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Abstract

Granularity control is an effective means for trading
power consumption with performance on dense shared mem-
ory multiprocessors, such as multi-SMT and multi-CMP sys-
tems. With granularity control, the number of threads used to
execute an application, or part of an application, is changed,
thereby also changing the amount of work done by each ac-
tive thread. In this paper, we analyze the energy/performance
trade-off of varying thread granularity in parallel bench-
marks written for shared memory systems. We use physical
experimentation on a real multi-SMT system and a power es-
timation model based on the die areas of processor compo-
nents and component activity factors obtained from a hard-
ware event monitor. We also present HPPATCH, a runtime al-
gorithm for live tuning of thread granularity, which attempts
to simultaneously reduce both execution time and processor
power consumption.

1 Introduction

Power consumption and heat dissipation have recently
emerged as central themes in high-end computing. The op-
erating costs of Teraflop-scale supercomputers run up to mil-
lions of dollars annually, due to power consumption, cooling
requirements and frequent component failures [2]. The higher
component counts and component density of emerging super-
computers pose a hard requirement for power-aware system
design, and systems such as the BlueGene/L respond to this
challenge by supporting aggressive power optimizations [1].

A unique aspect of power optimization in high-end com-
puting systems is that, unlike mobile devices, the systems
need to sustain high performance, regardless of power opti-
mizations. Although power optimization techniques originat-
ing from the embedded computing domain, such as dynamic
voltage and frequency scaling, are applicable in parallel pro-
grams [2, 7], concurrency itself is a natural optimization tool
for both performance and power in the context of parallel
computing. This paper explores the use of concurrency con-
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Figure 1. Execution time and CPU energy consumption
of NAS SP on a 4-way SMP of Intel Xeon HT CPUs. The
highlighted area indicates opportunities for improvement of
energy and performance by coarsening thread granularity.

trol, and more specifically the use of thread-level granular-
ity control, as a means for improving the power and per-
formance efficiency on dense shared-memory systems. Our
work targets emerging multicore and multi-SMT processors
[5, 8, 14, 18], which are currently dominating the server and
high-end computing markets.

The idea of granularity control has been explored earlier
in the context of schedulers for multiprogrammed shared-
memory multiprocessors [19]. There are two compelling rea-
sons for using granularity control in standalone multithreaded
applications. The first is performance. Depending on their
characteristics, applications may lack enough concurrency to
exploit all available processors and threads in certain phases
of their code. At the other end, they may exercise too much
pressure on shared resources within each processor, such as
cache memories and TLBs [6, 9], or resources shared between
processors, such as memory bandwidth. Therefore, throttling
concurrency by increasing thread granularity can potentially
improve performance. The second reason is power. The sys-
tem can selectively deactivate execution cores within proces-
sors, or entire processors, to save CPU power. Because CPUs
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are generally the dominant power consumer in modern sys-
tems [7], they are an excellent target for power reduction.

Figure 1 shows an example of the potential for perfor-
mance and CPU energy consumption improvement. Granu-
larity control can be applied at all levels of nested multipro-
cessors, by deactivating processors, processor cores or indi-
vidual execution contexts, and is orthogonal to power saving
strategies such as clock/frequency scaling and synergetic to
processor halting by the operating system.

We present a quantitative study of the opportunities for
improving CPU power and performance efficiency on dense
multiprocessors using thread granularity control. Our study
uses a real system (a multiprocessor with Hyperthreaded Intel
processors) running parallel codes from the NAS Benchmarks
[4] and a realistic runtime CPU power estimation model based
on realtime execution data from hardware event counters [3].
To our knowledge, this is the first study of simultaneous
power and performance optimizations for nested multithread-
ing multiprocessors, using a real system and set of applica-
tions. Our study reveals numerous opportunities for perfor-
mance and power optimization via granularity control, as well
as the power/performance trade-off of activating simultane-
ous multithreading on the Intel Xeon processors.

We also present HPPATCH, an online thread-level gran-
ularity control scheme, which adaptively optimizes code for
power and performance by performing localized searches and
live timing analysis of thread granularities which are likely to
reduce CPU power without negatively affecting performance.
HPPATCH achieves substantial improvements of power and
performance efficiency, while also allowing the user to trade
a specified performance penalty with power savings.

