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Abstract 

Recently, under a fixed power budget, asymmetric 
multiprocessors (AMP) have been proposed to improve the 
performance of multi-threaded applications compared to 
symmetric multiprocessors.  An AMP is a multiprocessor 
system in which its processors are not operating at the 
same frequency. 

Power consumption has become an important design 
constraint in servers and high-performance server 
clusters.  This paper explores the power-performance 
efficiency of Hyper-Threaded (HT) AMP servers, and 
proposes a new scheduling algorithm that can be used to 
reduce the overall power consumption of a server while 
maintaining a high level of performance.  Prototyping 
AMPs on a commercial 4-way SMP server, we show that 
on average 15.6% energy savings and 6.1% slowdown for 
the HT-disabled case, and 7.1% energy savings and 4.8% 
slowdown for the HT-enabled case can be achieved across 
NAS and SPEC OpenMP applications.    

1. Introduction 

Power has become a critical design constraint for 
modern microprocessors [22].  Researchers have studied 
various power-related optimization techniques including 
voltage and frequency scaling of the processor core [11, 
15], dynamically tuning processor resources with adaptive 
processing [1], and multi-core architectures [16, 17].   

While there has been a large body of work in saving 
energy in the areas of mobile computing and embedded 
systems to extend battery life [6, 30], energy conservation 
has recently become important in servers and clusters [7, 8, 
10, 2] with their non-interactive high-performance 
computing workload in message passing interface (MPI) 
[21] and OpenMP [23].  In such systems, the focus is to 

improve reliability and to reduce the cost of powering and 
cooling. 

Researchers have proposed multi-ISA multi-core 
architectures [25] as well as single-ISA multi-core 
architectures [17].  It has been shown that single-ISA 
multi-core architectures can reduce power consumption, 
increase throughput, and mitigate Amdahl’s law [16].  
Recently, researchers from Intel [2, 3] have illustrated how 
an asymmetric multiprocessor (AMP) can be built from a 
4-way commercial symmetric multiprocessor (SMP).  
AMP, a form of single-ISA heterogeneous architecture, is 
a system made up of multiple processors that are not 
operating at the same speed.  This is accomplished by 
clock throttling, where the duty cycle of the processor is 
reduced.  This corresponds to a heat and energy savings 
proportional to the change in duty cycle.  The authors in 
[2] consider AMP configurations that can achieve an 
average of 38 percent wall clock speedup over the SMP on 
a wide range of multi-threaded applications under a given 
power budget.  

While the work in [2] assumes a fixed power budget, 
this paper, for the first time, evaluates the power-
performance efficiency of simultaneous multithreading
(SMT) [29] AMPs for the sake of energy saving with a 
minimal impact on the performance of multi-threaded 
applications in OpenMP.  SMT is a technique that allows 
multiple independent threads to execute different 
instructions each cycle.  Intel Hyper-Threading (HT) 
technology is an implementation of SMT where two 
threads can be executed in parallel on a single physical 
processor.  These threads have their own independent run-
queues and each physical processor appears to the 
operating system as two logical processors.  These logical 
processors share the resources of the physical CPU 
including cache, execution units, translation look aside 
buffers, branch prediction unit and load and store buffers.  
Previous work [9] has found that enabling HT on all 
processors in an SMP may not be beneficial in terms of 
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performance.  Contrary to the work in [2] that focuses on 
HT-disabled AMPs, we present performance and energy 
saving results on both HT-enabled and HT-disabled AMPs.   

A modification to the Linux scheduler is proposed as a 
method of potentially reducing the power consumption of a 
system, while producing less of a performance impact on 
the system than the original scheduling algorithm.  
Previous research has shown that system noise including 
operating system (OS) interference with the application 
has a dramatic effect on high-performance computing [24, 
14, 28].  For this, using static clock throttling and 
processor affinity, we bind all OS activities to logical 
process zero (or physical process zero) that runs at a lower 
frequency than the rest of (logical) processors in the AMP.  
In order to sustain the performance for the parallel 
OpenMP threads, all other (logical) processors run at their 
maximum frequency.  Overall, this new scheduler does a 
good job at reducing the energy consumption of the AMPs 
running NAS OpenMP [13] and SPEComp [27] 
applications while having a minimal impact on the 
performance of the system.  Our performance results 
indicate 15.6% energy savings and 6.1% slowdown for the 
HT-disabled case, and 7.1% energy savings and 4.8% 
slowdown for the HT-enabled case across all applications 
studied in this paper. 

