
Compiler And Runtime Support For
Predictive Control Of Power And Cooling

Henry G. Dietz and William R. Dieter
Electrical and Computer Engineering Department

University of Kentucky
Lexington, KY 40506-0046

{hankd, dieter}@engr.uky.edu

Abstract

The low cost of clusters built using commodity compo-
nents has made it possible for many more users to purchase
their own supercomputer. However, even modest-sized clus-
ters make significant demands on the power and cooling in-
frastructure. Minimizing impact of problems after they are
detected is not as effective as avoiding problems altogether.
This paper is about achieving the best system performance
by predicting and avoiding power and cooling problems.

Although measuring power and thermal properties of a
code is not trivial, the primary issue is making predictions
sufficiently in advance so that they can be used to drive pre-
dictive, rather than just reactive, control at runtime. This
paper presents new compiler analysis supporting interpro-
cedural power prediction and a variety of other compiler
and runtime technologies making feed-forward control fea-
sible. The techniques apply to most computer systems, but
some properties specific to clusters and parallel supercom-
puting are used where appropriate.

1. Introduction

At all levels, power and cooling issues are becoming crit-
ical factors in computer design and operation. The problem
with power and cooling is that, unlike most other perfor-
mance criteria, power and cooling are integrative system-
level effects with relatively poor measurement facilities,
long time constants, and significant hysteresis.

Commercially available processor and motherboard de-
signs generally do not provide sensors that can measure en-
ergy or power (energy consumed per unit time). Some lap-
top computers employ intelligent batteries that can provide
rough readings, and external meters also can be used, but
these measurements are averaged over relatively large in-
tervals and convolve processor power use with that of other

components. The runtime system may be able to note which
components are contributing to the current power consump-
tion, but distinguishing the individual contributions is diffi-
cult and accuracy is further degraded by the process.

More targeted thermal sensors exist on many mother-
boards, but thermal sensing can take as long as 5 ms to
10 ms and there is significant hysteresis. For example, tem-
perature at a sensor may continue to rise long after power
consumption at the heat source has been dramatically re-
duced. One of the authors has an old laptop that senses
temperature to control a fan so that a maximum operational
temperature is never exceeded, but the fan stops immedi-
ately when power is turned off. The annoying result is that
the laptop frequently overheats just after being turned off,
and a thermal interlock will not let it power on again until
the temperature has dropped to be within range... which can
take quite a while without a fan running. It is precisely this
type of hysteresis that makes predictive thermal manage-
ment necessary: by the time a problem is directly sensed, it
is usually too late to correct it.

Any annotation of code with energy consumption esti-
mates must support predicting behavior far enough into the
future to be useful in the timescale in which the system will
be controlled by the runtime system. That timescale ranges
from hundreds of microseconds to seconds: very far into
the future given a processor that executes thousands of in-
structions every microsecond. Standard engineering prac-
tice provides neither compiler nor runtime technologies able
to hoist predictions about power and thermal properties of a
region of code so far in advance of the code’s execution.

In Section 2, we present a methodology by which a com-
piler (or an assembler, linker, or loader) can use static anal-
ysis of instruction-level energy use to construct power and
cooling predictions looking many thousands of instructions
ahead. Techniques for efficiently transmitting the predic-
tions to the runtime control and a framework using this pre-
dictive ability in support of multiple version coding also are

1-4244-0054-6/06/$20.00 ©2006 IEEE

presented. Section 3 describes a method for creating or re-
fining predictions at runtime, as well as guidelines for run-
time use of predictions. The contributions are summarized
in Section 4.

2. Compiler Techniques

An increasing number of compiler researchers are fo-
cusing on development of compiler technology that treats
power consumption as a first-class performance parameter
for compilers to optimize [6, 13]. Ironically, the compiler
technology we advocate in this paper does not promise any
major advances in compiling code to use less power. Our
compiler contribution centers on converting instruction-
level energy estimates into a mechanism efficiently support-
ing predictive control.

