
Shubac: A Searchable P2P Network Utilizing Dynamic Paths for
Client/Server Anonymity

Aharon Brodie, Cheng-Zhong Xu

Dept. of Electrical and Computer Engineering
Wayne State University, Detroit, MI 48202

asb@brodienet.com, czxu@wayne.edu

Weisong Shi

Department of Computer Science
Wayne State University, MI 48202

weisong@wayne.edu

Abstract

A general approach to achieve anonymity on P2P net-
works is to construct an indirect path between client and
server for each data transfer. The indirection, together with
randomness in the selection of intermediate nodes, pro-
vides a guarantee of anonymity to some extent. It, how-
ever, comes at the cost of a large communication overhead.
In this paper, we present Shubac, a searchable, anonymous
peer to peer (P2P) overlay network. It implements a flex-
ible dynamic path approach that shrinks paths in size to
reduce overhead and delays and meanwhile reconfigures
paths dynamically throughout a communication to main-
tain a high level of privacy. This dynamic path approach
enables Shubac to make a good tradeoff between anonymity
and efficiency.

1 Introduction

Privacy on the Internet has been an important issue for many
years. Censorship and copyright lawsuits are some of the
reasons privacy has become a mainstream concern. Nap-
ster [10], being at the forefront of P2P technology, utilized a
centralized network. All clients connected to a main server
providing a listing of the files they shared. This made it
simple to conduct a search for a file, querying the server
and receiving a list of nodes sharing that file. This, how-
ever, was also the reason the Napster network was so easily
shut down. By eliminating the main server, the network be-
came headless. Nodes could not find or connect to others,
nor could they search for files. This prompted next gen-
eration P2P programs such as Gnutella [9] to develop de-
centralized P2P networks. Nodes broadcast hello requests
on the Internet until others are found, and communication
such as searches is propagated from one neighboring node
to another. This type of implementation does not contain
central servers and cannot be easily shut down. Therefore,

most P2P networks were later developed with this approach
providing some variations for optimization. Since these net-
works cannot be shut down, companies wishing to restrict
material from appearing on these networks have resorted to
lawsuits. The approach is to intimidate users from shar-
ing material that companies feel should be censored or falls
under copyright infringement. This, among other reasons,
is the reason anonymous P2P networks have become more
popular.

Anonymous P2P networks allow users to share and re-
trieve files without revealing their identity. Their implemen-
tations vary from partial to full anonymity. Some forms of
partial anonymity include client-side anonymity, where the
protection is built towards nodes downloading files. Server-
side anonymity, where nodes sharing files do so without
having their identity revealed. And publishing anonymity,
in which nodes anonymously upload files to the network
which acts as a unified file storage [15]. A P2P network
providing full anonymity hides the identity of nodes down-
loading files as well as of those sharing them.

Most implementations of anonymity on P2P networks
rely on indirect communication. By transferring messages
through intermediary nodes, networks hide the identity of
one side of the communication from the other. Until re-
cently, node resources were relatively low compared to the
resources required by a fully anonymous network. Comput-
ers did not have the resources to maintain a large amount
of concurrent connections. This is one of the reasons
many anonymous P2P programs were developed with par-
tial anonymity in order to maintain efficiency. Recently,
node resources increased significantly, in terms of comput-
ing power, memory space, and network capacities. The
average user does not fully utilize these resources allow-
ing more intensive anonymity networks to be implemented.
We introduce Shubac, a searchable P2P network offering
anonymity to both clients and servers. Our implementation
attempts to provide the best possible anonymity to all nodes
on the network while using as little resources as possible.

Indirect communication requires intermediary nodes in

1-4244-0054-6/06/$20.00 ©2006 IEEE

an indirect path to remain active throughout the connec-
tion; if a node leaves the path becomes disconnected and the
transfer fails. This requires nodes to dedicate large amounts
of network resources for each transfer, which degrades net-
work performance. At its core, Shubac was designed af-
ter the indirect communication approach. However, it has
been modified and enhanced to be stable and more efficient.
Shubac uses a small amount of resources from each node
in order to maintain the higher amount of overall network
resources needed. Shubac shares design attributes similar
to other unstructured P2P programs. Nodes can enter and
leave the network freely; there is no implementation of a
coordinated log-on or log-off process against a server.