The rest of this paper is organized as follows.  In 
Section 2, we describe the related work and motivation 
behind this study.  Section 3 defines the metrics used in 
this work.  Experimental framework including the AMP 
setup is discussed in Section 4.  We present and analyze 
the results in Section 5.  Section 6 concludes the paper. 

2. Related Work and Motivation 

There have been quite a number of microarchitectural 
studies on the subject of energy reduction of modern day 
processors.  These include dynamically tuning processor 
resources with adaptive processing [1], comparison of 
SMT and chip multiprocessing (CMP) [18, 26], and 
heterogeneous multi-core architectures [16, 17].  Most of 
such research has been done with single-threaded 
applications and through simulations, or analytical 
methods.  Our work in this paper concerns multi-threaded 
workloads on real systems. 

Dynamic voltage and frequency scaling (DVFS) is 
known as one of the most effective methods to reduce CPU 
power consumption, unfortunately at the expense of 
performance degradation.  In fact, the semiconductor 
industry has recently introduced many energy saving 
technologies into their chips.  The most successful of these 
have been SpeedStep technology from Intel as well as 
PowerNow! and Cool'n'Quiet from AMD.  Many works 
have been reported in utilizing such features to reduce 
power and energy consumption, from devising a compiler 

algorithm for optimizing single-threaded programs for 
energy usage on laptops [11], power and energy 
management techniques for servers and data centers [15, 
4], to high-performance computing workloads in SMP and 
AMP servers [2, 3] and in high-performance clusters [7, 8, 10].   

The authors in [2, 3] describe the process of creating an 
AMP node from a commercial Intel SMP server.  In [2], 
Annavaram et al. analyze the energy per instruction (EPI) 
gains that can be obtained from using CPUs operating at 
different frequencies.  In fact, they determined that by 
utilizing a setup that consists of one fast processor to run 
sequential code, assisted by three slower CPUs to run 
parallel code, one could reduce the overall EPI of a system 
while maintaining a higher speed than a normal SMP using 
the fixed power budget of one 2.0GHz Intel Xeon 
processor.  They used the SPEComp benchmarks as well 
as several other applications in their study; however, their 
work did not address HT-enabled systems [2].   

In [3], Balakrishnan et al. investigated the impact of 
performance asymmetry of different AMPs on commercial 
applications as well as SPEComp applications.  For 
commercial applications, they observed significant 
performance instability.  They were able to eliminate this 
for some applications by devising a new kernel scheduler 
ensuring faster cores never go idle before slower ones.  For 
SPEComp scientific applications with tight coupling 
among different threads, they found stability, but with poor 
scalability as the slowest core forces faster ones to idle.  
To eliminate performance asymmetry, they changed the 
static OpenMP loop scheduling used in the codes to 
dynamic scheduling.  However, it resulted in degraded 
performance.  This work did not address HT-enabled 
systems, either.  Although, the work in [3] is only focused 
on performance asymmetry, they indicate AMP systems 
can be effective for power/performance efficiency.  

This paper builds upon the work in [2, 3].  However, 
our motivation is completely different.  We seek to reduce 
the overall energy consumption of a high-performance 
server while sustaining performance when running multi-
threaded scientific applications.  We address both HT-
enabled and HT-disabled AMPs.  To sustain the SMP 
performance we propose a new kernel scheduler for our 
AMP.  

Nikolopoulos and his associates [19] use hardware 
performance counters to identify the best mix of threads to 
run across the processors and within each processor of 
SMT-based SMPs.  For this, they keep track of memory 
bandwidth utilization of the threads, bus transactions per 
thread, stall cycles, and cache miss rate per thread.  They 
could realize an improvement of over 28.7% for a limited 
number of the NAS OpenMP benchmarks.  One has to 
bear in mind that although such schedulers can improve 
performance, they may also increase the overall system 
energy consumption.  