The rest of this paper is organized as follows: Section 2
discusses the merits of adaptive thread granularity control
and presents HPPATCH. Section 3 presents our experimental
setup and Section 4 presents the most important results from
our experiments. Section 5 summarizes related work. Finally,
Section 6 concludes the paper.

2 Power-Aware Thread Granularity Control

We propose an online thread-level granularity control
scheme, whereby an estimate of the optimal number of
threads and physical processors is determined at runtime and
used for the execution of the application. The objective is to
consume less CPU power by executing some phases of the ap-
plication with fewer processors, without negatively affecting
performance. Since some phases may actually execute more
quickly on fewer processors, due to alleviation of thread in-
terference and bus contention, the total execution time of the
application may be reduced as well by using this technique.

Our adaptive thread-level granularity control is imple-
mented through instrumentation of codes parallelized using
OpenMP and requires no additional compiler support. We
used OpenMP parallel regions as phase markers. The parallel
regions have been marked with calls to our adaptation library
which denote the beginning and end of each region. Since
iterative codes have multiple outermost loop iterations, each

phase will be executed potentially many times. The library
records the execution times of each phase with varying num-
bers of threads and processors to find the combination with
the lowest execution time for that phase. Once the best con-
figuration for a particular phase has been found, it is applied
for the execution of the remaining invocations.

Phase analysis is a widely used process for identification
and optimization of dominant patterns in programs. Although
we have used a manual phase instrumentation process for
the purposes of this work, we note that our instrumentation
can be generalized and implemented in an automated tool.
We are currently integrating an automatic phase identification
scheme in our software, which is loosely based on basic block
vector analysis [17]. Our scheme uses the entry points of par-
allel loops and regions for phase identification and characteri-
zation and the Manhattan distance between vectors of disjoint
entry points for detecting dominant program phases.

2.1 Heuristic Searches of Thread Granu-
larities

An exhaustive search of all possible numbers of proces-
sors and threads per processor to identify the optimal thread
granularity [21] incurs unnecessary overhead, particularly in
large-scale or multi-level systems. Besides a potentially large
number of configurations to be searched, exhaustive search-
ing has to test even those configurations that are expected to
perform poorly, despite the low probability of selecting them
as the best. In applications with few outermost loop itera-
tions, it is not possible to amortize the cost of such attempts
and performance and CPU power consumption may suffer.
Therefore, our heuristic opts for a localized, non-exhaustive
search strategy. The following discussion of our heuristic as-
sumes a multi-SMT or multi-CMP system.

HPPATCH (for High-Performance Power-Aware Thread
Control Heuristic) approximates the optimal configuration
while requiring drastically ewer iterations than exhaustive
searches to come to a decision. This approach is based on
the conservative expectation that more processors are likely
to result in faster executions for most program phases.

HPPATCH begins by recording the execution times of
each program phase with all processors and all threads per
processor active. The search sequentially tries fewer proces-
sors with all threads per processor active until a number of
processors is encountered which results in an increase in the
execution time of the program phase under consideration. The
local minimum of the execution time function, with respect to
the number of processors, is used as the preferred number of
processors for the specific phase.

The second stage of the search attempts to reduce the num-
ber of active threads per processor, given the number of pro-
cessors selected during the first stage of the search. Although
we have so far experimented with 2-way SMT processors, in
which the search for the optimal number of threads per pro-
cessor is trivial, in the general case we recursively apply the
search strategy used to find the optimal number of processors
per phase. This means that we sequentially decrement the
number of active threads per processor until we begin to ob-



serve performance degradation. For architectures with three
levels of parallelism, namely multiprocessors with CMPs of
SMTs, HPPATCH includes an additional stage before select-
ing the number of threads per processor, where the number of
cores on each processor to leave active is determined. This
stage employs the same approach as is used to determine the
number of physical processors and the number of execution
contexts per SMT to use. Since HPPATCH performs only a
localized search of program configurations, it is possible to
end-up with sub-optimal configurations.