Freenet [4] provides anonymity, but does not support the
function of searching. File searching on Shubac is based
on a random walk protocol. Searches on Shubac play an
important role, constructing a path to be used for a subse-
quent file transfer. One of the main differences between
Shubac and other P2P networks is the file transfer protocol.
Most P2P programs employ a direct file transfer between
the client and the server, which although efficient, is lack of
anonymity. There are several anonymous implementations,
such as Mantis [1], Mutis [13], and Hordes [12], which
use intermediary nodes for communication and as a result
become resource intensive and unstable. Shubac improves
upon this approach, using fewer resources and adding sta-
bility. Traditionally, each node on a path dedicates re-
sources when forwarding communication. It is, however,
unnecessary to use the resources of all the nodes in a path.
We observe that P2P file transfers can often take from min-
utes to hours to complete, especially for large files. In light
of this, we propose a dynamic path approach that reconfig-
ures a path dynamically throughout a communication. That
is, during the time paths dynamically change in size, shrink-
ing to improve transfer speeds, and expanding to maintain
a high level of anonymity. Additionally, we present further
improvements to the algorithm as well as additional meth-
ods that enhance efficiency, stability and privacy.

The rest of the paper is organized as follows. Section 2
gives an overview of anonymous P2P systems. Section 3
presents a high level overview of the Shubac architecture.
Section 4 gives the details of the file transfer protocol. Its
efficiency is discussed in Section 5. Section 6 discusses a
number of security issues related to the approach. Section 7
concludes this paper with remarks on future work.

2 Related Work

There has been significant work in P2P networks towards
protecting user privacy. We present a brief overview of re-
lated work in this field including some of their strengths
and weaknesses. Many implementations have been intro-
duced to provide a transparent overlay network over which

(a) Mute (b) Shubac

(c) Mantis (d) Hordes

Figure 1: File transfer protocols in different anonymous
P2P networks: Mute (a), Shubac (b), Mantis (c), and Hordes
(d).

standard network communications can be anonymized. Al-
though these vary, most construct a tunnel through other
nodes on the network for the communication to travel. The
final node in this tunnel contacts the server, which resides
outside the overlay network.

Several implementations exist, among them are Tor [7],
Tarzan [8] and Crowds [14]. They do not offer P2P fea-
tures such as file sharing or searching, but mainly a means
for existing communications to be transparently conducted
anonymously. Anonymizing communications via tunneling
is the most common implementation. This is also true for
anonymous P2P networks with file sharing capabilities.

Freenet [4] is a P2P program providing anonymity. It im-
plements the tunneling approach, but does not provide stan-
dard searching. Instead of searching for files to download
on Freenet, users view lists of available files on Freesites,
index Web sites hosted inside the Freenet network. Files are
listed along with their virtually unique hashes. Users search
the network using these hashes instead of by file names.
There are also recent studies on mutual anonymity protocols
based on trusted index servers [16]. Shubac’s goal is to im-
plement an anonymous searchable P2P network, which be-
haves similar to P2P networks like Gnutella. The majority
of P2P programs implement searching based on full or par-
tial file names since this is the most convenient approach to
the user. Mute [13] is a file sharing searchable P2P network
providing anonymity to clients and servers. Anonymity is
accomplished by tunneling client and server communica-
tion through other nodes on the network. Searching for
files on the network is accomplished by passing the search
from one neighboring node to another. The path created by
the search is later used to tunnel further communication be-
tween the client and server, this communication mainly be-
ing the file transfer. Figure 1(a) shows the tunneled transfer,
in comparison with the protocol of Shubac in Figure 1(b).
The bulk of communication on P2P networks is file trans-
fers, and one of the problems of this approach is the large
transfer delay and network overhead incurred by it.

