
Power-Performance Efficiency of Asymmetric Multiprocessors
for Multi-threaded Scientific Applications

Ryan E. Grant Ahmad Afsahi
Department of Electrical and Computer Engineering

Queen’s University
Kingston, ON, Canada K7L 3N6

ryan.grant@ece.queensu.ca ahmad.afsahi@queensu.ca

Abstract

Recently, under a fixed power budget, asymmetric
multiprocessors (AMP) have been proposed to improve the
performance of multi-threaded applications compared to
symmetric multiprocessors. An AMP is a multiprocessor
system in which its processors are not operating at the
same frequency.

Power consumption has become an important design
constraint in servers and high-performance server
clusters. This paper explores the power-performance
efficiency of Hyper-Threaded (HT) AMP servers, and
proposes a new scheduling algorithm that can be used to
reduce the overall power consumption of a server while
maintaining a high level of performance. Prototyping
AMPs on a commercial 4-way SMP server, we show that
on average 15.6% energy savings and 6.1% slowdown for
the HT-disabled case, and 7.1% energy savings and 4.8%
slowdown for the HT-enabled case can be achieved across
NAS and SPEC OpenMP applications.

1. Introduction

Power has become a critical design constraint for
modern microprocessors [22]. Researchers have studied
various power-related optimization techniques including
voltage and frequency scaling of the processor core [11,
15], dynamically tuning processor resources with adaptive
processing [1], and multi-core architectures [16, 17].

While there has been a large body of work in saving
energy in the areas of mobile computing and embedded
systems to extend battery life [6, 30], energy conservation
has recently become important in servers and clusters [7, 8,
10, 2] with their non-interactive high-performance
computing workload in message passing interface (MPI)
[21] and OpenMP [23]. In such systems, the focus is to

improve reliability and to reduce the cost of powering and
cooling.

Researchers have proposed multi-ISA multi-core
architectures [25] as well as single-ISA multi-core
architectures [17]. It has been shown that single-ISA
multi-core architectures can reduce power consumption,
increase throughput, and mitigate Amdahl’s law [16].
Recently, researchers from Intel [2, 3] have illustrated how
an asymmetric multiprocessor (AMP) can be built from a
4-way commercial symmetric multiprocessor (SMP).
AMP, a form of single-ISA heterogeneous architecture, is
a system made up of multiple processors that are not
operating at the same speed. This is accomplished by
clock throttling, where the duty cycle of the processor is
reduced. This corresponds to a heat and energy savings
proportional to the change in duty cycle. The authors in
[2] consider AMP configurations that can achieve an
average of 38 percent wall clock speedup over the SMP on
a wide range of multi-threaded applications under a given
power budget.

While the work in [2] assumes a fixed power budget,
this paper, for the first time, evaluates the power-
performance efficiency of simultaneous multithreading
(SMT) [29] AMPs for the sake of energy saving with a
minimal impact on the performance of multi-threaded
applications in OpenMP. SMT is a technique that allows
multiple independent threads to execute different
instructions each cycle. Intel Hyper-Threading (HT)
technology is an implementation of SMT where two
threads can be executed in parallel on a single physical
processor. These threads have their own independent run-
queues and each physical processor appears to the
operating system as two logical processors. These logical
processors share the resources of the physical CPU
including cache, execution units, translation look aside
buffers, branch prediction unit and load and store buffers.
Previous work [9] has found that enabling HT on all
processors in an SMP may not be beneficial in terms of

1-4244-0054-6/06/$20.00 ©2006 IEEE

performance. Contrary to the work in [2] that focuses on
HT-disabled AMPs, we present performance and energy
saving results on both HT-enabled and HT-disabled AMPs.

A modification to the Linux scheduler is proposed as a
method of potentially reducing the power consumption of a
system, while producing less of a performance impact on
the system than the original scheduling algorithm.
Previous research has shown that system noise including
operating system (OS) interference with the application
has a dramatic effect on high-performance computing [24,
14, 28]. For this, using static clock throttling and
processor affinity, we bind all OS activities to logical
process zero (or physical process zero) that runs at a lower
frequency than the rest of (logical) processors in the AMP.
In order to sustain the performance for the parallel
OpenMP threads, all other (logical) processors run at their
maximum frequency. Overall, this new scheduler does a
good job at reducing the energy consumption of the AMPs
running NAS OpenMP [13] and SPEComp [27]
applications while having a minimal impact on the
performance of the system. Our performance results
indicate 15.6% energy savings and 6.1% slowdown for the
HT-disabled case, and 7.1% energy savings and 4.8%
slowdown for the HT-enabled case across all applications
studied in this paper.