Note that processor deactivation (simply leaving a pro-
cessor idle, though not explicitly transfered to lower power
mode) always ends up in power savings, whereas thread de-
activation within active processors may or may not result in
power savings. Power consumption is linear to the number
of active processors. Whether deactivating threads within a
processor reduces power or not, depends on the processor ar-
chitecture. On a multicore processor, thread deactivation will
always result in power savings, since entire cores, each oc-
cupying significant area of the die, will be powered down.
On SMT processors, which share a common pipeline between
multiple threads, power savings are not necessarily linear to
the number of deactivated threads, since the remaining active
threads may still occupy the released resources to maximize
their ILP.

On a system of n physical processors, each with m cores
of l execution contexts, HPPATCH will try no more than
n + m + l − 2 configurations and may try as few as 3 for 2
levels of parallelism or 4 for 3 levels of parallelism. Fur-
thermore, the search approach used in HPPATCH is likely to
avoid trying the configurations that have the worst execution
times, i.e. those with too few processors. As a result, this
technique is likely to outperform the exhaustive search for ap-
plications with too few outermost loop iterations to amortize
the overhead of the initial search phase, as well as for scalable
applications with program phases which execute significantly
slower when the number of active processors is reduced.

To accurately select the most power-efficient configura-
tion in all cases, we would need to employ runtime power
estimates, and combine them with live timing of program
phases. The model we are currently using for power esti-
mation requires four executions of each phase with differ-
ent event counter rotations to collect the data needed for an
estimate. Therefore, the model is hard to apply on-line in
HPPATCH.We are currently investigating the use of power
predictors derived from a few hardware event counts, which
could be used for live estimation of energy/delay and, even-
tually, accurate selection of the most power-efficient thread
granularity within each SMT processor.

2.2 Searches with Performance Tolerance

We extend the basic framework described in the preceding
section, with a notion of quality of service. The latter pro-
vides additional flexibility, in order to take into account CPU
power considerations in the decision of the number of threads
and processors to employ. Rather than simply choosing the
configuration with the lowest execution time, the adaptive al-

gorithm is allowed to choose a configuration with a slightly
higher execution time if it results in the use of fewer proces-
sors. We implemented this performance-tolerant approach in
both the exhaustive and the HPPATCH search strategies.

In systems where performance is the primary concern,
such an approach is not likely to be beneficial. However, sys-
tems where minimal energy consumption for a given program
execution is desired may profit. We provide a simple interface
to define the allowed degree of performance tolerance. It is
expressed as the percentage of performance loss allowed in
return for the deactivation of one processor.

3 Experimental Setting

To evaluate the effectiveness of HPPATCH, we use a
power estimation model proposed by Isci et al [3]. This model
provides a formula to calculate the power consumption of a
processor based on hardware parameters and hardware per-
formance counters. The model works by approximating the
power consumption of each of the 22 major CPU components
using an estimate of the maximum power and the access rates
for each component. The formula for power consumption of
each component is the following:

Power(Ci) = AccessRate(Ci)∗ArchScaling(Ci)∗
MaxPower(Ci)+NonGatedClockPower(Ci)

The maximum power of each processor component is esti-
mated to be the maximum power of the processor scaled down
by the ratio of the die area occupied by the component [3].
We determined the die area ratio of each component using a
floorplan layout of the Pentium 4 provided in [10]. The ac-
cess rate is the number of “accesses” to the component per cy-
cle, and is computed using hardware performance counters to
record events associated with each component. The architec-
tural scaling of each component is the number of accesses that
can be simultaneously executed. The access rate multiplied
by the architectural scaling equals the percentage of the total
execution time during which each component is active and,
therefore, how much of its maximum power it is consuming.
Finally, non-gated clock power gives an additional constant
that is consumed by each component when not idle. This term
accounts for power consumption that grows non-linearly with
the access rate. The total CPU power consumption is taken
to be the sum of the power consumption of all components,
plus a fixed idle power. The idle power is charged to CPUs
even when they have been deactivated under the conservative
assumption that they will not be transitioned to a lower power
mode by the operating system. This assumption biases the
results against our approach, since in reality processors will
frequently be available for power mode transitions and there-
fore additional power savings. In the reported experimental
results, we sum the power consumption of all 4 processors.