Hordes [12] and Mantis [1] are examples of P2P pro-
grams that attempt to overcome the limitations of the tun-
neling approach. Hordes provides client anonymity by in-

structing the server to send data in a multicast message,
as shown in Figure 1(d). A file is sent to multiple nodes,
one of which is the true recipient. This effectively creates
a direct communication from the server to the client with-
out explicitly revealing the client’s identity, providing an
anonymous and more stable solution. A few problems with
this approach are evident, large amounts of bandwidth are
required by multicasting data to numerous nodes. Client
privacy degrades, unlike the tunneling approach where a
client is almost definitely unknown, here the list of sus-
pected clients is narrowed to those receiving the multicast.
And finally, servers transmit data directly to other nodes
eliminating their privacy. Mantis, one of the more recent
P2P programs released, has specifically targeted the neg-
ative impacts tunneling has on the network. Searches are
constructed in much the same way as Mute and Shubac,
and are the foundation for communication tunnels. These
tunnels, however, are used to communicate control data and
not file transfers. The file transfers take place via spoofed
source UDP streams from servers to the clients, as shown
in Figure 1(c). This alleviates other nodes on the network
from spending resources on tunneling, and at the same time
maintains server anonymity despite the direct communica-
tion. The main drawback of this approach is the lack of
client anonymity. Shubac’s implementation maintains both
client and server anonymity via indirect communication.
Communication paths are flexible, dynamically changing
in size. Shrinking them reduces overhead and the amount
of nodes involved, while expanding them maintains anony-
mous communication between clients and servers.

3 Shubac Architecture

Our goal is to design an anonymous P2P system similar
in functionality to traditional P2P programs. That is, the
network should allow for searching of files; the identity of
nodes on the network remains hidden; implementation of
the anonymity feature should be transparent to end users;
the efficiency of the network should be maximized by re-
ducing the overhead incurred by transfers.

Shubac comprises three key components: tunneling,
searching, and routing. Shubac uses indirect communica-
tion by creating paths composed of arbitrary nodes. Com-
munication travels this path, creating a tunnel between
client and server. In Shubac, searches propagate the net-
work as in traditional P2P programs. Shubac implements a
search protocol that is effective but not resource intensive.
Nodes on Shubac store path information in routing tables.
These are used for forwarding communication and to corre-
late between searches and their corresponding paths.

3.1 Tunneling

Nodes on Shubac are near sighted, able to see and commu-
nicate with adjacent nodes. Distant clients and servers com-
municate indirectly, propagating messages from one neigh-
bor to the other until the destination is reached. A node’s
knowledge of the network is limited to its neighbors’ iden-
tities. It lacks information about a path it participates in
such as client and server identities or path length. This is
achieved by constructing initial messages, and forwarded
messages similarly. Ensuring nodes cannot differentiate be-
tween neighbors forwarding messages or generating them.

3.1.1 Path Stability

The indirect communication approach protects node privacy
but is not efficient on a P2P network. The main issue is path
instability, nodes exit the network breaking paths they were
connected to. A node leaving a path causes its neighbors,
who do not know each each other’s identity, unable to for-
ward communication. Churn [3], the rate at which nodes
exit and leave a P2P network, has been shown to be high
and causes paths to break at a high rate. Another issue is
the desired length of a path. Long paths are composed of
a large number of nodes, and are initially advantageous as
will be discussed later. However, they are more susceptible
to churn, can affect transfer speeds, and introduce excessive
overhead to the network. Since the bulk of communication
on P2P networks is file transfers, this can present significant
delays.

Shubac addresses these issues by introducing a dynamic
path method, which shrinks paths length as communication
progresses. An initial path consists of many nodes and pro-
gressively shrinks to a length more efficient for file trans-
fers. Paths shrink as nodes exit by connecting the neighbors
positioned before and after them to each other. Addition-
ally, this allows nodes to self regulate the amount of com-
munication and overhead to partake in.

3.1.2 Suspicion

Tunneling communication hides the identity of clients and
servers but does not eliminate suspicion. Nodes remaining
on a path for the duration of a file transfer can be suspected
by their neighbors to be the client or server. Shubac ad-
dresses this issue by maintaining a dynamic path that con-
tinuously grows and shrinks. Each node is able to leave a
path or insert another node into it. Nodes are only able to
insert their neighbors since they do not know the identity of
non-neighboring nodes. Inserted nodes may be placed be-
fore, after, or instead of the inserting node’s position. Each
node makes an independent decision whether to exit a path
or insert a node into it. This decision is based on a random
factor as well as the node’s resources. The neighbor is asked

to join is chosen randomly as well. These abilities reduce
the time a node remains connected to the same neighbor. A
node cannot differentiate whether its neighbor has exited a
path or inserted a node since both actions cause the node to
communicate with a new one. Nodes cannot successfully
suspect neighbors that do not appear to remain in the path
for the duration of the communication.

