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Abstract

Models of simulation program with integrated circuit
emphasis (SPICE) are currently playing a central role
in the connection between circuit design and chip fab-
rication communities. An automatic model parameter
extraction system that simultaneously integrates evolu-
tionary and numerical optimization techniques for op-
timal characterization of very large scale integration
(VLSI) devices has recently been advanced [1]. In this
paper, to accelerate the extraction process, a paralleliza-
tion of the genetic algorithm (GA) for VLSI device
equivalent circuit model parameter extraction is devel-
oped. The GA implemented in the extraction system is
mainly parallelized with a diffusion scheme on a PC-
based Linux cluster with message passing interface li-
braries. Parallelization of GA is governed by many
factors, which affect the quality of extracted parame-
ters and its efficiency. The diffusion GA is superior
to an isolated GA, and the superiority of the diffu-
sion GA is significant when the number of devices to
be optimized is increased. Theoretical estimation and
preliminary implementation show that there is an op-
timal number of processors with respect to the number
of devices to be extracted. Benchmark results, such as
speedup and efficiency including accuracy of extraction
are presented and discussed for different sets of realis-
tic multiple VLSI devices to show the robustness and
efficiency of the method. We believe that the practi-
cal implementation of the parallel GA approach benefits
the engineering of SPICE model parameter extraction
in modern electronic industry.

1. Introduction

The simulation program with integrated circuit em-
phasis (SPICE) models, such as BSIM, HiSIM, and

PSP models characterize very large scale integration
(VLSI) device’s electrical characteristics (e.g., current-
voltage (I-V) curves), which are associated with a set
of optimized parameters [1]-[5]. For the problem of the
SPICE model parameter extraction, it usually refers
to several hundred I-V points. It forms a multidi-
mensional nonlinear optimization problem; therefore,
model parameter extraction of the VLSI device is a
time consuming task, and requires engineering exper-
tise to find a set of proper parameters with reasonable
physical meanings [1]-[6]. Many researches for model
parameter extraction, such as pure GA or numerical
optimization methods have been reported [1],[6]-[11],
and most of them were performed separately. Unfortu-
nately, such methods may not work efficiently for VLSI
devices in the regime of deep-submicron. To overcome
the problem above, we have recently developed a hy-
brid intelligent model parameter extraction technique
which bases on the genetic algorithm, the monotone it-
erative Levenberg-Marquardt method, and the neural
network algorithm [1]. A prototype was successfully
implemented according to the proposed methodology.
Extraction in a global sense shows good accuracy for
the 90 nm n-type metal-oxide-semiconductor field ef-
fect transistors (NMOSFETs) by several testing cases.
However, in order to accelerate the extraction process
of the developed prototype for larger scale optimization
problem, it is necessary to perform the parallelization
of the system.

In this paper, we successfully implement a parallel
optimization platform for VLSI device model parame-
ter extraction on a Linux-based PC cluster with mes-
sage passing interface (MPI) libraries. The GA imple-
mented in the early developed system with 16 PCs is
parallelized with a diffusion scheme which forms a 2D-
grid network. When the stage of GA is performed on a
processor, chromosomes are simultaneously exchanged
among those results that computed by its neighbor
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4 processors. Optimization process is then going to
the next step according to the system configuration
of the hybrid intelligent model parameter extraction
technique [1]. Extraction will be terminated when the
specified stopping criterion is met. Our extraction ex-
perience shows that this approach has distinguished
results when the dimension of the problem is signif-
icantly large, such as parameter extraction for more
than 8 VLSI. Compared with an isolated parallel GA,
more than 33% difference in the evolution time is found
between the two parallelization algorithms when 16 de-
vices are optimized. In terms of several benchmarks,
such as speedup, efficiency, and accuracy, results for
different examples with multiple VLSI devices are ex-
amined to show the robustness and efficiency of the
method. Theoretical estimation and preliminary im-
plementation show that there are an optimal number of
processors with respect to the number of devices to be
extracted. For example, according to our theoretical
calculation, the optimal number of units is 18 which
is close to the practically obtained result (16 units),
shown in the table 3, 4, and 5, respectively.

This article is organized as follow. In Sec. 2, we
briefly describe our extraction system and state the
architecture of parallel computing algorithms. In
Sec. 3, we show the extraction results for single and
multiple deep-submicron and sub-100 nm N-MOSFET
devices. Finally, we draw conclusions.

2. Parallelization of the Model Parame-
ter Extraction System

Under this section, the proposed architecture for the
parallel optimization platform is described first, fol-
lowed by a theoretical estimation on the optimal par-
allel performance of the diffusion GA.