Previous research has shown that system noise may 
have a dramatic effect on high-performance computing 
systems [24, 14, 28].  In [24], Petrini and his colleagues 
noticed that their application has a better performance 
when using three processors per node instead of the full 
four.  Using a number of methodologies, they discovered 
that this is due to neither the MPI implementation nor the 
network, but the system noise including OS daemons, 
kernel threads, and OS real-time interrupts, among other 
things.  The authors in [14, 28] also verified the effects of 
system noise on the performance of applications.  

While there have been some effective techniques 
proposed in [24, 14] to reduce the impact of system noise, 
such as removing unnecessary OS daemons and kernel 
threads (or moving to another processor), lowering tick 
rate, and co-scheduling, leaving one processor for OS tasks 
is still a simple, viable option to effectively separate 
system noise from the computation [28].  Meanwhile, past 
work on real-time processing with Linux schedulers [5] 
has found that reserving a CPU specifically to respond to 
real-time priority threads significantly decreases the 
latency for real-time threads as well as the interrupt 
response time.   

By offloading system noise onto a single (logical) 
processor, we can speculate that by avoiding swapping the 
threads in and out of the CPU we can increase the time 
available to the user threads.  This reduced noise will 
correspond to an increased performance of the user threads 
such that the impact of reserving the CPU for system tasks 
is minimized.  In the event of a system load that does not 
corresponds to a full load for a single (logical) processor, 
there exists an opportunity to reduce the frequency of the 
reserved CPU such that its load is as close to 100% as 
possible.  This frequency scaling of the reserved CPU has 
a power savings effect.  

3. Metrics 

We use the following metrics in studying the power-
performance characteristics of systems. 
Performance.  High-performance computing has always 
been concerned with performance.  Performance of an 
application running on a system is given by wall-clock 
execution time, D.

Power.  Theory [22] tells us that the power consumed by a 
CMOS processor, in watt, is equal to the activity factor of 
the system (percentage of gates that switch for each cycle, 
on average 50%) multiplied by the capacitance of the CPU 
times the voltage squared times the frequency.  This is 
shown in Equation 1.

fCVP 2α=                                (1) 

Note we have ignored the power expended due to short-
circuit current, and the power loss from leakage current, as 

the dynamic power consumption, fCV 2α  dominates in 

CMOS circuits.  
Frequency is directly proportional to the supply voltage.  

Therefore, power is proportional to the cube of a changing 
frequency.  However, historical data [2] suggests that 
power on modern processors is proportional to the square 
of the duty cycle.  Therefore, for this paper we will use the 
square relation, to better model the real power 
consumption of the system. 

Energy.   Power is the consumption at a discrete point in 
time.  Energy is the cost during the execution time, D, and 
is shown as:

∫ ×==
D

avg DPPdtE
0

                       (2) 

Power-performance efficiency.  This metric allows 
choosing the operating point at which maximum energy 
saving can be achieved with acceptable performance 
degradation.  We use the energy-delay product to quantify 
the power-performance efficiency, as shown in Equation 
(3):

DEDE ×=.                              (3) 

4. Experimental Framework 

The experiments were conducted on a Dell PowerEdge 
6650 server.  The PowerEdge 6650 has four 1.4GHz Intel 
Xeon MP processors with 12KB shared execution trace 
cache, 8KB L1 shared data cache with 4-way associativity, 
256KB shared and unified L2 cache, 512KB shared and 
unified L3 cache (both L2 and L3 with 8-way 
associativity), and 2GB of DDR-SDRAM on a 400MHz 
Front Side Bus.  The operating system is based upon the 
RedHat Linux 9 distribution, but with the Vanilla kernel 
version 2.6.9.  The kernel supports Hyper-Threading.  The 
task scheduler has changed significantly with 2.6.x kernel 
over the 2.4.x kernels.  Most significant is the addition of 
what is known as the O(1) scheduler since it can make a 
scheduling decision in constant time and independent of 
the number of processors or the number of tasks.  Using 
the LMbench [20] we have measured the L1, L2, and main 
memory latencies of the processor as 1.42ns, 13.29ns, and 
187.94ns, respectively.  The main memory read and write 
bandwidths are 627 MB/s and 743 MB/s, respectively. 