At the instruction level, compile-time estimation of
power consumption is possible using any of a wide variety
of approaches [17, 4, 15]. Many of the techniques discussed
in the literature use detailed architectural models, but such
models are difficult to create and maintain for the processors
and other subsystems commonly used in cluster nodes. The
difficulty is further compounded by the fact that different
revisions of a part often have different power attributes and
documentation of architectural details is not always freely
available. Thus, we prefer to use an instruction-level ac-
counting method that is based on empirical measures. Such
a technique also can account for costs associated with spe-
cific system calls, which defy architectural modeling.

In order to provide higher-resolution power information
at runtime, Bellosa et al [2, 3] propose a methodology in
which a calibration technique is used to associate power
costs with specific performance counter events (e.g., cache
misses) that closely correspond to causes of power changes
but can be sampled faster. Compiler technology for pre-
dicting many of these performance counter events is fairly
mature; for example, Chi and Dietz were performing suffi-
ciently detailed cache miss analysis in 1989 [5]. It is even
simpler to use calibration, perhaps by fractional factorial
experiments, to associate energy consumption with static
program attributes that might not be tracked by hardware
performance registers – such as energy consumed by each
type of instruction. For cluster computing, we also can take
advantage of the inherent homogeneity of the system; it is
feasible to augment a single prototype node with special-
ized, potentially expensive, current and/or thermal probes
to obtain calibration data that will be highly accurate for a
cluster of identical, but uninstrumented, nodes.

For the purposes of this paper, it is sufficient to appre-
ciate that there are many viable ways to determine upper
bound, lower bound, and expected (average) energy con-
sumption for each instruction. Combining that data with
pipelined scheduling logic such as that already in most com-

main(...) {
A g(...); B g(...); C

}
g(...) {

D if (E) { F g(...); G } H
return;

}

Figure 1. Sample Recursive Program

main: A goto g;
x: B goto g;
y: C goto exit;
g: D if (!E) goto t;

F goto g;
z: G
t: H on ... goto x, y, z;

Figure 2. goto-Converted Recursive Program

pilers trivially yields good energy, execution time, power,
and heat estimates for a basic block of code at a time.
Prediction could thus be as simple as inserting an instruc-
tion posting the predicted value(s) at the start of each basic
block. The problem is that basic blocks are generally far too
small to be a useful unit of prediction for power and thermal
control at runtime.

2.1. Prediction Lookahead Analysis

A basic block contains no control flow: every instruc-
tion will be executed if any instruction is executed. Predict
longer-term future behavior is fundamentally similar to the
analysis needed to perform very deep speculative execution:
the difference is that instead of hoisting code to be spec-
ulatively executed earlier, we are summarizing power and
thermal properties over the possible future execution paths
and inserting code to post those summaries to the runtime
system. The approach we have discovered and present here
can handle prediction across arbitrary control flow without
any direction from the programmer.

In 1999, Dietz[7] developed new compiler analysis and
transformation techniques to support speculative predica-
tion across arbitrary control flow, e.g., in support of the
predicated execution facilities of the Itanium architecture.
In fact, that technique was very similar to a method Dietz
developed in 1993[8] and has continued to use for direct
conversion of a MIMD program into an equivalent SIMD
program. The first step in both older techniques and the
new approach proposed here is to convert the program into
a state transition graph in which each basic block is a node
and arcs between nodes represent guarded (predicated) con-
trol flow. Function call and return, even for recursive func-
tions, is thus represented without any distinction; a call cre-
ates an arc and a return creates multiple arcs, one to each of
the possible return positions.

A DE

F

G

H

B

C

main(...) g(...)c0

c1
c5 c3

c2

c8
c7

c4

c6

Figure 3. Recursive Program’s State Machine

For example, Figure 1 shows the outline of a simple C
program containing a recursive function call. A function
call is really just a goto accompanied by some data manip-
ulation; function return is essentially a computed goto
based on data saved when the function was called. This
goto-conversion yields code roughly structured like that
listed in Figure 2.

The resulting state transition graph is shown in Figure 3.
This graph has precisely the same structure described in Di-
etz [7]. Each arc is labeled with a condition upon which
that arc is traversed, however, for simple timing prediction
analysis we need not consider these conditions. The graph
serves primarily as a way to simplify reasoning about future
behavior. Only the power, timing, and thermal attributes of
the basic block within each state are critical.