The rest of this paper is organized as follows. In
Section 2, we describe the related work and motivation
behind this study. Section 3 defines the metrics used in
this work. Experimental framework including the AMP
setup is discussed in Section 4. We present and analyze
the results in Section 5. Section 6 concludes the paper.

2. Related Work and Motivation

There have been quite a number of microarchitectural
studies on the subject of energy reduction of modern day
processors. These include dynamically tuning processor
resources with adaptive processing [1], comparison of
SMT and chip multiprocessing (CMP) [18, 26], and
heterogeneous multi-core architectures [16, 17]. Most of
such research has been done with single-threaded
applications and through simulations, or analytical
methods. Our work in this paper concerns multi-threaded
workloads on real systems.

Dynamic voltage and frequency scaling (DVFS) is
known as one of the most effective methods to reduce CPU
power consumption, unfortunately at the expense of
performance degradation. In fact, the semiconductor
industry has recently introduced many energy saving
technologies into their chips. The most successful of these
have been SpeedStep technology from Intel as well as
PowerNow! and Cool'n'Quiet from AMD. Many works
have been reported in utilizing such features to reduce
power and energy consumption, from devising a compiler

algorithm for optimizing single-threaded programs for
energy usage on laptops [11], power and energy
management techniques for servers and data centers [15,
4], to high-performance computing workloads in SMP and
AMP servers [2, 3] and in high-performance clusters [7, 8, 10].

The authors in [2, 3] describe the process of creating an
AMP node from a commercial Intel SMP server. In [2],
Annavaram et al. analyze the energy per instruction (EPI)
gains that can be obtained from using CPUs operating at
different frequencies. In fact, they determined that by
utilizing a setup that consists of one fast processor to run
sequential code, assisted by three slower CPUs to run
parallel code, one could reduce the overall EPI of a system
while maintaining a higher speed than a normal SMP using
the fixed power budget of one 2.0GHz Intel Xeon
processor. They used the SPEComp benchmarks as well
as several other applications in their study; however, their
work did not address HT-enabled systems [2].

In [3], Balakrishnan et al. investigated the impact of
performance asymmetry of different AMPs on commercial
applications as well as SPEComp applications. For
commercial applications, they observed significant
performance instability. They were able to eliminate this
for some applications by devising a new kernel scheduler
ensuring faster cores never go idle before slower ones. For
SPEComp scientific applications with tight coupling
among different threads, they found stability, but with poor
scalability as the slowest core forces faster ones to idle.
To eliminate performance asymmetry, they changed the
static OpenMP loop scheduling used in the codes to
dynamic scheduling. However, it resulted in degraded
performance. This work did not address HT-enabled
systems, either. Although, the work in [3] is only focused
on performance asymmetry, they indicate AMP systems
can be effective for power/performance efficiency.

This paper builds upon the work in [2, 3]. However,
our motivation is completely different. We seek to reduce
the overall energy consumption of a high-performance
server while sustaining performance when running multi-
threaded scientific applications. We address both HT-
enabled and HT-disabled AMPs. To sustain the SMP
performance we propose a new kernel scheduler for our
AMP.

Nikolopoulos and his associates [19] use hardware
performance counters to identify the best mix of threads to
run across the processors and within each processor of
SMT-based SMPs. For this, they keep track of memory
bandwidth utilization of the threads, bus transactions per
thread, stall cycles, and cache miss rate per thread. They
could realize an improvement of over 28.7% for a limited
number of the NAS OpenMP benchmarks. One has to
bear in mind that although such schedulers can improve
performance, they may also increase the overall system
energy consumption.

Previous research has shown that system noise may
have a dramatic effect on high-performance computing
systems [24, 14, 28]. In [24], Petrini and his colleagues
noticed that their application has a better performance
when using three processors per node instead of the full
four. Using a number of methodologies, they discovered
that this is due to neither the MPI implementation nor the
network, but the system noise including OS daemons,
kernel threads, and OS real-time interrupts, among other
things. The authors in [14, 28] also verified the effects of
system noise on the performance of applications.

While there have been some effective techniques
proposed in [24, 14] to reduce the impact of system noise,
such as removing unnecessary OS daemons and kernel
threads (or moving to another processor), lowering tick
rate, and co-scheduling, leaving one processor for OS tasks
is still a simple, viable option to effectively separate
system noise from the computation [28]. Meanwhile, past
work on real-time processing with Linux schedulers [5]
has found that reserving a CPU specifically to respond to
real-time priority threads significantly decreases the
latency for real-time threads as well as the interrupt
response time.