To validate our results on the 4-way platform, we have 
also conducted some tests on a newer 2-way server (Dell 
PowerEdge 2650) with a faster processor and Front Side 
Bus.  This is discussed in Section 5.4. 



4.1. Application Benchmarks 

4.1.1. NAS OpenMP. The NAS OpenMP parallel 
benchmarks (version 3.2) have been widely used in 
characterizing high-performance computers [13].  The 
suite consists of five kernels, (CG, MG, FT, IS, EP), and 
three simulated CFD applications (BT, SP, LU).  We 
experimented with Class B of CG, MG, BT, SP, and LU 
benchmarks.  Class B is large enough to provide realistic 
results, ensuring their working set fits in memory. 

4.1.2. SPEC OMP. The SPEC OMPM2001 (version 3.0) 
suite of applications [27] is from the SPEC High-
Performance Group.  The suite consists of a set of 
OpenMP-based scientific applications.  These programs 
were originally part of the SPEC CPU2000 suite and were 
parallelized by inserting OpenMP directives.  We worked 
with seven of the nine SPEC applications, specifically apsi, 
art, equake, fma3d, mgrid, swim, and wupwise.  For more 
information about each application, please refer to [27].  
The Intel Fortran and C/C++ compilers (version 8.1) were 
used to build the benchmark applications.

4.2. AMP Setup 

To evaluate the power-performance efficiency of AMP 
over SMP systems, we created static AMP configurations 
on our 4-way platform through clock throttling and affinity 
control.  In clock throttling, one can set the duty cycle to 
one of the seven available levels.  Clock throttling does 
have a similar impact on performance as reducing the 
frequency [2].   

The Linux 2.6.9 kernel supports clock throttling 
through a sysfs interface with appropriate drivers.  The 
system was configured to enable CPU frequency scaling 
using clock throttling.  The p4-clockmod driver was built 
into the kernel and the standard sysfs interface was used.  
The frequency governor was set to user-space control, 
creating a static operating point for clock throttling.  By 
static setup, we mean the duty cycle is set only once before 
the application run. 

We have implemented a new Linux scheduler, to be 
called power-saving scheduler (PS-Scheduler), by 
modifying the Linux scheduler to reserve a single (logical) 
CPU that runs only kernel threads, leaving the rest of the 
CPUs in the system to execute all user threads at maximum 
frequency.  This is accomplished by using the processor 
affinity properties available in the Linux 2.6.9 that allow 
processes to be bound to a specific set of (logical) 
processors, or an individual (logical) processor. 

The available operating points on our 4-way platform 
are 1.4GHz, 1.225GHz, 1.05GHz, 875MHz, 700MHz, 
525MHz, and 350MHz.  The CPU frequency of the first 
physical processor was adjusted throughout the available 

operating points for the execution of system activities, 
while the rest of processors in the system remained at 
1.4GHz to run application threads only.  However, our 
experimentation with the application benchmarks revealed 
the performance of the AMPs with the first processor at 
875MHz or less abruptly decreases to less than half that of 
the system with the first processor at 1.05GHz.  Therefore, 
we will not report those results in section 5. 

It should be mentioned that the duty cycle could be set 
on a per physical processor basis on Intel multiprocessors.  
Therefore, in the case of an HT-enabled system, this 
creates an asymmetrical imbalance among the logical 
processors executing the user threads (the benchmarks).  
This can have a negative effect on the system performance. 