Hardware performance counters were collected using
PACMAN (for PerformAnce Counters MANager), a library
we have written to collect event counts on Hyperthreaded pro-
cessors. PACMAN provides low-overhead access to the Pen-



Bench BT CG FT LU LU-HP MG SP UA
Iters 200 15 6 250 250 4 400 200

Table 1. Benchmarks used from the NPB suite
and the number of outermost loop iterations.

tium 4 counters using the Perfctr interface [16]. Although up
to 18 events can theoretically be recorded simultaneously us-
ing Pentium 4 event counters, there are complex limitations
as to which can be recorded at the same time. As a result, the
events required for power estimation must be recorded in four
different rotations. To estimate the CPU power of a given con-
figuration, the program needs to be executed four times with
one rotation of events being recorded each time. The CPU
power is then computed based on these values.

We experimented using eight applications from the
OpenMP version of the NAS Parallel Benchmarks suite (ver-
sion 3.1) [4]. The benchmarks were compiled using the Intel
FORTRAN compiler (version 9.0) with the problem size set
to class A. This problem size is large enough to yield real-
istic results while being small enough to ensure the working
sets of all applications fit entirely in main memory. The NAS
benchmarks are iterative with a consistent workload between
iterations, and are representative of the vast majority of paral-
lel applications. Furthermore, they contain applications with
both few and many outermost loop iterations (see Table 1).

We performed our evaluation of thread granularity control
on a Dell PowerEdge server, composed of 4 Hyperthreaded
Intel Xeon MP 1.4GHz processors. Each processor can si-
multaneously execute up to 2 threads. The machine has 1GB
of main memory and a 512KB level-3 cache, 256KB level-
2 cache, 8KB level-1 data cache and 12KB level-1 instruc-
tion trace cache, per processor. Bus-based multiprocessors
are a target platform for thread granularity control, since bus
bandwidth (3.2 GB/s in our system) may limit the effectively
exploitable number of processors. Although our target plat-
form has a relatively low bus bandwidth, our work is still rel-
evant for emerging architectures, considering that the number
of cores in CMPs (which currently stands at 2-8) is projected
to exceed 64 by 2010 [15], thus making bandwidth between
processor and on-chip or off-chip memory a major limitation
in next generation systems as well. Experiments were run
using Linux kernel version 2.4.25.

4 Results

To better understand the CPU energy and execution time
properties of the 8 benchmarks from the NAS suite, we first
executed them using 8 different static configurations on our
4-processor, 2-way SMT system. Specifically, we ran the
benchmarks using 1 to 4 processors and either 1 or 2 threads
per processor. In static executions, the same configuration
has been used throughout the execution life of the applica-
tion. We then executed the applications using the two adap-
tive strategies, namely the one based on exhaustive trial of all

configurations and the HPPATCH heuristic, both under dif-
ferent degrees of performance tolerance.

Figure 2 depicts the execution time and CPU energy con-
sumption of each application with the 8 static configurations
(left side), as well as with the exhaustive and HPPATCH adap-
tive configurations with no performance tolerance (right side
of each diagram). The configurations that yield the lowest
execution time and energy consumption are tagged in the di-
agrams with a striped bar and a star mark respectively.

Figure 3 focuses mainly on the behavior of the adaptive
strategies. More specifically, we execute each application un-
der the exhaustive and HPPATCH configurations. Each di-
agram reports 2 metrics, normalized with respect to a static
execution with 8 threads: i) The energy consumed for the ex-
ecution of the application, and ii) The Energy∗Delay2 metric
(ED2). The latter is a popular metric for evaluating power
/ performance tradeoffs in the context of high performance
computing [12, 13, 22]. ED2 takes into account both the en-
ergy requirements and execution time of applications, how-
ever it treats the execution time (Delay) as the first-class target
for optimization. The right segment of each diagram depicts
the same ratios for the static configurations that yielded the
lowest execution time, ED2 and energy consumption.