As suggested earlier, there are many ways to compute
approximate energy consumption, execution time, power,
heat generation, etc., for individual instructions, and hence
for basic blocks. Each of these quantities can be estimated
as an expected (average) value or as minimum and maxi-
mum bounds. Further, if the calibration process is detailed
enough to identify where heat is generated (within the phys-
ical processor chip layout), it may be useful to track heat as
a vector with components corresponding to heat output in
each identifiable portion of the physical system.

For our example, consider labeling each state with the
simplest possible prediction information: expected power
consumption and expected execution time. Suppose that
analysis determines that basic block A in Figure 3 takes 2
units of time to execute at an average power consumption of
1 unit of energy per unit time. We will denote this as simply
2@1. Labeling all nodes in the graph in this way yields the
graph in Figure 4.

Although the labels in Figure 4 are predictions if the in-
formation is posted at the start of execution of each state,

2@1 5@1

4@2

1@3

6@1

7@2

3@2

main(...) g(...)

Figure 4. Timing@Power Labeling

they are unlikely to predict behavior far enough in advance.
The primary reason for building this graph is so that pre-
dictions can be extended over longer time periods that are
more meaningful in terms of the time constants encountered
in runtime power and thermal control, thus providing use-
ful predictions with minimal overhead. Thus, consider col-
lecting a prediction for each node that looks T units of time
ahead, where T is determined by the runtime predictive con-
trol parameters, with typical values for T in the range of
thousands to millions of processor clock cycles.

Conceptually, the state machine model of a program is
similar to Nondeterministic Finite Automata (NFA) used to
describe lexical recognizers. However, lexical analyzers are
normally built from Deterministic Finite Automata (DFA),
not NFA, so a conversion process is applied. In the con-
text of speculative predication [7], MIMD to SIMD conver-
sion [8], or of the power and cooling prediction discussed
here, we refer to any such transformation as Meta-State
Conversion (MSC): construction of an equivalent meta-state
graph that deterministically incorporates information from
multiple original states in each meta-state. The MSC rules
used for each purpose are essentially closure operations,
but with very different semantics that result in very differ-
ent graphs. The closure process used to label a state ma-
chine with T-unit lookahead predictions of maximum aver-
age power is simpler than for the other purposes, leaving
the graph structurally unchanged. The per-node prediction
lookahead MSC is described in Algorithm 1; computing
predictions for all N nodes requires only O(TN) effort.

Closures to determine predictions for other attributes
work the same way. For example, determining the mini-
mum average power with T-unit lookahead would substi-
tute “minimum” for “maximum” in step 3. A variety of
special-case optimizations can be made to improve the ac-
curacy and speed of the basic algorithm. For example, loops
with compile-time known iteration counts can be analyzed

15/11 18/14

21/13

30/14

20/13

19/12

6/10

main(...) g(...)

Figure 5. T=10 Power/Prediction Interval

Algorithm 1 T-Unit Lookahead For Maximum Power Pre-
diction

1. Determine all paths rooted at the given node which (1) have
expected execution time no shorter than T and no longer than
one node past an expected execution time length <T or (2)
prematurely reach a terminal node (such as C in Figure 3).

2. For each path, compute the sum of the products of the node
execution time and power (i.e., the total energy expended in
the node) and divide that product by the sum the node exe-
cution times. This yields average power for the path.

3. Label the root node with the maximum average power value
computed for any of the paths.

much as though they consisted of a single properly-labeled
node. It also is possible to significantly prune the path enu-
meration in step 1 by retaining intermediate results and rec-
ognizing when a path reaches a node that has already been
visited. In any case, the expense of the analysis occurs en-
tirely at compile time.

Although the example in Figure 4 is too small to yield
an interesting labeling for a realistically large T, the aver-
age power estimates for a period of T=10 units of time in
the future are shown in Figure 5. We have kept the pre-
dicted power expressed as fractions to clarify how they are
derived by computing power divided by path length. For
example, the labeling of A as 15/11 is because the path
A-DE-F yields (1*2+1*5+2*4) / (2+5+4) = 15/11 whereas
the path A-DE-H yields (1*2+1*5+1*6) / (2+5+6) = 13/13.
Note that the path lengths used are generally a fraction of a
node execution time longer than T. For typical values of T,
the error is negligible; alternatively, it is possible to exam-
ine the instruction-level predictions within the last state in
each path to obtain the precise value of T desired.