3.2 Searching

A node searching for files on Shubac sends a search to its
neighbors where it continues to propagate from one neigh-
bor to the next. Nodes receiving a search process it, store its
routing information, and forward it onward to their neigh-
bors. Nodes compare a search’s file pattern to files they
share, returning a list of matching files to the searching
node. Search replies are sent back to the neighbor the search
was received from which in turn sends the reply to the node
it received the search from. The reply is sent back on the
search’s path until the searching node is reached. After
receiving replies, a searching node sends a request for a
matching file. The request is forwarded on the path until
it reaches the node sharing the requested file. The file is
then transferred on the path back to the searching node.

Each search sent on Shubac builds a path as it propagates
the network. Maintaining routing information about multi-
ple paths, and forwarding their communication, presents a
burden on nodes and the network. A search protocol should
reach as many nodes as possible to increase the chance of
finding a file, while generating as little traffic as possible to
maintain an efficient and scalable network. A flood-based
approach, as used in Gnutella, would ensure the search
reaches every node but would overwhelm Shubac’s network
with the amount of paths created. We therefore imple-
mented a multiple biased random walk protocol. Searches
have a high potential of returning results while generating
relatively low network traffic.

Using the random walk approach nodes send and for-
ward searches to one random neighbor. Randomly selecting
neighbors improves the chances of subsequent searches to
reach new nodes. This approach, however, can create path
loops, a situation where nodes receive a search more than
once. Path loops cause nodes to send duplicate search re-
sults and assume multiple positions in a path. Introducing a
biased approach enforces nodes to reject searches they have
already received based on their unique IDs. Nodes receiv-
ing a rejection will attempt to forward a search to a different
neighbor. Although this approach consumes a small amount
of network resources, it reaches a small number of nodes
since it travels a single path.

For a more effective search, each node on Shubac sends
out multiple searches simultaneously. Each is sent through a
different neighbor, reaching a larger number of nodes. This

has been shown to provide adequate results, and generate
little traffic compared to flooding, and remain scalable [3].
Shubac enhances this approach allowing nodes to download
from multiple sources simultaneously. This decreases trans-
fer time and distributes the transfer load to multiple nodes.
To prevent searches from endlessly traveling the network,
a time to live (TTL) value expires a search after it passes
through a set amount of nodes. Initially reaching a large
number of nodes yields higher search results. However, dur-
ing file transfers, long paths are more likely to break and
decrease transfer speeds. A hard coded TTL cannot be im-
plemented since a client’s location will be known and its
identity can be discovered by backtracking the path. There-
fore, for every search created, a semi-random TTL is calcu-
lated in the range of a hard coded value. This provides an
adequate path length to be used without the client’s identity
being compromised.

3.3 Routing

Each node participating in a path forwards communication
from one neighbor to another, and maintains this informa-
tion in its routing table. Every entry in a routing table con-
sists of three fields:

• SearchID, which is a unique identifier created for a
search and used to identify all communication on that
searchs path.

• SourceID, which is the identity, the IP address and
port, of the neighbor the search was received from.
This node is effectively the previous hop in the path.

• DestinationID, which is the identity of the neigh-
bor the search was forwarded to. This node becomes
the next hop in the path.

Routing tables are modified throughout a communication
in various ways. A node receiving a search creates an en-
try for it in the routing table and deletes it when the path is
invalid or no longer used. Changes to a path during a trans-
fer, such as nodes exiting or inserting others, cause nodes
to modify the paths entry by updating the identity of the
previous hop or the next one.

Routing tables are crucial for indirect communication to
function, as each node on a path is required to forward
communication in both ways, between the client and the
server. If a node on a path inserts an incorrect value in the
paths entry, it would not know the identity of its adjacent
hop and would not be able to forward path communication.
Maintaining local routing tables has many advantages over
a global approach:

1. Nodes only know the identity of their adjacent neigh-
bors in a path and do not make this information public.

2. Local routing tables allow for quick responses to
changes in the network. Problems with a node are im-
mediately detected by its neighbors allowing searches
to be redirected and paths to be invalidated quickly.