4.2.1. AMP/SMP Base Power Consumption. Investigating 
the results in [2] one can conclude that their physical 
power measurements of a 4-way Intel Xeon 2.0GHz SMP 
server at consuming 220W when active are reliable.  They 
provide a method based on historical data, where for a 
changing frequency, the power consumption is 
proportional to the square of the duty cycle.  Therefore, if 
a 4-way 2.0GHz Intel Xeon SMP processor system 
consumes 220W when highly active, a 4-way 1.4GHz Intel 
Xeon SMP system would be expected to consume 107.8W 
(220W × (1.4/2.0)2) when highly active.  This corresponds 
to an energy consumption of 26.95W per processor.  When 
CPUs are in an idle state the power consumption of the 4-
way 2.0GHz system was 48W, corresponding to 12W per 
processor.  Applying the same scaling as used for the 
active case, we determine that the idle energy consumption 
for a single 1.4GHz processor is 5.88W.  Using the same 
methodology, one can easily find the highly active power 
consumption of an AMP with one CPU operating at 
1.225GHz and the other three CPUs operating at 1.4GHz 
to be 101.5W.  Knowing the approximate energy 
consumption of our AMP systems, when highly active or 
idle, allows us estimating the power consumption while 
executing the NAS and SPEC OpenMP benchmarks. 

5. Experimental Results and Analysis 

In this section, we first describe the results and analysis 
of our experiments on the 4-way platform.  We compare 
the baseline performance of the PS-Scheduler with the 
default Linux scheduler both operating at full speed.  We 
will then present the slowdown and energy savings of our 
AMP configurations with the new scheduler at different 
operating points over SMP at full speed.  Finally, we 
analyze the power-performance efficiency of the proposed 
AMPs.  Section 5.4 validates the 4-way results by running 
NAS applications on a faster two-way platform. 

Both HT-enabled and HT-disabled results will be 
presented in this section.  The notation HT-X refers to an 



SMP system with HT enabled and X user threads.  The 
notation SMP-X refers to a standard SMP system (HT 
disabled) with X user threads.  The notation AMP-X refers 
to an asymmetric multiprocessor with X user threads. 

5.1. PS-Scheduler vs. Linux Scheduler 

The main motivation behind the new scheduler is to 
sustain the SMP performance with its original O(1) 
scheduler, and to provide room for energy savings.  Our 
intention in this section is to see if the new scheduler 
performs in par with the SMP and HT configurations.   

Figure 1 compares the baseline performance of the PS-
Scheduler with the default scheduler on the NAS and 
SPEC benchmarks for both HT-disabled and HT-enabled 
systems.  For the HT-disabled case, all four physical 
processors are operating at 1.4GHz.  In the case of PS-
Scheduler, the scheduler runs on processor zero, while the 
three application threads run on the other three processors.  
For the HT-enabled case, all eight logical processors are 
operating at their maximum speed.  The new scheduler 
runs on logical processor zero, while the application 
threads run on the other seven logical processors.  

We have included the results for SMP-3 and HT-7 with 
the default scheduler to provide a fair comparison with the 
new scheduler in terms of the number of threads.  
However, SMP-3 on four physical processors and HT-7 on 
eight logical processors produce an imbalanced load. 
SMP-4 and HT-8 are included because we want to see the 
trade-off between the new scheduler and full-load HT-
disabled and HT-enabled systems running the original 
scheduler.  

The performance of NAS applications with the new 
scheduler compares favourably with the default Linux 
scheduler under the SMP-3 case.  For the SMP-4 case, the 
new scheduler performs almost in par across the 
applications.  For the HT-enabled case, for all NAS 
applications except CG, the new scheduler performs in par 
with its counterparts.  For CG, the performance is almost 
sustained.  In summary, the performance gain of the PS-
Scheduler over HT-8 with the original scheduler is -7.9% 
to +4.3%, with an average gain of 0.2%.  For the SMP-4 
case, it is -15.2% to +1.3%, with the average gain of -4.5%. 

Figure 1 also illustrates the performance of the SPEC 
applications under the two schedulers.  The new scheduler 
is slightly better than the original scheduler under the 
SMP-3 and HT-7 cases.  However, when compared to full-
load configurations, the performance drops a bit for all but 
a few applications.  Overall, the performance gain of the 
PS-Scheduler over HT-8 with the original scheduler across 
all SPEC applications is -9.3% to +10.5%, with an average 
performance gain of 0.01%.  For the HT-disabled case, the 
performance gain over SMP-4 is -22.7% to +7.4%, with an 
average performance gain of -10.7%. 
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Figure 1. PS-Scheduler vs. O(1) scheduler for NAS 
and SPEC benchmarks with processors at 1.4GHz. 