By offloading system noise onto a single (logical)
processor, we can speculate that by avoiding swapping the
threads in and out of the CPU we can increase the time
available to the user threads. This reduced noise will
correspond to an increased performance of the user threads
such that the impact of reserving the CPU for system tasks
is minimized. In the event of a system load that does not
corresponds to a full load for a single (logical) processor,
there exists an opportunity to reduce the frequency of the
reserved CPU such that its load is as close to 100% as
possible. This frequency scaling of the reserved CPU has
a power savings effect.

3. Metrics

We use the following metrics in studying the power-
performance characteristics of systems.
Performance. High-performance computing has always
been concerned with performance. Performance of an
application running on a system is given by wall-clock
execution time, D.

Power. Theory [22] tells us that the power consumed by a
CMOS processor, in watt, is equal to the activity factor of
the system (percentage of gates that switch for each cycle,
on average 50%) multiplied by the capacitance of the CPU
times the voltage squared times the frequency. This is
shown in Equation 1.

fCVP 2α= (1)

Note we have ignored the power expended due to short-
circuit current, and the power loss from leakage current, as

the dynamic power consumption, fCV 2α dominates in

CMOS circuits.
Frequency is directly proportional to the supply voltage.

Therefore, power is proportional to the cube of a changing
frequency. However, historical data [2] suggests that
power on modern processors is proportional to the square
of the duty cycle. Therefore, for this paper we will use the
square relation, to better model the real power
consumption of the system.

Energy. Power is the consumption at a discrete point in
time. Energy is the cost during the execution time, D, and
is shown as:

∫ ×==
D

avg DPPdtE
0

 (2)

Power-performance efficiency. This metric allows
choosing the operating point at which maximum energy
saving can be achieved with acceptable performance
degradation. We use the energy-delay product to quantify
the power-performance efficiency, as shown in Equation
(3):

DEDE ×=. (3)

4. Experimental Framework

The experiments were conducted on a Dell PowerEdge
6650 server. The PowerEdge 6650 has four 1.4GHz Intel
Xeon MP processors with 12KB shared execution trace
cache, 8KB L1 shared data cache with 4-way associativity,
256KB shared and unified L2 cache, 512KB shared and
unified L3 cache (both L2 and L3 with 8-way
associativity), and 2GB of DDR-SDRAM on a 400MHz
Front Side Bus. The operating system is based upon the
RedHat Linux 9 distribution, but with the Vanilla kernel
version 2.6.9. The kernel supports Hyper-Threading. The
task scheduler has changed significantly with 2.6.x kernel
over the 2.4.x kernels. Most significant is the addition of
what is known as the O(1) scheduler since it can make a
scheduling decision in constant time and independent of
the number of processors or the number of tasks. Using
the LMbench [20] we have measured the L1, L2, and main
memory latencies of the processor as 1.42ns, 13.29ns, and
187.94ns, respectively. The main memory read and write
bandwidths are 627 MB/s and 743 MB/s, respectively.

To validate our results on the 4-way platform, we have
also conducted some tests on a newer 2-way server (Dell
PowerEdge 2650) with a faster processor and Front Side
Bus. This is discussed in Section 5.4.

4.1. Application Benchmarks

4.1.1. NAS OpenMP. The NAS OpenMP parallel
benchmarks (version 3.2) have been widely used in
characterizing high-performance computers [13]. The
suite consists of five kernels, (CG, MG, FT, IS, EP), and
three simulated CFD applications (BT, SP, LU). We
experimented with Class B of CG, MG, BT, SP, and LU
benchmarks. Class B is large enough to provide realistic
results, ensuring their working set fits in memory.

4.1.2. SPEC OMP. The SPEC OMPM2001 (version 3.0)
suite of applications [27] is from the SPEC High-
Performance Group. The suite consists of a set of
OpenMP-based scientific applications. These programs
were originally part of the SPEC CPU2000 suite and were
parallelized by inserting OpenMP directives. We worked
with seven of the nine SPEC applications, specifically apsi,
art, equake, fma3d, mgrid, swim, and wupwise. For more
information about each application, please refer to [27].
The Intel Fortran and C/C++ compilers (version 8.1) were
used to build the benchmark applications.

4.2. AMP Setup

To evaluate the power-performance efficiency of AMP
over SMP systems, we created static AMP configurations
on our 4-way platform through clock throttling and affinity
control. In clock throttling, one can set the duty cycle to
one of the seven available levels. Clock throttling does
have a similar impact on performance as reducing the
frequency [2].