In sections 4.1 and 4.2 we analyze the experimental results
of the static and adaptive execution strategies respectively.

4.1 Static Configurations

Figure 2 outlines many opportunities for potential CPU
energy savings, without significant performance degradation.
All applications – with the exception of BT – are character-
ized by a global CPU energy consumption minimum at 2 or
3 physical processors, across static configurations. The in-
crease in CPU power requirements when more than 2 or 3
processors are used outweighs potential execution time im-
provement, thus resulting in a negative CPU energy balance.
Even in terms of performance, the improvement attained by
activating the 4th processor is usually minimal. It is, thus,
possible to identify favorable configurations in terms of both
CPU energy consumption and execution time. In the case of
FT, for example, the execution with 3 threads on 3 processors
proves both energy- and time-optimal.

The effect of the activation of the second execution context
of each processor on performance is not consistent. Certain
applications benefit from the exploitation of the second ex-
ecution context, either in all (UA) or at least in some con-
figurations (CG, LU, LU-HP, MG, SP). For other applica-
tions the exploitation of the second execution context consis-
tently leads to performance degradation (BT, FT). The power
estimation model indicates that using the second execution
context usually results in a minimal 3%-5% increase in the
power consumed by each CPU. There are, however, cases
where power consumption is slightly increased during single-
threaded execution due to fewer conflicts, which result in
higher occupancy of resources. As a result, the CPU energy
balance is mainly dependent on the respective performance
balance.



BT

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

(1
,1
)

(2
,1
)

(1
,2
)

(2
,2
)

(1
,3
)

(2
,3
)

(1
,4
)

(2
,4
)

ex
h

H
P
P
A
TC
H

Configuration (Threads per CPU / CPUs)

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

E
n

e
rg

y
 (

J
)

Time

Energy

CG

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

(1
,1
)

(2
,1
)

(1
,2
)

(2
,2
)

(1
,3
)

(2
,3
)

(1
,4
)

(2
,4
)

ex
h

H
P
P
A
TC
H

Configuration (Threads per CPU / CPUs)

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

E
n

e
rg

y
 (

J
)

Time

Energy

FT

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

(1
,1
)

(2
,1
)

(1
,2
)

(2
,2
)

(1
,3
)

(2
,3
)

(1
,4
)

(2
,4
)

ex
h

H
P
P
A
TC
H

Configuration (Threads per CPU / CPUs)

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

E
n

e
rg

y
 (

J
)

Time

Energy

LU

0.00

100.00

200.00

300.00

400.00

500.00

600.00

(1
,1
)

(2
,1
)

(1
,2
)

(2
,2
)

(1
,3
)

(2
,3
)

(1
,4
)

(2
,4
)

ex
h

H
P
P
A
TC
H

Configuration (Threads per CPU / CPUs)

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

E
n

e
rg

y
 (

J
)

Time

Energy

LU-HP

0.00

100.00

200.00

300.00

400.00

500.00

600.00

(1
,1
)

(2
,1
)

(1
,2
)

(2
,2
)

(1
,3
)

(2
,3
)

(1
,4
)

(2
,4
)

ex
h

H
P
P
A
TC
H

Configuration (Threads per CPU / CPUs)

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

E
n

e
rg

y
 (

J
)

Time

Energy

MG

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

(1
,1
)

(2
,1
)

(1
,2
)

(2
,2
)

(1
,3
)

(2
,3
)

(1
,4
)

(2
,4
)

ex
h

H
P
P
A
TC
H

Configuration (Threads per CPU / CPUs)

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

E
n

e
rg

y
 (

J
)

Time

Energy

SP

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

(1
,1
)

(2
,1
)

(1
,2
)

(2
,2
)

(1
,3
)

(2
,3
)

(1
,4
)

(2
,4
)

ex
h

H
P
P
A
TC
H

Configuration (Threads per CPU / CPUs)

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00
E

n
e

rg
y

 (
J

)

Time

Energy

UA

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

(1
,1
)

(2
,1
)

(1
,2
)

(2
,2
)

(1
,3
)

(2
,3
)

(1
,4
)

(2
,4
)

ex
h

H
P
P
A
TC
H

Configuration (Threads per CPU / CPUs)

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

E
n

e
rg

y
 (

J
)

Time

Energy

Figure 2. Execution time and CPU energy requirements of each application under the 8 different
static and the 2 adaptive configurations.