2.1 The Parallel Architecture

Mathematically, model parameter extraction is a
multidimensional nonlinear optimization problem,
where the number of parameters is larger than 100.
The main goal of device model parameter extraction
is to minimize the error between the extracted result
and the measurement, where the extracted result is
obtained through the equation below:

Iex
DS = ID(−→p ,−→v ,

−→
d ), (1)

where the Iex
DS is the I-V functions (e.g., I-V points,

shown in Fig. 4) to be optimized; the ID is a selected
compact model [1]-[4], which contains more than 40

Figure 1. The architecture of the developed
extraction system.

subequations in the BSIM model, for example. Vectors
−→p , −→v , −→d are the parameter sets to be extracted, the
bias condition for simulation, and the device geometry,
respectively. There are at least 50 I-V points forming
an I-V curve, 5 I-V curves forming a set of I-V curves,
and 4 sets of I-V curves to characterizing a single
device behavior. Therefore, a device model parameter
extraction problem can be formed as follow:

min(
√∑

d

∑
cs

∑
c

∑
p

(Iex
DS − Ime

DS)2), (2)

where Ime
DS is the measured I-V point, and d, cs, c, p

refer to the number of devices, curve sets, curves, and
I-V points, respectively. When perform a model para-
meter extraction with 16 devices as target, there are
16000 I-V points need to be minimized, and the num-
ber of parameters are more than 100. The nonlinear
optimization problem is subject to proper physical con-
straints.

This large scale optimization problem with mas-
sive computation is performed on our early proposed
extraction system. The developed hybrid optimiza-
tion platform integrates the genetic algorithm, the
monotone iterative Levenberg-Marquardt method, and
the neural network algorithm, shown in Fig. 1. When
the GA obtains a solution, the monotone iterative
Levenberg-Marquardt method is activated to search for
the nearby local optima, and the neural network algo-
rithm suggests proper searching directions according
to the current result and physical constrain. The de-
tailed description of this extraction system is reported
somewhere else [1].

Although the extraction system has been proposed
and implemented successfully, facing a larger scale



complex optimization problem with massive compu-
tation still requires enormous amount of time, thus
a parallelization technique is required. On the other
hand, the time acquired by the monotone iterative
Levenberg-Marquardt method and neural network al-
gorithm can be regarded as instant compared with the
time cost of GA. Therefore, only the GA is required
a parallelization technique. Application of paralleliza-
tion to GA provides an efficient way to reduce the com-
puting time [12]-[15]. GA is a self-adaptive optimiza-
tion strategy that mimics a living system, it usually
contains five operations: encoding, fitness evaluation,
selection, crossover, and mutation. We briefly state
GA methods for the MOSFET device model parame-
ter extraction. The design of gene encoding strategy
depends on the property of problem. In this problem
model, there are more than 100 parameters and all vari-
ables are floating-point numbers. The fitness function
measures the error between simulated result and real-
istic measurement data. As for the reproduction issue,
we adopt the tournament selection with floating point
operators as the selection strategy not only this hy-
brid strategy selects better chromosomes but also keeps
weak ones for few generations to achieve higher pop-
ulation diversity. For the crossover scheme, in MOS-
FET device model, all parameters to be optimized can
be classified into several categories and each of them
stands different physical characteristics [1]. Under this
consideration, we take a uniform crossover scheme to
preserve the physical characteristics of the parents; and
based on our simulation experience, it is more effective
than single and two-point crossover schemes. Finally,
the mutation strategy changes the mutation rate dy-
namically to keep the population diversity. Such evo-
lutionary optimization may take a long time when the
dimension of investigated problem is large; in partic-
ular, for nanoscale VLSI device model parameter ex-
traction [1]. To reduce the time cost of optimization,
parallel schemes are taken into consideration.

It is known that the parallelization of GA can be
classified into five different models, the isolated, the
ring migration, the neighborhood migration, the un-
restricted migration, and the diffusion GA [15]. Each
unit in the isolated configuration performs the extrac-
tion tasks separately, and there is no data commu-
nication among units. The obvious advantage of the
isolated architecture is spending less communication
time in the extraction procedure; however, the isolated
evolutionary environment may lead to the striking de-
crease of the population diversity. Contrast to the iso-
lated GA, each extraction unit of the migration GA
is treated as a separated breeding unit, and the migra-
tions between each unit occur from time to time to pro-
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Achieve goal? Terminate

GA for each unit
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server receives optimized
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Figure 2. An execution flowchart of the par-
allel GA that implemented in our model para-
meter extraction system.

mote the proliferation of good genetic building block.
Most famous GA migration methods are the ring, the
unrestricted, and the diffusion GA. The method of the
diffusion GA implemented in this work is shown below.