5.2. Slowdown and Energy Savings 

The energy savings and slowdown, over SMP-4 and 
HT-8 at 1.4GHz, due to frequency scaling of the system 
while executing the NAS benchmarks are presented in 
Figure 2.  The AMP frequency in the figure corresponds to 
the CPU frequency of the first physical processor in the 
system.  The remaining physical processors are running at 
maximum frequency.  In the case of the HT-enabled 
processors, it should be noted that the first two logical 
processors are scaled in frequency.  Therefore, one logical 
CPU that is executing the user threads has a reduced 
frequency in addition to the reserved CPU.  

As shown in Figure 2, for the HT-disabled system, LU, 
MG, and SP benefit 15% to 19.7% energy savings with up 
to 3.5% performance loss.  While BT enjoys a 15% energy 
savings at 1.05GHz, it does incur 15% slowdown.  Only 
CG shows there is limited energy savings at 1.05GHz.  
This is consistent with the CG results with HT-enabled 
processors, where there is a larger energy savings at 
1.225GHz with little performance loss.   

In the HT-enabled case, LU suffers with the new 
scheduler.  We are currently investigating the reasons 
behind this.  Interestingly, MG and SP have both speedup 
as well as significant energy savings.  Overall, the average 
range of energy savings of AMP at 1.05GHz with the PS-
scheduler for NAS benchmarks is -12.3% to +13.5% for 
HT-enabled and between -0.2% to +19.7% for HT-
disabled, with the average savings for HT-enabled being 



+5.8% and +13.6% for HT-disabled.  Across the NAS 
applications and for both HT-enabled and HT-disabled, the 
average savings is 9.7% while the average slowdown is 5.8%.  
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Figure 2: AMP slowdown and energy savings for     
NAS benchmarks over SMP-4 and HT-8 at 1.4GHz. 

The slowdown and energy savings of our AMP systems, 
over SMP-4 and HT-8 at 1.4GHz, while executing the 
SPEC OpenMP benchmarks at different frequencies is 
presented in Figure 3.  The swim benchmark in the HT-
disabled case, and fma3D and apsi in the HT-enabled case, 
enjoy speedup as well as significant energy savings.  The 
swim benchmark is a memory intensive benchmark [9], 
and is well known for its poor scalability. Therefore, the 
energy savings can be attributed to two factors, the 
reduction of system noise and a smaller number of overall 
execution threads.  The results for swim and fma3D show 
our superior AMP configuration over the AMP proposed 
in [2], where it actually made fma3D and swim to perform 
worse than SMP.  We are currently investigating the 
reasons behind the performance and thus energy savings of 
some of the applications using Intel VTune Analyzer [12].  

The average energy savings of AMP at 1.05GHz with 
the PS-scheduler for SPEC applications is -0.6% to 
+15.7% for HT-enabled and between -7.3% to +21.7% for 
HT-disabled, with the average savings for HT-enabled 
being +8.36% and +13.5% for HT-disabled.  Across the 
SPEC applications and for both HT-enabled and HT-
disabled, the average savings is 10.9% while the average 
slowdown is 5.1%.  In summary, the performance of the 
new scheduler with the SPEC benchmarks is encouraging 

as it better models real-world applications that servers, 
such as the one used in this study, would be likely to run in 
a scientific environment. 

AMP Slowdown and Energy Savings over SMP-4

-10

-5

0

5

10

15

20

25

apsi art equake fma3d mgrid swim wupwise

%

AMP-3T @1.225GHz Slowdown AMP-3T @1.225GHz Savings

AMP-3T @ 1.05GHz Slowdown AMP-3T @1.05GHz Savings

AMP Slowdown and Energy Savings over HT-8

-10

-5

0

5

10

15

20

apsi art equake fma3d mgrid swim wupwise

%

AMP-7T @1.225GHz Slowdown AMP-7T @1.225GHz Savings

AMP-7T @ 1.05GHz Slowdown AMP-7T @1.05GHz Savings

Figure 3: AMP slowdown and energy savings for 
SPEC benchmarks over SMP-4 and HT-8 at 1.4GHz. 