Our experimental results (not depicted due to space limita-
tions) verify the intuitive expectation for a strong correlation
between the optimal performance and ED2 static configura-
tions. In 6 out of 8 applications the best performing static
execution is the one that yields the lowest ED2 as well. As a
consequence, performance-centric adaptive execution strate-
gies, such as HPPATCH, are likely to identify sweetspots in
the performance/energy tradeoff as well.

4.2 Adaptive Execution

It is clear from the previous discussion that deriving the
optimal (performance- or power-wise) configuration for each
application is not a straightforward task, even for an experi-
enced programmer. In fact, our profiling results indicate that
different loops of the same application may execute optimally
under different configurations. In UA, for example, each of
the 8 static configurations proves optimal for at least one loop.
The shortcomings of statically configured executions moti-
vate the use of dynamic, adaptive execution strategies.

Figure 2 depicts the execution time and CPU energy con-
sumption attained by an exhaustive search (exh) strategy and

the HPPATCH adaptive heuristic, with no performance toler-
ance. The execution times for exh and HPPATCH are on aver-
age 14% and 11% higher, respectively, than the fastest static
configuration for each application. If the execution time of
the adaptive policies is compared to that attained by a static
execution with 8 threads – which would be the natural con-
figuration choice on the specific system – exh and HPPATCH
policies are, on average, 5% and 7% faster respectively. In the
case of UA, HPPATCH outperforms even the best static con-
figuration by 9%, since the adaptive policy allows different
loops to execute with different numbers of threads, according
to their characteristics.

FT and MG are not susceptible to adaptive optimizations.
They have a small number of outer iterations (6 and 4 respec-
tively). As a result, the adaptive policies do not have enough
opportunities to evaluate different configurations and, even if
they reach a decision, the remaining iterations are not enough
to amortize the cost of the search phase. However, even a
moderate external iteration count – 15 in the case of CG –
proves sufficient for the adaptive strategies to be effective. In
the rest of the discussion we exclude the results from FT and
MG when calculating averages of metrics across applications.
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Figure 3. Normalized values of CPU energy consumption and ED2 over the static execution with 8
threads. We report the results for the exhaustive search and HPPATCH adaptive strategies as well
as for the fastest, the lowest ED2 and the lowest energy consuming static executions.

Excluding FT and MG, exh and HPPATCH are a mere 10%
and 5% slower than the execution time-optimal static config-
uration respectively.

The use of adaptive strategies is typically associated with
a certain degree of overhead for two reasons: First, during the
search phase, loops are executed with suboptimal configura-
tions. The exhaustive search strategy is penalized more by
the search phase, since all configurations have to be tested,
down to the sequential execution, before a decision can be
made. HPPATCH, on the other hand, usually converges to a
decision much faster. The second source of overhead relates
to the potential execution of consecutive loops with differ-
ent configurations. Programmers of scientific codes tend to
optimize their applications for cache performance, under the
assumption that the application is going to be executed with
a fixed number and placement of threads. Adaptive strate-
gies often change the number of threads in consecutive loops,
thus distorting cache locality [6]. In order to evaluate the ex-
tent of the performance degradation the distortion of cache
locality is responsible for, we executed LU-HP under all 8
static configurations. We then identified the optimal config-
uration for each loop and recorded the loop execution time
under that configuration. Next, we executed the application
once more, using the off-line identified optimal configuration
for each loop. We found that the loops suffered a slowdown
of 19% on average, with respect to their optimal execution
times recorded in the static configurations. This overhead can
be attributed solely to the dynamic variation of the degree of
parallelism and thread placement across loop boundaries.