Begin Diffusion GA
For each unit
Begin

Initialization
While not finished
Begin

Evaluation
Send self results to 4 neighbors
Receive results from 4 neighbors
Selection
Crossover
Mutation

End While
End For

End Diffusion GA

Each individual is assigned to a specific location,
and the migration is permitted between a set of
specific neighbors.

In advanced VLSI device model parameter extrac-
tion, parameters according to their engineering mean-
ings can be classified into several groups, and each



group represent specific physical phenomenon [1]. By
applying the diffusion GA, we can assign each column
in the 2D-grid units to optimize different groups of pa-
rameters. This configuration also corresponds to our
optimization method thus here we conclude that the
diffusion GA is the most suitable distributed config-
uration. According to our extraction experience, the
isolated GA and diffusion one are compared and fo-
cused for a series of comparison. The parallel extrac-
tion system is implemented on a PC-based Linux clus-
ter with 16 units. Each unit is connected to a high
speed network switch physically and performs auto-
matic parameter extraction. The entire system archi-
tecture can be classified into two modules, the manage-
ment server and the extraction cluster. The server con-
trols whole extraction system. It analyzes the complex-
ity of the problem. Based on the analysis results, the
server sets the configurations of the system architecture
up, and allocates proper computing resources. In the
extraction process, the server monitors the extraction
process, backs necessary information up, controls the
extraction flow, and communicates with the other ex-
traction modules. The extraction cluster consists many
extraction units, each one can be regarded as an inde-
pendent extraction entity or participate in the distrib-
uted parameters extraction process under the control of
the extraction management server. Figure 2 shows the
working flow of our distributed parameter extraction
engine. Once the procedure starts, the environment is
initialized firstly, and each unit (or processor) begins
their job, and sends the current result to server if data
transmission is required. This procedure loops until
the fitness score is reached or the evolution time is up.

2.2 A Theoretical Estimation

Furthermore, a theoretical estimation on the
optimal parallel performance of the diffusion GA is
discussed for the implemented parallel extraction
system. Assume that there are p processors, the
communication time cost is Tc, n indicate the pop-
ulation size, and the total evaluation time is Tf . In
our implemented diffusion GA, we set the number of
neighbor of each unit as 4. Thus the entire time cost
for one generation Tp is given by

Tp = pTc +
nTf

p
+ 4pTc = 5pTc +

nTf

p
, (3)

where the 4pTc is the extra communication cost from
the diffusion GA. As more processors are used, the
computation time Tp decreases as desired, but the com-
munication time increases. This tradeoff entails the ex-
istence of an optimal number of processors that mini-

mizes the execution time. To find the optimal result,
we set ∂Tp/∂p = 0 and solve the corresponding equa-
tion for p:

p∗ =
√

nTf

5Tc
. (4)

The time that a sequential GA uses in one genera-
tion is Ts = nTf , and to ensure that the parallel imple-
mentation has a better performance than a sequential
GA the following relationship holds

Sp =
Ts

Tp

=
nTf

(nTf/p) + 5pTc
(5)

=
nTf/5Tc

(nTf/5Tcp) + p

> 1.

This ratio is the parallel speedup for the diffusion
GA, and it formalizes the intuitive notion that parallel
does not benefit problems with very short evaluation
times. Another concern when implementing parallel al-
gorithms is to keep the processor utilization high. For-
mally, the efficiency of a parallel program is defined as
the ratio of the parallel speedup over the number of
processors:

Ef =
Ts

Tpp
=

Sp

p
. (6)

Theoretically, the parallel speedup should be equal
to the number of units to be used, and the effi-
ciency equals 100%.However, the cost of communica-
tions causes the efficiency to decrease as more units
are used. To set an economical number of units (pe)
that maintain a pre-estimated efficiency Êf , we let Eq.
(6) equal to Êf and solve the corresponding equation
for p. The computed pe is given by

pe =

√
1 − Êf

Êf

nTf

5Tc
. (7)

We note that pe = p∗ when Êf is 0.5. The max-
imum speedup achievable by the diffusion GA equals
half optimal number of units. In our experiment, the
communication time cost Tc is approximately 32 ms,
and the evaluation time Tf is around 0.068 second for
16 devices simulation, and the population size is set to
800. As a result, from Eq. (4), we have

p∗ =
√

nTf

5Tc
=

√
800 ∗ 0.068

5 × 32 × 10−3
∼= 18.44. (8)
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Figure 3. A comparison of the time cost ver-
sus the number of target devices for extract-
ing multiple devices with the BSIM4 model
(more than 100 parameters have to be opti-
mized with respect to 1600 I-V points) by us-
ing the 16 extraction units with the isolated
and the diffusion GAs. The root-mean-square
(RMS) error is set to be 75%, 25%, and 7% for
the leakage current, linear and saturation re-
gions, respectively.