The Linux 2.6.9 kernel supports clock throttling
through a sysfs interface with appropriate drivers. The
system was configured to enable CPU frequency scaling
using clock throttling. The p4-clockmod driver was built
into the kernel and the standard sysfs interface was used.
The frequency governor was set to user-space control,
creating a static operating point for clock throttling. By
static setup, we mean the duty cycle is set only once before
the application run.

We have implemented a new Linux scheduler, to be
called power-saving scheduler (PS-Scheduler), by
modifying the Linux scheduler to reserve a single (logical)
CPU that runs only kernel threads, leaving the rest of the
CPUs in the system to execute all user threads at maximum
frequency. This is accomplished by using the processor
affinity properties available in the Linux 2.6.9 that allow
processes to be bound to a specific set of (logical)
processors, or an individual (logical) processor.

The available operating points on our 4-way platform
are 1.4GHz, 1.225GHz, 1.05GHz, 875MHz, 700MHz,
525MHz, and 350MHz. The CPU frequency of the first
physical processor was adjusted throughout the available

operating points for the execution of system activities,
while the rest of processors in the system remained at
1.4GHz to run application threads only. However, our
experimentation with the application benchmarks revealed
the performance of the AMPs with the first processor at
875MHz or less abruptly decreases to less than half that of
the system with the first processor at 1.05GHz. Therefore,
we will not report those results in section 5.

It should be mentioned that the duty cycle could be set
on a per physical processor basis on Intel multiprocessors.
Therefore, in the case of an HT-enabled system, this
creates an asymmetrical imbalance among the logical
processors executing the user threads (the benchmarks).
This can have a negative effect on the system performance.

4.2.1. AMP/SMP Base Power Consumption. Investigating
the results in [2] one can conclude that their physical
power measurements of a 4-way Intel Xeon 2.0GHz SMP
server at consuming 220W when active are reliable. They
provide a method based on historical data, where for a
changing frequency, the power consumption is
proportional to the square of the duty cycle. Therefore, if
a 4-way 2.0GHz Intel Xeon SMP processor system
consumes 220W when highly active, a 4-way 1.4GHz Intel
Xeon SMP system would be expected to consume 107.8W
(220W × (1.4/2.0)2) when highly active. This corresponds
to an energy consumption of 26.95W per processor. When
CPUs are in an idle state the power consumption of the 4-
way 2.0GHz system was 48W, corresponding to 12W per
processor. Applying the same scaling as used for the
active case, we determine that the idle energy consumption
for a single 1.4GHz processor is 5.88W. Using the same
methodology, one can easily find the highly active power
consumption of an AMP with one CPU operating at
1.225GHz and the other three CPUs operating at 1.4GHz
to be 101.5W. Knowing the approximate energy
consumption of our AMP systems, when highly active or
idle, allows us estimating the power consumption while
executing the NAS and SPEC OpenMP benchmarks.

5. Experimental Results and Analysis

In this section, we first describe the results and analysis
of our experiments on the 4-way platform. We compare
the baseline performance of the PS-Scheduler with the
default Linux scheduler both operating at full speed. We
will then present the slowdown and energy savings of our
AMP configurations with the new scheduler at different
operating points over SMP at full speed. Finally, we
analyze the power-performance efficiency of the proposed
AMPs. Section 5.4 validates the 4-way results by running
NAS applications on a faster two-way platform.

Both HT-enabled and HT-disabled results will be
presented in this section. The notation HT-X refers to an

SMP system with HT enabled and X user threads. The
notation SMP-X refers to a standard SMP system (HT
disabled) with X user threads. The notation AMP-X refers
to an asymmetric multiprocessor with X user threads.

5.1. PS-Scheduler vs. Linux Scheduler

The main motivation behind the new scheduler is to
sustain the SMP performance with its original O(1)
scheduler, and to provide room for energy savings. Our
intention in this section is to see if the new scheduler
performs in par with the SMP and HT configurations.

Figure 1 compares the baseline performance of the PS-
Scheduler with the default scheduler on the NAS and
SPEC benchmarks for both HT-disabled and HT-enabled
systems. For the HT-disabled case, all four physical
processors are operating at 1.4GHz. In the case of PS-
Scheduler, the scheduler runs on processor zero, while the
three application threads run on the other three processors.
For the HT-enabled case, all eight logical processors are
operating at their maximum speed. The new scheduler
runs on logical processor zero, while the application
threads run on the other seven logical processors.