3. Changes on the network are kept local, not affecting
distant nodes.

4. Overhead required for network changes is kept to a
minimum, providing a dynamic and scalable network.

Communication on Shubac is done via virtual cut
through (VCT). With this implementation nodes forward
packets as soon as they are received. This results in a near
constant flow of file segments from server to client. VCT
is significantly faster than store-and-forward (SF), in which
messages, such as file transfers, are queued until they are
fully received before being forwarded onward in the path.
Transfers using VCT assume data flows quickly through a
node. Path changes can cause delays until routing tables are
updated. To minimize transfer delays, while nodes change
the path, such as inserting a new node, they continue for-
warding messages to their existing neighbor. Messages will
be redirected to the new node only after it has updated its
routing table and is ready to transfer. Since delays are in-
evitable and newly inserted nodes can unexpectedly create
bottlenecks due to low network resources, nodes on Shubac
can send congestion control messages. These messages are
sent back against the direction of the transfer until they
reach the end of the path. They contain requests to slow
down the transfer rate in order to prevent network buffers
from overflowing, waste node resources, and possibly dis-
card packets requiring them to be resent. Congestion mes-
sages may also be sent to inform nodes that transfer rates
can be increased after a bottleneck has passed.

4 Dynamic Path Reconfiguration

Shubac organizes its communication messages in a format
of four fields:

• SrcNode field contains the identity of the sender, and
the DestNode field contains the identity of the recip-
ient.

• SearchID field contains a virtually unique identifier
for communication related to each search.

• Command field indicates the purpose of the com-
munication. The possible messages a node may
receive include searches, search replies,
search rejection, file requests, file
transfers, path updates, and congestion
control.

• FileData field contains data relevant for the com-
munication. This includes search patterns for searches,

lists of matching files for search replies, filenames or
their contents for file requests and subsequent trans-
fers, and path update information.

Paths on Shubac are dynamic, throughout a communi-
cation nodes continuously enter or leave them. A node’s
decision to leave a path is based on a random decision and
its resource usage. If a node participates in a large number
of paths, forwarding communication for each of them can
use its available bandwidth. In such a case, a node will ran-
domly select a path from its routing table to exit. Each node
running on Shubac begins a countdown timer once it starts
participating in paths. The countdown is set by a random
function returning a value between one and two minutes.
Once the timer finishes its countdown the node executes a
random function to determine whether to exit a path or not.
If it decides to do so, a random path is chosen from the rout-
ing table. The node proceeds to inform its two adjacent hops
in the path that future communication should be forwarded
directly between them and not through it.

A node’s decision to insert another node into the path is
based on a random function as well. This function is ex-
ecuted after a countdown timer, which is also initialized
when a node begins participating in paths. The value a
timer begins counting from insertions relies on a random
function and varies between three and four minutes. Inser-
tions occur less often than removals since we wish the path
to shrink over time. When performing an insertion, a node
randomly selects a path it is a part of and a neighbor, then
invites the neighbor to join the path. The neighbor accepts
the invitation if it has available resources and it is not al-
ready participating in that path. This is verified by looking
up the invitation’s searchID in the routing table. If it is
not found, the neighbor is not participating in the path and
may join it. Further steps include inserting an entry into the
invited node’s routing table with the appropriate neighbors,
and updating the inviting node’s routing table along with
its neighbor’s that they will be forwarding communication
to a new node. When the decisions to exit a path and in-
sert a node occur at the same time, a path replacement takes
place. A replacement consists of a node leaving a path while
inserting a neighbor into its position.

The countdown timers used to launch the decision func-
tions are reinitialized and run continuously until a node is
no longer participating in any paths. A node abruptly exit-
ing a path is called a dying node since it does not perform
a clean exit, notifying the neighbors in its paths. A dying
node’s neighbors unsuccessfully forward communication to
it or time out while expecting communication from it. When
this occurs, its neighbors send a message in the other direc-
tion of the path notifying of a broken path. Nodes on the
paths receiving this message forward it onward and remove
the path’s entry from the routing table.

To maintain an updated routing table, each node main-
tains an expiration timer of five minutes for each path. Ev-
ery time a communication for that path is received, the timer
is reinitialized. If messages are not received for a path
within five minutes, the path is considered obsolete and is
removed from the node’s routing table.