21/13

30/14

21/13

6/10

main(...) g(...)

21/13 21/13

21/13

initial: 21/13

Figure 6. E=0.4 Prediction Posting Operations

2.2. Encoding To Minimize Runtime Post Cost

Although state machine node labeling described above
trivially provides all the T-unit lookahead predictions that
a predictive runtime controller might want, the mere act of
posting a prediction at entry to each state would constitute
significant execution overhead. If posting was implemented
by inserting an instruction at the start of each basic block
to store a constant prediction value into a memory loca-
tion visible to the runtime control system, not only might
the overhead reach double-digit percentages of runtime, but
the posting operations themselves could cause the predic-
tions to be wildly inaccurate – because the energy consumed
by the posting operations was not modeled. The energy of
posting could be accounted, but a more efficient method for
transmitting predictions to the runtime controller is a better
answer. There are two basic ways in which the accuracy
of the predictions accessed by the runtime controller can be
maintained with lower overhead:

Reduce the frequency of posting. AbouGhazaleh,
Childers, et. al [1] proposed an algorithm to insert power
management points into a program; our goal is to insert
fewer posting events in the code. This can be accomplished
by selecting an error threshold, E, such that any error in the
prediction which is less than E can be ignored. Algorithm 2
attempts to minimize the number of prediction posting op-
erations needed while maintaining a specified maximum er-
ror. Applying our algorithm with E=0.4 to the example of
Figure 5 results in the graph shown in Figure 6, which re-
sults in a reduction from 7 to just 3 prediction posting points
(the small shaded circles) and no increase in the final num-
ber of states (the prediction posting states are all merged
into existing states). Note that, if multiple attributes are to
be predicted, the algorithm would be applied separately to
reduce posting operations for each attribute.

Algorithm 2 Insertion Of Prediction Posting operations
1. Let PS be the prediction in state S. Augment every state S

with a posting value, VS, initialized as VS=PS. Also mark
every state as “unprocessed.”

2. While there exists an “unprocessed” state X:

(a) Mark X as “processed.”

(b) For each arc A, that goes from state X to some state Y:

i. If (VX> VY) then Z=Y and M=VX else Z=X and
M=VY

ii. If ((VX!= VY) AND ((M-E) < PZ)) then VZ=M
and state Z is marked as “unprocessed.”

3. Statically initialize the posting location to the value VS
where S is the start state. This value serves as the initial
estimate before the program has begun to execute.

4. For each state Y such that there exists at least one arc A that
goes from some state X to Y such that VX!=VY:

(a) Construct a new state, Z, that contains only the code to
post the prediction VY.

(b) For each arc A that goes from some state X to Y such
that VX!=VY, replace arc A with an arc from X to Z.

(c) Insert an arc from Z to Y.

5. Perform traditional code straightening to merge any pair of
states X and Y such that the only arc leaving X is also the
only arc entering Y.

Use demand sampling rather than posting. Rather
than having the code actively post predictions, it is possi-
ble to encode all predictions within a static data structure
that can be accessed on demand by the runtime predictive
control. The most obvious mechanism would be to build a
map of the program code that would allow the runtime con-
trol logic to use the current program counter (PC) from the
process to index the appropriate prediction from the map.
The map has many redundancies; many PC values yield the
same prediction, so it is likely that the lookup table can be
dramatically compressed using compressive hashing [16].
Fundamentally, the idea is to find a hash function by which
PC values that hash to the same hash table entry have the
same, or very similar, prediction values. The hash func-
tion could be compiled-into the process as a signal handler;
whenever a new prediction is needed, the runtime control
logic would signal and the handler would respond by hash-
ing the PC valued saved when the signal handler was in-
voked and posting the prediction thus recovered. If multiple
attributes are to be predicted, they can be tupled in the hash
function or obtained using multiple hash lookups.