We have included the results for SMP-3 and HT-7 with
the default scheduler to provide a fair comparison with the
new scheduler in terms of the number of threads.
However, SMP-3 on four physical processors and HT-7 on
eight logical processors produce an imbalanced load.
SMP-4 and HT-8 are included because we want to see the
trade-off between the new scheduler and full-load HT-
disabled and HT-enabled systems running the original
scheduler.

The performance of NAS applications with the new
scheduler compares favourably with the default Linux
scheduler under the SMP-3 case. For the SMP-4 case, the
new scheduler performs almost in par across the
applications. For the HT-enabled case, for all NAS
applications except CG, the new scheduler performs in par
with its counterparts. For CG, the performance is almost
sustained. In summary, the performance gain of the PS-
Scheduler over HT-8 with the original scheduler is -7.9%
to +4.3%, with an average gain of 0.2%. For the SMP-4
case, it is -15.2% to +1.3%, with the average gain of -4.5%.

Figure 1 also illustrates the performance of the SPEC
applications under the two schedulers. The new scheduler
is slightly better than the original scheduler under the
SMP-3 and HT-7 cases. However, when compared to full-
load configurations, the performance drops a bit for all but
a few applications. Overall, the performance gain of the
PS-Scheduler over HT-8 with the original scheduler across
all SPEC applications is -9.3% to +10.5%, with an average
performance gain of 0.01%. For the HT-disabled case, the
performance gain over SMP-4 is -22.7% to +7.4%, with an
average performance gain of -10.7%.

0

500

1000

1500

BT CG LU MG SP

T
im

e
(s

)

PS-Sched SMP-3 SMP-4 SMP-3
PS-Sched HT-7 HT-8 HT-7

0
1000
2000
3000
4000
5000
6000
7000

ap
si ar

t

eq
ua

ke

fm
a3

d

m
gr

id
sw

im

w
up

w
is
e

T
im

e
(s

)

PS-Sched SMP-3 SMP-4 SMP-3
PS-Sched HT-7 HT-8 HT-7

Figure 1. PS-Scheduler vs. O(1) scheduler for NAS
and SPEC benchmarks with processors at 1.4GHz.

5.2. Slowdown and Energy Savings

The energy savings and slowdown, over SMP-4 and
HT-8 at 1.4GHz, due to frequency scaling of the system
while executing the NAS benchmarks are presented in
Figure 2. The AMP frequency in the figure corresponds to
the CPU frequency of the first physical processor in the
system. The remaining physical processors are running at
maximum frequency. In the case of the HT-enabled
processors, it should be noted that the first two logical
processors are scaled in frequency. Therefore, one logical
CPU that is executing the user threads has a reduced
frequency in addition to the reserved CPU.

As shown in Figure 2, for the HT-disabled system, LU,
MG, and SP benefit 15% to 19.7% energy savings with up
to 3.5% performance loss. While BT enjoys a 15% energy
savings at 1.05GHz, it does incur 15% slowdown. Only
CG shows there is limited energy savings at 1.05GHz.
This is consistent with the CG results with HT-enabled
processors, where there is a larger energy savings at
1.225GHz with little performance loss.

In the HT-enabled case, LU suffers with the new
scheduler. We are currently investigating the reasons
behind this. Interestingly, MG and SP have both speedup
as well as significant energy savings. Overall, the average
range of energy savings of AMP at 1.05GHz with the PS-
scheduler for NAS benchmarks is -12.3% to +13.5% for
HT-enabled and between -0.2% to +19.7% for HT-
disabled, with the average savings for HT-enabled being

+5.8% and +13.6% for HT-disabled. Across the NAS
applications and for both HT-enabled and HT-disabled, the
average savings is 9.7% while the average slowdown is 5.8%.

AMP Slowdown and Energy Savings over SMP-4

-5

0

5

10

15

20

BT CG LU MG SP

%

AMP-3T @1.225GHz Slowdown AMP-3T @1.225GHz Savings

AMP-3T @ 1.05GHz Slowdown AMP-3T @1.05GHz Savings

AMP Slowdown and Energy Savings over HT-8

-15

-10

-5

0

5

10

15

20

BT CG LU MG SP

%

AMP-7T @1.225GHz Slowdown AMP-7T @1.225GHz Savings

AMP-7T @ 1.05GHz Slowdown AMP-7T @1.05GHz Savings

Figure 2: AMP slowdown and energy savings for
NAS benchmarks over SMP-4 and HT-8 at 1.4GHz.