As mentioned, if an inserted node has low network re-
sources, or if an existing node unexpectedly yields a re-
duced amount of network resources, a bottleneck can occur
since messages will arrive at a greater rate than those leav-
ing. In such a scenario, the node constructs a message with
the amount of throughput it can process and sends it to the
previous hop in the path, the neighbor that is forwarding at
a high rate. The message is transferred back along the path
from one node to another until the server is reached. The
server then lowers its transfer rate to the amount requested
in the message. Once the node causing the bottleneck ex-
its the network or achieves a higher throughput, it can send
a message back along the path instructing the server to in-
crease the transfer rate.

5 Performance Analysis
Most anonymous P2P networks achieve anonymity by indi-
rect communication. We compare the differences between
file transfers on MUTE, Mantis, and Shubac in terms of data
transfer throughput. In addition, we compare the protocols
in terms of the amount of network resources used by an in-
termediary node on a path, a server, and the total amount
used by a transfer.

5.1 Network Resources

In MUTE, over the course of a transfer, each node on a path
receives the complete file and forwards it onward. Its net-
work resources used equal twice the file size since paths
in MUTE are static and nodes remain in their paths until
transfers complete. Mantis’ implementation of direct file
transfers results in nearly no committed resources for inter-
mediary nodes since they only transfer control communica-
tion. Nodes on Shubac initially perform similarly to those
on MUTE. However, on average, the amount of used re-
sources is significantly lower. Downloading from multiple
servers concurrently, multiple paths are used, each trans-
ferring only a fraction of the file. Furthermore, shrinking
paths and additional path dynamics reduce the time a node
participates in a path. Since a node does not need to partic-
ipate in a path for the duration of the transfer, the amount
of resources it commits is significantly lower than it would
commit on MUTE.

Servers in Mantis and MUTE are expected to forward
files in their entirety, the file size being the amount of re-
sources used. Shubac requires a smaller amount by dis-

tributing the download, retrieving segments of a file from
additional servers. While finding additional servers is not
guaranteed, it is common for popular content. The overall
amount of resources used a file transfer on MUTE is pro-
portional to the path length and file size. Each node on a
path, except for the client and server receive and forward the
entire file throughout a transfer. Mantis on the other hand
uses significantly less resources since the file is transferred
only once between server and client . While on Shubac, the
amount of resources is initially high as in MUTE, it pro-
gressively shrinks along with the path length.

5.2 Node Throughput

We compared the performance of Shubac to traffic similar
to MUTE and Mantis. Mantis is the optimal approach since
transfers are done directly. Therefore, we simulated it with
direct transfers on Shubac. MUTE performs similarly to
paths on Shubac that have just been constructed and there-
fore have not shrunk. It is the non-optimized approach, and
was simulated by performing transfers on static paths on
Shubac. We compared these approaches on a Local Area
Network where the environment is the same for each, and
external factors are not an issue. It should be noted we at-
tempted to test Shubac on PlanetLab but did not notice ben-
efits since we were not able to emulate the amount of nodes
as on a real P2P network.

We transferred files of various sizes across the network,
directly as in Mantis, on a static path as in MUTE, and
on Shubac’ dynamic path. Paths used for transfers initially
consisted of six nodes but nodes on Shubac left or entered
the path throughout the transfer. Figure 2 shows Mantis
and MUTE with consistent throughput throughout the trans-
fers. During transfers of smaller files, Shubac’s through-
put is similar to that of MUTE. However, with transfers of
larger files the transfer time increases giving the path more
time to shrink. The 10MB file transfer on Shubac was too
short to allow for any path dynamics, therefore, the path
length was of six nodes throughout the transfer. Two nodes
exited during the 100MB transfer resulting in a four node
path from approximately the middle of the transfer. The
path of the 200MB transfer shrunk by three nodes leaving
at almost identical intervals. Finally, while transferring the
500MB file, three nodes entered the path and five nodes left
it. As can be seen from the graph, transfers on Shubac pro-
gressively increase speed significantly improving upon the
static path approach.