According to the point of view above, if more units
are included in the parallel extraction system, the
speedup will not make any further improvement; more-
over, the speedup might decrease due to heavy com-
munication in the used network. We practically imple-
ment such parallelization schemes in our hybrid opti-
mization prototype for VLSI device model parameter
extraction. Achieved results confirm the theoretical es-
timation.

3 Results and Discussion

In this section, three issues are examined. The first
one shows the performance comparison of the isolated
and diffusion GA, the second issue demonstrates the
robustness of our optimization method. Finally, the
parallelization configuration of this work is discussed.
In our extraction experiment, the industrial standard
BSIM4 SPICE model is adopted. Figure 3 shows
a comparison of the amount of evolution time with
respect to the number of extracted devices between
the isolated and the diffusion GA. As show in this
figure, the evolution time is almost the same as the
search domain is small. However, when the search
domain is increased, i.e., the number of devices to be
extracted is greater than 4 devices, the superiority
of the diffusion GA is observed. When the number
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Figure 4. The extracted (solid line) and mea-
sured (dot line) for the 350 nm N-MOSFET
with the BSIM4 SPICE model, where the de-
vice width is 1.2 µm. Plot (a) is the result of
ID−VD, where gate bias (VGS) varies from 0.4
(the lowest curve) to 1.4 V with step = 0.2 V
and bulk bias (VBS) = 0 V and (b) is the result
of ID − VG, where VBS varies from 0 (the left
curve) to -1.2 V with step = 0.3 V.

of the target devices is increased to 16, the 33%
speedup of the evolution time of the diffusion GA is
observed, compared with the speedup of the isolated
one. However, for problem with small search domain,
such as 1 or 2 devices, the difference between two par-
allel methods is insignificant. With this experiment,
we suggest that the diffusion GA is one of suitable
distributed methods in parallelization for this problem.

We further perform a series of experiments to exam-
ine the accuracy and efficiency of the proposed method.
Selecting one result from 16 devices, Figs. 4 and 5 show
the optimized result, where Fig. 4 is the I-V curves and
Fig. 5 is the first derivatives of the corresponding orig-
inal I-V curves. Comparison between the measurement
data (the dot lines) and the simulation (the solid lines)
with the two different sets of the extracted parame-
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Figure 5. The derivatives of the extracted
(solid line) and measured (dot line) for the
same device shown in Fig. 4. Plot (a) is the
result of ID − VD, where VGS varies from 0.4
(the lowest curve) to 1.4 V with step = 0.2 V
and VBS = 0 V and (b) is the result of ID − VG,
where VBS varies from 0 (the left curve) to -1.2
V with step = 0.3 V.

ters demonstrates good accuracy of the optimization
method. Table 1 and 2 shows the extraction result for
16 N-MOSFETs of 90 nm technology. As shown in
this table, RMS error of curves is strictly within 3%
and 6% for all original curves and the first derivative
of all original curves, respectively. We note that the
first derivatives with respect to the curves of ID − VD

and ID − VG is defined by

ID − V ′
D =

∂ID − VD

∂VD
(9)

and

ID − V ′
G =

∂ID − VG

∂VG
. (10)

Figures 4 and 5, and Table 1 and 2 confirm the
accuracy of the proposed method with respect to

Table 1. A RMS error list of the optimized pa-
rameter compared with the measured data for
16 CMOS devices. The device geometries are
in µm. The oxide thickness of target devices
are 3.36 nm and the working temperature is
settled at 298.15 k.

Errors
Device Geometry ID − VD ID − VG

(µm/µm)
L/W (0.09/0.6) 2.81% 2.41%
L/W (0.35/0.6) 2.24% 2.34%
L/W (0.80/0.6) 1.38% 1.93%
L/W (1.2/0.6) 1.34% 0.98%
L/W (0.09/1.2) 2.99% 2.74%
L/W (0.35/1.2) 2.18% 2.36%
L/W (0.80/1.2) 1.25% 2.19%
L/W (1.2/1.2) 1.07% 0.92%

L/W (0.09/10.0) 2.32% 2.45%
L/W (0.16/10.0) 2.21% 2.51%
L/W (0.18/10.0) 1.98% 2.05%
L/W (0.24/10.0) 1.79% 2.21%
L/W (0.35/10.0) 2.84% 2.63%
L/W (0.50/10.0) 2.65% 2.84%
L/W (0.80/10.0) 2.89% 2.37%
L/W (1.2/10.0) 2.59% 2.31%

different number of extracted NMOSFET devices.