Algorithm 3 User-Supplied Multiple Version Syntax
#powercase
/* code for default algorithm */
#poweralt
/* code for first alternative */
#poweralt
/* code for second alternative */
...
#poweresac

2.3. Multiple Version Encoding

Multiple version encoding is a well-known compiler
technique used to create multiple alternative codings for a
construct such that the runtime system can dynamically se-
lect the best one to execute. Most often, multiple version
encoding was used to select between parallel and serial al-
gorithms based on the result of a runtime dependence check,
but we also can use this technique to select between cod-
ings with different power profiles. These alternative cod-
ings could be provided by the user or automatically created
by the compiler.

Given a method for the runtime control to provide the
user program with a “contracted” level of power consump-
tion, it would be very simple for a user to mark power-
contract-based branch points in their program. For exam-
ple, suppose that a particular functionality could be im-
plemented by any of several alternative algorithms that the
programmer suspects have significantly different power and
thermal profiles. Without the programmer knowing the per-
formance of each routine, the programmer could tell the
compiler to encode all alternatives and ask the compiler to
evaluate the properties and use the runtime contract to de-
termine which version to execute.

A simple syntax might be as shown in Algorithm 3. The
compiler would treat the #powercase construct as a forced
position for posting predictions for all the alternatives, gen-
erating code that evaluates the runtime system’s contract to
conditionally jump to the alternative that best matches the
contracted power and thermal profile.

The fully automatic generation of power variants would
work in much the same way. After identifying specific code
sections that have well-known transformations into variants
with potentially different power, the compiler would treat
the variants just as though they had been provided by a user
with the construct above.

For example, if there are two coded versions of a meta-
state (collapsed prediction region), a slow one requiring
50W-60W and a fast one requiring 75W-80W, the com-
piler prediction might say 50W-80W. If the runtime sys-
tem came back with a 70W contract, the compiler would
force the slow alternative coding to be used. In this way,
the compiler is allowing the operating system to exert rel-
atively fine-grain predictive control within each process –

not just across multiple processes. This distinction is im-
portant because, unlike data centers, parallel supercomput-
ers have good reason to be running very few programs in
a timeshared mode. Without the ability to adjust trade-offs
within a process, there might not be enough processes for
the operating system to throttle between.

It is worth noting that a compiler could err, or a devi-
ous programmer could lie, giving the runtime system a pre-
diction that is far less resource use (power) than the code
requires. However, by being somewhat conservative, the
operating system can detect such a problem before critical
limits have been exceeded and throttle by not scheduling
that code. Thus, the worst case is the same behavior that
other, non-predictive, power management approaches seek.

3. Runtime System Software

The compile-time analysis provides an excellent start-
ing point for predictive control at runtime, but having good
power estimates at compile time is not the same as be-
ing able to effectively use predictive control at runtime.
The first problem is selection of an appropriate mecha-
nism for passing compile-time estimates to the runtime sys-
tem. Secondarily, as good as compile-time estimates may
be, there is potential improvement available by combining
static compile-time estimates with historical records of dy-
namic behavior at runtime. This is especially true if mali-
cious users have caused false (low) predictions to be posted
in the hope of obtaining more than their fair share of the
computing resource. Indeed, it might be feasible to forgo
the compile-time analysis entirely if the runtime history
mechanisms are sufficiently effective. Finally, it is impor-
tant to make good use of the predictions; we will not pro-
pose a complete system here, but merely provide a few in-
sights and guidelines as to how predictions should be used.

3.1. Runtime History-Based Predictions

As powerful as the above compile-time mechanism is, it
would be nice to be able to improve upon the estimates by
using runtime history. There are many examples of hard-
ware structures designed to predict branching behaviour
based on history; what we propose is a fully software-
managed Predictive Power History Buffer (PPHB).