5.3 Path Dynamics

Figure 3 represents a file transfer conducted on Shubac,
transferring a 200MB file across a six node path. During
the transfer three nodes left the path. This is the reason

0

2

4

6

8

10

12

0 100 200 300 400 500

Message Size (MB)

T
h
ro

u
g
h
p
u
t
(M

B
/s

e
c
)

Mantis

MUTE

Shubac

Figure 2: Throughput of data tranfer in different anonymous
P2P networks.

for the curve and a decrease in transfer time. This trans-
fer took place on a local network and lasted approximately
thirty three seconds. Four seconds after the transfer began
the first node exited the path, a second node left after ten
seconds, and the third left after twenty three seconds. The
improvement is noticeable compared to the transfer on a
static six node path that took almost twice as long.

6 Security Considerations

Attacks on P2P networks range from revealing node iden-
tities to manipulating and disrupting communications. The
majority of P2P networks lack authentication and verifica-
tion of participating nodes. Communication is done with a
certain level of trust, as nodes are unable to validate data
they receive from others. Therefore, most of the current
attacks cannot be prevented, but their effects can be mini-
mized.

6.1 Identity Exposure

Timing attacks. A common attack at discovering a client
or server of a communication is a timing attack. A ma-
licious node participating in a tunnel measures the time it
takes a server or client to respond to a message. An ad-
jacent neighbor can be exposed to be a client or server if
responses are immediate. To counter this attack nodes on
Shubac insert random delays before sending messages, cre-
ating timing inconsistencies. A similar attack exists for tun-
neled communication where nodes can suspect neighbors
of being servers or clients if they remain on a path for the
duration of the communication. Shubac reduces suspicion
by introducing dynamic paths in which nodes can exit or in-
sert new nodes into their paths. A node leaving a path gives
both of its neighbors their IP addresses, effectively making
them adjacent neighbors in the path. A node inserting an-
other into a path performs a similar action by notifying its
previous neighbor of the new node’s IP address. In both

0

50

100

150

200

250

0 20 40 60

Time (sec)

D
a

ta
 (

M
B

)

Direct

Shubac

Static Path

Figure 3: Profile of data transfers in different anonymous
P2P networks

scenarios, a neighboring node begins communicating with
a new node, not knowing the status of its previous neighbor.

Network analysis. Timing attacks [11] provide suspi-
cions, but cannot certainly identify a client or a server. An-
alyzing network communications via router and server logs
allows backtracking [2] a communication to its source, re-
constructing the path. This is a resource intensive scenario
that would require access to network logs of Internet Ser-
vice Providers (ISP) around the world due to the global us-
age of P2P networks. While difficult to accomplish, this
would provide concrete evidence to a node’s actions on the
network. Shubac attempts to hide communication by allow-
ing nodes to randomly send meaningless messages to one
another. Nodes sending numerous messages to their neigh-
bors create multiple dummy paths ending at random nodes.
A possible way to overcome this is to record all packets on
the network to differentiate between real and dummy mes-
sages. However, unless this occurs on a local network, this
is an unrealistic scenario. Paths on Shubac are dynamic,
created based on a random walk protocol. An eavesdrop-
ping node would need access to the Internet backbone of
every ISP the path crosses. Furthermore, under normal cir-
cumstances, ISPs do not record full packet payloads do to
the volume of traffic on the Internet. Therefore, recording
communication and backtracking it would need to be done
in real time, as the path remains active.

6.2 Active attacks

A common attack aimed at disrupting communication is the
Denial-of-Service (DoS) [5] attack, overwhelming a victim
with messages. Nodes on Shubac throttle the amount of
messages they accept from neighbors, preventing a flood
on the overlay network. This prevents more sophisticated
attacks such as overwhelming a node with false identities to
include as neighbors, and prevents bottlenecks during file
transfers.

Attacks such as Man in the Middle (MitM) and Sybil [6]

are between the most sophisticated attacks present, allow-
ing nodes to control a communication. In the MitM attack, a
malicious node participating in a path can monitor and mod-
ify messages passing between the server and client. Since
communication is encrypted the attacker would need to be a
part of the path since it was formed in order to intercept the
encryption keys passed between the client and server. Af-
ter this, the attacker is able to decrypt messages and modify
them, before re-encrypting them and forwarding them. This
allows an attacker to inject malicious data into the file trans-
fer such as virii. Since this attack is virtually invisible to the
client and server, it is nearly impossible to detect. Clients
on Shubac are able to detect this attack when downloading
files from multiple nodes. The integrity of data downloaded
from a server is verified using an MD5 checksum with an-
other server, discarding all invalid data.