The slowdown and energy savings of our AMP systems,
over SMP-4 and HT-8 at 1.4GHz, while executing the
SPEC OpenMP benchmarks at different frequencies is
presented in Figure 3. The swim benchmark in the HT-
disabled case, and fma3D and apsi in the HT-enabled case,
enjoy speedup as well as significant energy savings. The
swim benchmark is a memory intensive benchmark [9],
and is well known for its poor scalability. Therefore, the
energy savings can be attributed to two factors, the
reduction of system noise and a smaller number of overall
execution threads. The results for swim and fma3D show
our superior AMP configuration over the AMP proposed
in [2], where it actually made fma3D and swim to perform
worse than SMP. We are currently investigating the
reasons behind the performance and thus energy savings of
some of the applications using Intel VTune Analyzer [12].

The average energy savings of AMP at 1.05GHz with
the PS-scheduler for SPEC applications is -0.6% to
+15.7% for HT-enabled and between -7.3% to +21.7% for
HT-disabled, with the average savings for HT-enabled
being +8.36% and +13.5% for HT-disabled. Across the
SPEC applications and for both HT-enabled and HT-
disabled, the average savings is 10.9% while the average
slowdown is 5.1%. In summary, the performance of the
new scheduler with the SPEC benchmarks is encouraging

as it better models real-world applications that servers,
such as the one used in this study, would be likely to run in
a scientific environment.

AMP Slowdown and Energy Savings over SMP-4

-10

-5

0

5

10

15

20

25

apsi art equake fma3d mgrid swim wupwise

%

AMP-3T @1.225GHz Slowdown AMP-3T @1.225GHz Savings

AMP-3T @ 1.05GHz Slowdown AMP-3T @1.05GHz Savings

AMP Slowdown and Energy Savings over HT-8

-10

-5

0

5

10

15

20

apsi art equake fma3d mgrid swim wupwise

%

AMP-7T @1.225GHz Slowdown AMP-7T @1.225GHz Savings

AMP-7T @ 1.05GHz Slowdown AMP-7T @1.05GHz Savings

Figure 3: AMP slowdown and energy savings for
SPEC benchmarks over SMP-4 and HT-8 at 1.4GHz.

5.3. Energy-Delay Analysis

Figure 4 and Figure 5 present the energy-delay of the
AMP with the PS-Scheduler normalized to the original
scheduler at 1.4GHz for both HT-8 and SMP-4 cases. An
energy-delay of less than one shows that the savings in
energy consumption outpace the corresponding increase in
execution speed. Values greater than one represents the
case in which the energy savings are not sufficiently offset
by the increase in execution time. A downward trend in
the graph from the left to the right indicates that the rate of
decrease of energy consumption and the rate of delay
related to said energy savings is diverging beneficially.
With the exception of the LU in the HT-enabled case and
the BT in the HT-disabled case, the overall trends with the
new scheduler are good for the NAS benchmarks, as
shown in Figure 4.

The energy conservation of the new scheduler is
observable as the majority of the benchmark applications
are below the baseline energy-delay of one. With the
exception of some of the SPEC benchmarks, namely art,
mgrid and wupwise (equake and apsi are close to one) for
the SMP-4 case, and the wupwise for the HT-8 case, the
new scheduler manages to conserve an amount of energy
that offsets the rise in total execution time. The full speed

operating point is also very good in terms of power savings
and overall speed. Note this operating point does not
reflect an AMP but instead an SMP with the new scheduler.

Energy-Delay normalized to SMP-4 @1.4GHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4 GHz 1.225 GHz 1.05 GHz

Operating Point

N
o

rm
al

iz
ed

 E
n

er
g

y-
D

el
ay

BT CG LU MG SP

Energy-Delay normalized to HT-8 @1.4GHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.4 GHz 1.225 GHz 1.05 GHz

Operating Point

N
o

rm
al

iz
ed

 E
n

er
g

y-
D

el
ay

BT CG LU MG SP

Figure 4: Normalized Energy-Delay for NAS
benchmarks over SMP-4 and HT-8 at 1.4GHz.

Energy-Delay normalized to SMP-4 @1.4GHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.4 GHz 1.225 GHz 1.05 GHz
Operating Point

N
o

rm
al

iz
ed

 E
n

er
g

y-
D

el
ay

apsi art equake fma3d
mgrid swim wupwise

Energy-Delay normalized to HT-8 @1.4GHz

0

0.2

0.4

0.6

0.8

1

1.2

1.4 GHz 1.225 GHz 1.05 GHz
Operating Point

N
o

rm
al

iz
ed

 E
n

er
g

y-
D

el
ay

apsi art equake fma3d
mgrid swim wupwise

Figure 5: Normalized Energy-Delay for SPEC
benchmarks over SMP-4 and HT-8 at 1.4GHz.