As suggested above, power is not easy to measure di-
rectly. The closest approximation to direct measurement
is the indirect calibration of the power cost associated with
various types of events that are easily accounted, as per Bel-
losa et al [2, 3] – the same general approach that we favor
for the compile-time analysis. Another alternative is to use
relatively slow-responding thermal sensors. Temperature
while executing a region of code does not necessarily have

Algorithm 4 PPHB Signal Handler
1. Recover the program counter (PC) from the interrupted pro-

cess and compute the power consumption since the last sam-
ple using techniques such as those proposed by Bellosa et
al [2, 3]. Insert the pair in the FIFO buffer as PCt, Pt.

2. Compute the power prediction P by averaging Pt, Pt-1, Pt-2,
..., Pt-(R-1).

3. Update the history in PPHB[hash(PCt-(R-1))] using P. The
update may consist of replacing an existing entry or aver-
aging with it, modifying minimum, average, and maximum
values, or updating more complex data structures.

any direct correlation with power consumption or heat gen-
eration by that code region; temperature might be quite high
and rising despite the code currently being executed having
a relatively modest power profile. There are two reasons:

Temperature is an integrative measure. A recent his-
tory of high power consumption might make the tempera-
ture have a high average over the region despite execution of
the region significantly cooling the processor. It is thus far
more correct to look at the temperature change rather than
the temperature. Of course, simply recording simple dif-
ferences ignores the basic thermodynamic fact that higher
temperatures require more energy to be maintained, so the
best accuracy will be obtained by calibrating a scaling fac-
tor for temperature differencing.

Temperature changes with significant hysteresis. The
temperature change caused by one region of code might not
be visible until long after that region has completed execut-
ing. How long after? Again, only a calibration process can
produce the best accuracy.

There are several ways in which the history buffer can be
organized. Perhaps the most obvious would be to borrow
the same type of hash-indexing commonly used for hard-
ware BHBs (Branch History Buffers). In this type of orga-
nization, the instruction address associated with a sample
would be hashed and the resulting data is stored in that line.

The primary difference between PPHB and BHB opera-
tion is that the PPHB is not simply recording an unambigu-
ous fact about code uniquely identified by the PC value;
rather, it is intended to be predictive of power consump-
tion over an extended period after the PC was at the address
recorded. We envision a signal handler within the program
being awakened at regular intervals that are short relative
to the minimum period of runtime predictive control op-
erations; we will call the integral sampling rate multiplier
R, with typical values between 2 and 10. In addition to the
PPHB itself, an auxiliary FIFO data structure is needed. The
basic signal handler algorithm is given in Algorithm 4.

The primary difficulty with this procedure is that the
PPHB will not be filled with good predictions very quickly.

Smaller PPHBs fill faster, but also have a higher probability
of interference. An interesting possibility is to use the static
compiler analysis to initialize the PPHB and then refine the
static predictions using dynamic measurements.

3.2. Control Algorithms

Rather than simply switching power management on and
off as the cluster approaches its thermal limit, the runtime
system should use control theory to smoothly apply power
management to hold the system at maximum performance
without exceeding thermal limits [19]. In addition to us-
ing feedback control, long-term power predictions from the
executing code can add a feed-forward term based on the
expected reaction of the system, thus tracking the desired
operating point more closely. Although predictive ther-
mal management has not been used for parallel systems, it
has been shown to be more effective than reactive manage-
ment for uniprocessor multimedia applications [20]. Effec-
tive control allows over-provisioning, i.e., building a bigger
computer than can be continuously fully powered [9].

Power reduction can be implemented using any of the
standard mechanisms discussed in the literature, such as
dynamic voltage and frequency scaling (DVS), instruction
fetch throttling, and choice of code sequences. Compiler-
generated multiple version encoding (see Section 2.3) of-
fers additional control of power vs. speed tradeoffs within a
process. Switching frequency and voltage implies an over-
head of up to 500 µs, whereas runtime selection between
alternative codings based on a power contract can be done
with overhead measured in nanoseconds.

The techniques introduced in this paper fit well with a
wide range of existing control techniques [21, 18, 10, 11,
14, 12]. The compile-time and/or runtime power predic-
tions trivially improve the effectiveness of any reactive con-
trol method by allowing control actions that had been ini-
tiated reactively with very conservative thresholds to in-
stead be initiated using predictions with significantly more
aggressive thresholds. The multiple-version coding, espe-
cially used in combination with paired minimum and max-
imum power predictions, also makes it possible to cheaply
implement some control by simply setting contracts.