5.3. Energy-Delay Analysis 

Figure 4 and Figure 5 present the energy-delay of the 
AMP with the PS-Scheduler normalized to the original 
scheduler at 1.4GHz for both HT-8 and SMP-4 cases.  An 
energy-delay of less than one shows that the savings in 
energy consumption outpace the corresponding increase in 
execution speed.  Values greater than one represents the 
case in which the energy savings are not sufficiently offset 
by the increase in execution time.  A downward trend in 
the graph from the left to the right indicates that the rate of 
decrease of energy consumption and the rate of delay 
related to said energy savings is diverging beneficially.  
With the exception of the LU in the HT-enabled case and 
the BT in the HT-disabled case, the overall trends with the 
new scheduler are good for the NAS benchmarks, as 
shown in Figure 4. 

The energy conservation of the new scheduler is 
observable as the majority of the benchmark applications 
are below the baseline energy-delay of one.  With the 
exception of some of the SPEC benchmarks, namely art, 
mgrid and wupwise (equake and apsi are close to one) for 
the SMP-4 case, and the wupwise for the HT-8 case, the 
new scheduler manages to conserve an amount of energy 
that offsets the rise in total execution time.  The full speed 



operating point is also very good in terms of power savings 
and overall speed. Note this operating point does not 
reflect an AMP but instead an SMP with the new scheduler. 
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Figure 4: Normalized Energy-Delay for NAS 
benchmarks over SMP-4 and HT-8 at 1.4GHz. 
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Figure 5: Normalized Energy-Delay for SPEC 
benchmarks over SMP-4 and HT-8 at 1.4GHz. 

5.4. Cross Platform Validation 

To confirm that the results obtained using the 4-way 
servers were not adversely affected by a poor 
performance/memory bandwidth ratio, the tests were 
conducted on a Dell PowerEdge 2650 server.  This server 
has two 2.0GHz Intel Xeon MP processors with 12KB 
shared execution trace cache, 8KB L1 shared data cache 
with 4-way associativity, and a 512KB shared and unified 
8-way associative L2 cache.  It has 1GB of DDR SDRAM 
on a 533MHz Front Side Bus.  The operating system is the 
Vanilla Linux kernel 2.6.9.  The L1 and L2 cache latencies 
are 1.11ns and 9.43ns with a main memory latency of 
166.11ns.  The main memory read and write bandwidths 
are 1488.71 MB/s and 820.75 MB/s, respectively.  It also 
has a larger range of operating points for clock throttling; 
those being 2.0GHz, 1.75GHz, 1.5GHz, 1.25GHz, 1.00GHz, 
750MHz, 500MHz and 250MHz. 

 The energy savings and slowdown over HT-4 at 
2.0GHz for the NAS benchmarks are presented in Figure 
6.  Overall, the results on the faster system are excellent, 
with a range of slowdown from 17.8% to a speedup of 
over 14%.  With the exception of BT at 1.75GHz, the 
performance of the AMP is acceptable, and the power 
savings across the NAS benchmarks is -9% to 23.7%, with 
the majority of cases seeing a significant power savings.   

AMP Slowdown and Energy Savings over HT-4
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Figure 6: AMP slowdown and energy savings for  
NAS benchmarks over HT-4 at 2.0GHz. 

6. Conclusions and Future Work 

Power consumption has become an important design 
constraint in servers and high-performance clusters.  This 
work explores the power-performance efficiency of Hyper-
Threaded asymmetric multiprocessors, and proposes a new 
scheduling algorithm to conserve the overall energy 
consumption with a minimal impact on the performance of 
multi-threaded applications in OpenMP.  We address both 
HT-enabled and HT-disabled AMPs.  Performance results 
indicate that AMPs with the proposed scheduler provide 
more energy savings opportunities for HT-disabled 
systems than HT-enabled. 



This paper shows that power savings are possible in a 
high performance server environment, and that with some 
changes to task scheduling significant power savings can 
be realized while maintaining high performance.  As for 
the future work, we plan to increase the overall 
effectiveness of the AMPs by devising optimal schedulers 
using hardware performance counters.  We are also in the 
process of enabling our infrastructure to measure the 
power in real-time. 
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