As shown in Fig. 6, the experiment verifies the ca-
pability of the implemented parallel extraction system
with respect to different number of working processors
and different problem sizes. The accuracy for all
extracted VLSI devices is strictly set to be within 3%
error for all original curves and 6% error for the first
derivative of all original curves. Table 3 to 5 shows the
benchmark results and confirms that the speedup is
increased as the number of units is increased. On the
other hand, it is known that the efficiency appears to
have a trend of decrease which confirms the optimal
parallelization of GA [14]-[15]. We concluded that the
most suitable number of processors and acceptable
execution time should be 8 processors for extract-
ing 4 and 8 devices with the BSIM4 SPICE model
and 16 processors for extracting 16 devices. More
detailed data are listed in Tab. 3, 4, and 5, respectively.



Table 2. A RMS error list for 16 CMOS de-
vices. ID − V ′

D and ID − V ′
G refer to the first

derivatives of ID − VD and ID − VG, respec-
tively.

Errors
Device Geometry ID − VD’ ID − VG’

(µm/µm)
L/W (0.09/0.6) 5.95% 5.79%
L/W (0.35/0.6) 5.67% 5.12%
L/W (0.80/0.6) 3.34% 2.35%
L/W (1.2/0.6) 3.38% 1.84%
L/W (0.09/1.2) 4.75% 5.41%
L/W (0.35/1.2) 3.58% 3.92%
L/W (0.80/1.2) 2.68% 4.08%
L/W (1.2/1.2) 1.08% 1.44%

L/W (0.09/10.0) 3.62% 3.56%
L/W (0.16/10.0) 2.41% 3.89%
L/W (0.18/10.0) 2.83% 2.45%
L/W (0.24/10.0) 2.59% 3.21%
L/W (0.35/10.0) 5.42% 5.84%
L/W (0.50/10.0) 5.03% 5.98%
L/W (0.80/10.0) 5.25% 5.79%
L/W (1.2/10.0) 5.82% 4.94%

Table 3. Performance comparisons of the par-
allelization with respect to 4 devices using
the diffusion GA approach.

Units Time Speed up Efficiency
(sec.)

1 34581 1 100%
4 13098 2.64 66.00%
8 8214 4.21 52.62%
16 6276 5.51 34.43%

Table 4. Performance comparisons of the par-
allelization with respect to 8 devices using
the diffusion GA approach.

Units Time Speed up Efficiency
(sec.)

1 90984 1 100%
4 39048 2.33 58.47%
8 23963 3.84 48.12%
16 15648 5.81 36.34%
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Figure 6. Efficiency comparison of the exper-
iment. The dash lines are the theoretical pre-
dictions and the solid lines are the experi-
mental results for (a) Tf = 17 ms, (b) Tf = 34
ms, and (c) Tf = 68 ms, respectively.



Table 5. Performance comparisons of the par-
allelization with respect to 16 devices using
the diffusion GA approach.

Units Time Speed up Efficiency
(sec.)

1 260772 1 100%
4 105150 2.48 62.00%
8 53546 4.87 60.87%
16 34043 7.66 47.87%

4. Conclusions

In this paper, parallelization of the genetic al-
gorithm for VLSI device equivalent circuit model
parameter extraction has been developed. The GA
implemented in the extraction system has mainly been
parallelized with a diffusion scheme on a 16-PC-based
Linux cluster with MPI libraries. Parallelization
shows that the diffusion GA is superior to an isolated
GA, and the superiority of the diffusion GA is sig-
nificant when the number of devices to be optimized
is increased. Estimation on the optimal number of
processors with respect to the number of devices to be
extracted was considered. Preliminary implementa-
tion has shown a good agreement with the theoretical
estimation in the developed prototype. Speedup and
efficiency including accuracy of extraction have been
reported and discussed for different sets of realistic
multiple VLSI devices. The practical implementation
of parallel GA approach benefits the engineering
of SPICE model parameter extraction. To validate
the developed parallel intelligent model parameter
extraction prototype for sub-65 nm VLSI devices,
more advanced SPICE models, such as HiSIM and
PSP models are currently implemented in this system.
In addition, we perform the extraction on a 32-units
PC-based Linux cluster for much higher performance
computation.
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