,1 ,

max

,1 0( ) 1

i i mc a a

t t

i t eβ β
−

−
−= −  

where 0 < β0 < 1 is the initial probability of choosing a 
link other than the steepest one, and tmax and c are the 
constants which control the convergence of the stochastic 
function to the rigid maximum value, i.e. ai,1 as the time 
passes. 

In the same way, once the load has been received in the 
destination, the algorithm should decide to which 
neighboring node to transfer the load if any such a node 
that satisfies the feasibility criteria ever exists. 

The ai,j values are calculated this time from the equation 

,*

, 1

,

( ) ( )
g

h t

i j t j

i k

E
a t h h v

l
−= − −  

where ai,j‘s are fed to the same arbiter function as the 
one proposed in the previous section to produce the 
stochastic results. The output of stochastic arbiter function 
then specifies the link which should be chosen as the next 
destination of the load li,k. 
 

6. Conclusions 
 

In this paper, by envisioning the particle and place 
scenario in dynamic physics we proposed a framework for 
modeling load balancing in multiprocessors. We showed 
that this model converges to the nearly optimal solution 
though the rate of this convergence depends on the choice 
of the parameters. 

Most of the previously proposed load balancing 
algorithms have ignored some important issues like task 
dependencies, resource constraints, and fault tolerance, 
and hence they fail to adapt to the intricate systems in real 
world. On the other hand, the complexities present in the 
real systems make the problem of presenting a general 
load balancing model for such systems very difficult if not 
impossible. The goal of this work is to propose a scheme 
for modeling dynamic load balancing in multiprocessors 
using a tangible physical model in a way that each new 
system can be easily modeled by identifying the effect and 
strictness of each of the considered factors in the system 
understudy and fine-tuning the configuration parameters 
which describe systems characteristics. 

This study is interesting in the sense that while the 
proposed model considers most of the important factors of 
load balancing, it avoids the intricacies of modeling the 
real-world systems by taking inspiration from the world of 
physics which is much easier to study and sense. 
 

 
 

References 
 

[1]  J. E. Boillat, “Load Balancing and Poisson Equation in a 
Graph”, Concurrency: Practice and Experience, vol. 2, 
no. 4, pp. 289-313, Dec. 1990. 

[2]  R.M. Bryant and R.A. Finkel, “A Stable Distributed 
Scheduling Algorithm”, Proc. Second Int'l Conf. 
Distributed Computing Systems, pp. 314-323, 1981. 

[3]  T. Bultan and C. Aykanat, “A New Mapping Heuristic 
Based on Mean Field Annealing”, Journal of Parallel 
and Distributed Computing, vol. 16, pp. 292-305, 1992. 

[4]  T.L. Casavant and J.G. Kuhl, “Effects of Response and 
Stability on Scheduling in Distributed Computing 
Systems”, IEEE Trans. Software Eng., vol. 14, no. 11, pp. 
1,578-1,588, Nov. 1988. 

[5]   T.L. Casavant and J.G. Kuhl, "A Taxonomy of 
Scheduling in General-Purpose Distributed computing 
Systems”, IEEE TOSE, vol. 14, no. 2 pp. 141-154, Feb. 
1988. 

[6]  G. Cybenko, “Dynamic Load Balancing for Distributed 
Memory Multiprocessors”, Journal of Parallel and 
Distributed Computing, vol. 7, no. 2, pp. 279-301, Oct. 
1989. 

[7]  D.L. Eager, E.D. Lazowska and J. Zahorjan, “A 
Comparison of Receiver-Initiated and Sender-Initiated 
Adaptive Load Sharing”, Performance Evaluation, vol. 6, 
pp. 53-68, 1986. 

[8]  H. Heiss and M. Schmitz, “Decentralized Dynamic Load 
Balancing: The Particles Approach”, Information 
Sciences, vol. 84, no. 1-2, pages 115--128, May 1995. 

[9]  D. Henrich, “The Liquid Model Load Balancing 
Method”, Journal of Parallel Algorithms and 
Applications (Special Issue on Algorithms for Enhanced 
Mesh), vol. 8, 285-307, 1996. 

[10]  S.H. Hosseini, B. Litow, M. Malkawa, J. McPherson, 
and K.Vairavan, “Dynamic Load Balancing for 
Distributed Memory Multiprocessors”, Journal of 
Parallel and Distributed Computing, vol. 7, no. 2, pp. 
279-301, Oct. 1989. 

[11]  C. Hui and S. T. Chanson,  “Hydrodynamic Load 
Balancing”, IEEE Transactions on Parallel and 
Distributed Systems, Vol. 10, No. 11, November 1999. 

[12] C.H. Lin and R.M. Keller, “The Gradient Model Load 
Balancing Method”, IEEE Trans. Software Eng., vol. 13, 
no.1, pp. 32-38, Jan. 1987. 

[13]  H. Mühlenbein, M. Gorges-Schleuter and O. Krämer, 
“New solutions to the mapping problem of parallel 
systems: The evolution approach”, Parallel Computing, 
vol. 4, pp. 269-279, 1987. 

[14]  P. Sadayappan, F. Ercal and J. Ramanujam, “Cluster 
partitioning approaches to mapping parallel programs 
onto a hypercube”, Parallel  Computing, Vol. 13, pp.1-
16, 1990. 

[15]  W. Shu and L.V. Kale, “A Dynamic Scheduling Strategy 
for the Chare-Kernel System”, Proc. Supercomputing '89, 
pp. 389-398, Nov. 1989. 

[16]  J.A. Stankovic, “Stability and Distributed Scheduling 
Algorithms”, IEEE Trans. Software Eng., vol. 11, no. 10, 
pp.1141-1152, Oct. 1985. 

[17]  M.M. Theimer and K.A. Lantz, “Finding Idle Machines 
in a Workstation-Based Distributed Systems”, IEEE 
TOSE, vol. 15, no.11, pp. 1444-1457, Nov. 1989. 

[18]  R. Williams, “Performance of dynamic load balancing 
algorithms for unstructured mesh calculations”, 
Concurrency: Practice and Experience, vol. 3, 457-481, 
1991. 

[19]  C.Z. Xu and F.C.M. Lau, “Optimal Parameters for Load 
Balancing with the Diffusion Method in Mesh 
Networks”, Parallel Processing Letters, vol. 4, no. 1-2, 
pp. 139-147, June 1994. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