Sybil, a similar attack, involves a node assuming the iden-
tity of other nodes. Common attacks include masquerading
as a server or multiple nodes in a path. Since the iden-
tity of clients and servers is hidden, the extent of these at-
tacks includes disrupting communications and modifying
the data transferred. Both scenarios are not critical to the
victim since malicious data can be detected when using a
distributed download, and disrupted communications only
cause a new search and transfer to take place.

7 Concluding Remarks

Anonymity preserving P2P programs have either been inef-
ficient or have relaxed anonymity in order to maintain effi-
cient file transfers. Shubac is a searchable P2P network that
provides anonymity to both clients and servers. It intro-
duces a means for efficient and stable file transfers without
the need to reveal the identity of neither clients nor servers.
Anonymity is achieved by transferring files through indi-
rect paths on the network. Efficiency is achieved by path
shrinkage, by allowing nodes to exit paths. This increases
throughput and reduces the resources used by forwarding
nodes. Maintaining efficiency throughout a transfer is done
with path dynamics. Nodes are able to insert others into
the path or replace their position with a new node. This
provides a constantly evolving path, in which it is difficult
to differentiate between a forwarding node, a server, or a
client. Further improvements were introduced to improve
transfer rates and stability, such as distributed downloads.

Acknowledgement

This research was supported in part by U.S. NSF grant ACI-
0203592 and NASA grant 03-OBPR-01-0049.

References
[1] S. Bono, C. Soghoian, F. Monrose, Mantis: A

Lightweight, Server-anonymity preserving, search-
able P2P network. Technical Report TR-2004-01-B,
Information Security Institute, Johns Hopkins Univer-
sity, June 2004.

[2] H. Burch and W. Cheswick, Tracing anonymous pack-
ets to their approximate source, Proc. of USENIX
Large Installation Systems Administration Conf.
(LISA)’00, 2000, pages 319–327.

[3] Y. Chawathe, S. Ratnasamy, L. Breslau, S. Shenker,
Making Gnutella-like P2P systems scalable. Proc. of
ACM SIGCOMM, 2003.

[4] I. Clarke, O. Sandberg, B. Wiley, T. W. Hong, Freenet:
a distributed anonymous information storage and re-
trieval system, Proc. of Designing Privacy Enhancing
Technologies, July 2000, pages 46-66.

[5] N. Daswani, H. Garcia-Molina, Queryflood DoS at-
tacks in gnutella, Proc. of ACM Conf. on Computer
and Communications Security, 2002.

[6] J. Douceur, The Sybil attack, Proc. of the IPTPS02,
March 2002.

[7] R. Dingledine, N. Mathewson, P. Syverson, Tor: The
second-generation onion router, Proc. of Usenix Secu-
rity Symposium, 2004

[8] M. Freedman, R. Morris, Tarzan: A peer-to-peer
anonymizing network, Proc. of the 9th ACM Conf. on
Computer and Communications Security, November
2002.

[9] Gnutella homepage, www.gnutella.com.
[10] K. T. Greenfeld, Meet the Napster, TIME Magazine,

October 2000.
[11] B.N. Levine, M. Reiter, C. Wang, M. Wright, Timing

attacks in low-latency mix systems, Proc. of 2004 Fi-
nancial Cryptography, February 2004.

[12] B. Levine, C. Shields, Hordes: A multicast-based pro-
tocol for anonymity. Journal of Computer Security,
Vol. 10(3), 2002, pages 213-240.

[13] Mute, http://mute-net.sourceforge.net.
[14] M. Reiter, A. Rubin, Crowds: Anonymity for Web

transactions, ACM Transactions on Information and
System Security, June 1998.

[15] A. Rowstron and P. Druschel. Storage management
and caching in PAST, a large scale, persistent peer-
topeer storage utility, Proceedings of ACM SOSP’01,
2001, pages 188-201.

[16] L. Xiao, Z. Xu, and X. Zhang. Mutual anonymity pro-
tocols for hybrid peer-to-peer systems, Proc. of Int.
Conf. on Distributed Computing Systems, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