Of course, new control laws emphasizing feed-forward
control should be able to do even better. We envision
a power management control law that not only takes full
advantage of power predictions as described here, DVS,
and multiple-version coding, but also of runtime modeling
of environmental issues ranging from Computational Fluid
Dynamics (CFD) for predicting heat flow within the room
that houses a cluster computer to issues of electricity pricing
and cooling system fluctuations due to external conditions
(lower efficiency on a hot day, a building’s cooling system
being turned-off on weekends or cool days, etc.). We are

working toward developing this level of integrated model-
ing and control.

Traditionally, computers have had very little hardware
and software implementing “autonomic” self-evaluation
and control. Deliberately making a system that will nor-
mally have to run below peak speed due to power and
thermal issues also goes against common supercomputing
sense. However, we view these investments as enabling the
system to get better performance when power and cooling
are less expensive or more available than than in the worst
case, thus maximizing value. For example, the electricity
cost for operating the KASY0 cluster supercomputer for
one year exceeds the cost of its network hardware; over
the lifespan of the machine, it will exceed the cost of the
processors! Thus, a cluster whose performance is limited
by the cost of power and cooling during on-peak hours
can run much faster during off-peak hours when electri-
cal costs are lower and air conditioning is more efficient
due to lower outdoor temperatures, yielding better overall
price/performance.

4. Conclusion

Although there is a large and growing body of work
aimed at managing power and cooling attributes of a com-
puting system, the critical difference between these at-
tributes and those that have been successfully managed in
the past is that these require dealing with long time con-
stants and hysteresis. Feed-forward control, not just reac-
tive feedback, is needed to deal effectively with the long
time constants and hysteresis associated with power and
thermal control. Most work in this field has suffered from
using measurements taken at that moment or over the recent
past as though they were a prediction of future behavior.

In this paper, we have presented new compiler and run-
time technology that can efficiently create, and make ac-
cessible to runtime control, true predictions of behavior for
arbitrarily long periods in the future. The compiler and run-
time technologies described here are very flexible, and can
be used for large-lookahead predictions of many kinds. It
remains to be seen precisely which power and thermal at-
tributes will be most useful in implementing predictive run-
time control, nor do we yet know how much better the con-
trol will be using true predictions of future behavior as in-
put. Our future work in this area is thus focused on im-
plementing a variety of these new techniques and obtaining
experimental results to guide further development.

On a larger scale, we see power and thermal issues be-
coming significant components of all aspects of system de-
sign, programming, and operation. We already have modi-
fied the Cluster Design Rules (CDR) software tool to model
power and cooling constraints and operating costs when de-
signing a cluster computer. We also see a pressing need to

model complete environmental issues ranging from Compu-
tational Fluid Dynamics (CFD) models of heat flow within
the room that houses a cluster computer to issues of elec-
tricity pricing and cooling system fluctuations due to exter-
nal conditions (lower efficiency on a hot day, a building’s
cooling system being turned-off on weekends or cool days,
etc.). In each case, control using prediction of future cir-
cumstances is the key to getting the best performance.

References

[1] Nevine AbouGhazaleh, Bruce Chiders, Daniel Mossé, Rami
Melhem, and Matthew Craven. Energy management for
real-time embedded applications with compiler support. In
ACM SIGPLAN Joint Conference LCTES’03, June 2003.

[2] Frank Bellosa. The benefits of event-driven energy
accounting in power-sensitive systems. In EW 9:
Proceedings of the 9th workshop on ACM SIGOPS
European workshop, pages 37–42, New York, NY, USA,
2000. ACM Press.

[3] Frank Bellosa, Andreas Weissel, Martin Waitz, and Simon
Kellner. Event-driven energy accounting for dynamic
thermal management. In Proceedings of the Workshop on
Compilers and Operating Systems for Low Power
(COLP’03), New Orleans, LA, September 27 2003.

[4] L. N. Chakrapani, P. Korkmaz, V. J. Mooney III, K. V.
Palem, K. Puttaswamy, and W. F. Wong. The emerging
power crisis in embedded processors: What can a (poor)
compiler do? In Proceedings of the International
Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES 01), pages 176–180, November
2001.