5.4. Cross Platform Validation

To confirm that the results obtained using the 4-way
servers were not adversely affected by a poor
performance/memory bandwidth ratio, the tests were
conducted on a Dell PowerEdge 2650 server. This server
has two 2.0GHz Intel Xeon MP processors with 12KB
shared execution trace cache, 8KB L1 shared data cache
with 4-way associativity, and a 512KB shared and unified
8-way associative L2 cache. It has 1GB of DDR SDRAM
on a 533MHz Front Side Bus. The operating system is the
Vanilla Linux kernel 2.6.9. The L1 and L2 cache latencies
are 1.11ns and 9.43ns with a main memory latency of
166.11ns. The main memory read and write bandwidths
are 1488.71 MB/s and 820.75 MB/s, respectively. It also
has a larger range of operating points for clock throttling;
those being 2.0GHz, 1.75GHz, 1.5GHz, 1.25GHz, 1.00GHz,
750MHz, 500MHz and 250MHz.

 The energy savings and slowdown over HT-4 at
2.0GHz for the NAS benchmarks are presented in Figure
6. Overall, the results on the faster system are excellent,
with a range of slowdown from 17.8% to a speedup of
over 14%. With the exception of BT at 1.75GHz, the
performance of the AMP is acceptable, and the power
savings across the NAS benchmarks is -9% to 23.7%, with
the majority of cases seeing a significant power savings.

AMP Slowdown and Energy Savings over HT-4

-15

-10

-5

0

5

10

15

20

25

BT CG LU MG SP

%

AMP-3T @1.75GHz Slowdown AMP-3T @1.75GHz Savings

AMP-3T @1.50GHz Slowdown AMP-3T @1.50GHz Savings

AMP-3T @1.25GHz Slowdown AMP-3T @1.25GHz Savings

AMP-3T @1.00GHz Slowdown AMP-3T @1.00GHz Savings

Figure 6: AMP slowdown and energy savings for
NAS benchmarks over HT-4 at 2.0GHz.

6. Conclusions and Future Work

Power consumption has become an important design
constraint in servers and high-performance clusters. This
work explores the power-performance efficiency of Hyper-
Threaded asymmetric multiprocessors, and proposes a new
scheduling algorithm to conserve the overall energy
consumption with a minimal impact on the performance of
multi-threaded applications in OpenMP. We address both
HT-enabled and HT-disabled AMPs. Performance results
indicate that AMPs with the proposed scheduler provide
more energy savings opportunities for HT-disabled
systems than HT-enabled.

This paper shows that power savings are possible in a
high performance server environment, and that with some
changes to task scheduling significant power savings can
be realized while maintaining high performance. As for
the future work, we plan to increase the overall
effectiveness of the AMPs by devising optimal schedulers
using hardware performance counters. We are also in the
process of enabling our infrastructure to measure the
power in real-time.

Acknowledgments
The authors would like to thank the anonymous referees

for their insightful comments. This work was supported by
grants from Canada Foundation for Innovation (CFI),
Ontario Innovation Trust (OIT), and Queen’s University.

References
[1] D. H. Albonesi et al. Dynamically tuning resources with

adaptive processing. IEEE Computer, 36(12):49-58, Dec. 2003.
[2] M. Annavaram, E. Grochowski, and J. Shen. Mitigating

Amdahl’s Law through EPI throttling. In 32nd Annual
International Symposium on Computer Architecture (ISCA'05),
pages 298-309, June 2005.

[3] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact
of performance asymmetry in emerging multicore architectures.
In 32nd Annual International Symposium on Computer
Architecture (ISCA'05), pages 506-517, June 2005.

[4] R. Bianchini and R. Rajamony. Power and energy management
for server systems. IEEE Computer, 37(11):68-74, Nov. 2004.

[5] S. Brosky. Shielded CPUs: real-time performance in standard
Linux. Linux Journal, http://www.linuxjournal.com/.

[6] K. Flautner, S. Reinhardt, and T. Mudge. Automatic
performance-setting for dynamic voltage scaling. In 7th

International Conference on Mobile Computing and
Networking (MobiCom 01), pages 260-271, 2001.

[7] V. W. Freeh, F. Pan, N. Kappiah, and D. K. Lowenthal. Using
multiple energy gears in MPI programs on a power-scalable
cluster. In tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’05), pages 164-
173, 2005.