[5] Chi-Hung Chi and Henry G. Dietz. Unified management of
registers and cache using liveness and cache bypass. In
PLDI, pages 344–355, 1989.

[6] Keith D. Cooper and Todd Waterman. Understanding
energy consumption on the c62x. In Workshop on
Compilers and Operating Systems for Low Power (COLP
02, co-located with PACT 02), Charlottesville, Virginia,
USA, September 2002.

[7] H. G. Dietz. Speculative predication across arbitrary
interprocedural control flow. In Languages and Compilers
for Parallel Computing: 12th International Workshop,
LCPC’99, volume 1863, pages 432–446, London, UK, June
2000. Springer-Verlag.

[8] H. G. Dietz and G. Krishnamurthy. Meta-state conversion.
In Proceedings of the 1993 International Conference on
Parallel Processing, volume II, pages 47–56, August 1993.

[9] Mark E. Femal and Vincent W. Freeh. Safe
overprovisioning: Using power limits to increase aggregate
throughput. In Workshop on Power-Aware Computer
Systems, December 2004.

[10] Rong Ge, Xizhou Feng, and Kirk W. Cameron.
Performance-constrained distributed DVS scheduling for

scientific applications on power-aware clusters. In SC ’05:
Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, page 11, 2005.

[11] Chung hsing Hsu and Wu chun Feng. Power-aware
run-time system for high-performance computing. In SC
’05: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, page 9, 2005.

[12] Nandini Kappiah, Vincent W. Freeh, and David K.
Lowenthal. Just in time dynamic voltage scaling:
Exploiting inter-node slack to save energy in MPI programs.
In SC ’05: Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing, page 9, 2005.

[13] Masaaki Kondo, Shinichi Tanaka, Motonobu Fujita, and
Hiroshi Nakamura. Reducing memory system energy in
data intensive computations by software-controlled on-chip
memory. In Proceedings of the Workshop on Compilers and
Operating Systems for Low Power (COLP 02), co-located
with PACT 02, September 2002.

[14] Ramakrishna Kotla, Soraya Ghiasi, and Freeman L.
Rawson III Tom W. Keller. Scheduling processor voltage
and frequency in server and cluster systems. In IPDPS
2005, page 8, Washington, DC, USA, 2005. IEEE Computer
Society.

[15] Tao Li and Chen Ding. Instruction balance and its relation
to program energy consumption. In Languages and
Compilers for Parallel Computing: 14th International
Workshop, LCPC 2001, pages 71–85, August 2003.

[16] Muthulakshmi Muthukumarasamy and Henry Dietz.
Empirical evaluation of compressive hashing. In Workshop
on Compilers for Parallel Computers, January 2006.

[17] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria.
Instruction-level power estimation for embedded vliw cores.
In CODES ’00: Proceedings of the eighth international
workshop on Hardware/software codesign, pages 34–38,
New York, NY, USA, 2000. ACM Press.

[18] Ratnesh K. Sharma, Cullen E. Bash, Chandrakant D. Patel,
Richard J. Friedrich, and Jeffrey S. Chase. Balance of
power: Dynamic thermal management of internet data
centers. IEEE Internet Computing, 9(1):49–49,
January–February 2005.

[19] Kevin Skadron, Tarek Abdelzaher, and Mircea R. Stan.
Control-theoretic techniques and thermal-rc modeling for
accurate and localized dynamic thermal management. In
Proceedings of the International Symposium on
High-Performance Computer Architecture. IEEE Computer
Society, 2002.

[20] Jayanth Srinivasan and Sarita V. Adve. Predictive dynamic
thermal management for multimedia applications. In ICS
’03: Proceedings of the 17th annual international
conference on Supercomputing, pages 109–120, New York,
NY, USA, 2003. ACM Press.

[21] Andreas Weissel and Frank Bellosa. Dynamic thermal
management for distributed systems. In Proceedings of the
First Workshop on Temperatur-Aware Computer Systems
(TACS’04), Munich, Germany, June 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