[8] R. Ge, X. Feng, and K. W. Cameron. Improvement of power-
performance efficiency for high-end computing. In Workshop
on High-Performance, Power-Aware Computing (HP-PAC
2005), Apr. 2005.

[9] R. E. Grant and A. Afsahi. Characterization of multi-threaded
scientific workloads on Simultaneous Multithreading Intel
processors. In Workshop on Interaction between Operating
System and Computer Architecture (IOSCA 2005), Oct. 2005.

[10] C.-H. Hsu and W.-C. Feng, “A Power-Aware Run-Time System
for High-Performance Computing”, In Proceedings of the 2005
ACM/IEEE conference on Supercomputing, SC’05, November, 2005.

[11] C.-H. Hsu and U. Kremer. The design, implementation, and
evaluation of a compiler algorithm for CPU energy reduction. In
ACM SIGPLAN Conference on Programming Languages,
Design, and Implementation (PLDI’03), pages 38-48, 2003.

[12] Intel Inc., Intel VTune performance analyzer,
http://www.intel.com/software/products/vtune, 2005.

[13] H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation
of NAS parallel benchmarks and its performance, Report NAS-
99-011. NASA Ames Research Center, Oct. 1999.

[14] T. Jones et al. Improving the scalability of parallel jobs by
adding parallel awareness to the operating system. In
ACM/IEEE Supercomputing Conference (SC’03), Nov. 2003.

[15] R. Kotla, S. Ghiasi, T. Keller, and F. Rawson. Scheduling
processor voltage and frequency in servers and cluster systems.
In 19th IEEE International Parallel & Distributed Processing
Symposium (IPDPS 2005), Apr. 2005.

[16] R. Kumar, D. M. Tullsen, N. P. Joupi, and P. Ranganathan.
Heterogeneous chip multiprocessors. IEEE Computer,
38(11):32-38, Nov. 2005.

[17] R. Kumar, K. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. Single-ISA heterogeneous multi-core architectures: the
Potential for processor power reduction. In 36th International
Symposium on Microarchitecture (MICRO-36), pages 81-92, 2003.

[18] Y. Li, D. Brooks, Z. Hu, and K. Skadron. Performance, energy,
and thermal considerations for SMT and CMP architectures. In
11th International Symposium on High-Performance Computer
Architecture (HPCA-11), pages 71-82, 2005.

[19] R. L. McGregor, C. D. Antonopoulos, and D. S. Nikolopoulos.
Scheduling algorithms for effective thread pairing on hybrid
multiprocessors. In 19th IEEE International Parallel &
Distributed Processing Symposium (IPDPS 2005), Apr. 2005.

[20] L. W. McVoy and C. Staelin. Lmbench: portable tools for
performance analysis. In USENIX Annual Technical
Conference, pages 279-294, 1996.

[21] Message Passing Interface Forum: MPI, A Message Passing
Interface standard, Version 1.2, 1997.

[22] T. Mudge. Power: a first class design constraint. IEEE
Computer, 34(4):52-57, Apr. 2001.

[23] OpenMP Architecture Review Board, OpenMP Specification
Version 2.5, May 2005.

[24] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of missing
supercomputer performance: achieving optimal performance on
the 8,192 processors of ASCI Q. In ACM/IEEE Supercomputing
Conference (SC’03), Nov. 2003.

[25] D. Pham et al. The design and implementation of a first-
generation cell processor. In International Symposium on Solid-
State Circuits and Systems (ISSCC 2005), pages 184-186, 2005.

[26] R. Sasanka, S. Adve, Y. Chen, and E. Debes. The energy
efficiency of CMP vs. SMT for multimedia workloads. In 18th

Annual International Conference on Supercomputing (ICS
2004), pages 196-206, 2004.

[27] SPEC OMP Benchmark Suite, http://www.spec.org/omp/.
[28] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick.

System noise, OS clock ticks, and fine-grained parallel
applications. In 19th Annual International Conference on
Supercomputing (ICS’05), pages 303-312, 2005.

[29] D. Tullsen, S. Eggers, and H. Levy. Simultaneous
multithreading: maximizing on-Chip parallelism. In 22nd Annual
International Symposium on Computer Architecture (ISCA'95),
pages 392-403, 1995.

[30] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat.
ECOSystem: managing energy as a first class operating system
resource. In 10th International Conference on Architectural
Support of Programming Languages and Operating Systems
(ASPLOS-X), pages 123-132, Oct. 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