The results of increasing the degree of performance tol-
erance (not depicted due to space limitations) show, as ex-
pected, an increase in the execution times of applications.
Slower configurations are favored, in order to deactivate pro-
cessors and reduce CPU power consumption. This strategy
seems to be beneficial for the average CPU energy consump-

tion of applications, when they are executed under the exhaus-
tive search adaptive scheme. It results in an average of 5.9%
energy savings, compared to the adaptive execution with no
performance tolerance. For the HPPATCH adaptive heuris-
tic, however, the energy consumption increases on average
by 1.2% for executions with performance tolerance higher
than 0%. The exhaustive search scheme can better exploit
opportunities offered by higher performance tolerances, since
it has a broader search space than HPPATCH. In the case of
the ED2 metric, however, the experimental results are clearly
against configurations tolerating performance loss. Perfor-
mance tolerance higher than 0% results in an average of 2.6%
and 23.1% higher (worse) values of the ED2 metric for the
exhaustive search and the HPPATCH adaptive strategies re-
spectively. Even the minimal CPU energy reductions – in the
case of exhaustive search – cannot outweigh the execution
time increase induced by tolerating performance loss.

Figure 3 provides more insight into the CPU energy re-
quirements of applications under the two different adaptive
strategies when no performance loss is tolerated. The results
of a comparative evaluation of the exhaustive search against
the HPPATCH adaptive strategy are clearly in favor of HP-
PATCH. HPPATCH results, on average, in 5% faster execu-
tion, 7.6% less CPU energy consumption and 7.3% better
ED2. Although, theoretically, HPPATCH may converge to
suboptimal configurations, in practice it usually converges to
the correct decisions with just a fraction of the search cost and
cache distortion.

Table 2 summarizes the performance results for HP-
PATCH. Compared to a static execution with 8 threads, HP-
PATCH without performance loss tolerance results, on aver-
age, in 16.9% less CPU energy consumption and 29.2% better
ED2. The adaptive strategy manages to identify configura-
tions for each individual loop of the application that allow the
deactivation of physical processors without penalizing perfor-



Time Energy ED2

8 Threads 8.0 16.9 29.2
Time Opt -4.5 5.2 -5.4
Energy Opt 8.2 -3.1 11.9
ED2 Opt -2.8 1.9 -5.4

Table 2. Improvement (%, higher is better) in
time, energy and ED2 using HPPATCH, com-
pared to using 8 threads and the execution
time, energy and ED2 optimal static configu-
rations.

BT CG FT LU LU-HP MG SP UA
3.52 2.81 2.67 4.00 2.29 2.62 2.66 3.67

Table 3. Average weighted number of phys-
ical processors used by each application
when executed under the HPPATCH adaptive
strategy without performance loss tolerance.

mance. Table 3 reports the average weighted number of phys-
ical processors used by each application. The value has been
calculated by weighting the number of processors selected in
each loop by the percentage of contribution of the specific
loop to the total execution time of the application. Even in the
case of LU, which uses 4 processors throughout its execution
life, HPPATCH identifies the opportunity of deactivating the
second execution context of each processor in the most time
consuming loop of the application, thus resulting in both ex-
ecution time improvement and CPU power / energy savings.

Even compared to the fastest and the most ED2 effi-
cient static configurations, HPPATCH experiences ED2 per-
formance that is a mere 5.4% worse. On the other hand, HP-
PATCH results in 5.2% and 1.9% energy consumption sav-
ings compared with the aforementioned static strategies, re-
spectively. HPPATCH also consumes only 3.1% more energy
than the energy optimal static configuration, while executing
8.2% faster and with 11.9% better ED2 performance. These
results show that HPPATCH is, on average, competitive with
even the best static configuration, regardless of the metric be-
ing used, without requiring a priori knowledge of which con-
figuration to use for each application.

5 Related Work

High-performance power-aware execution of MPI pro-
grams on distributed memory platforms has recently been in-
vestigated [2, 7]. These works have identified opportunities
to save energy without impacting execution time in MPI pro-
grams by exploiting idle periods during communication and
collective operations. The authors have proposed several au-
tomated methods for saving energy during idle periods by re-
ducing the frequency and the voltage supply of processors.

These methods operate on clusters with processors that allow
DVFS (dynamic frequency and voltage scaling).

Our work differs from research on power and
performance-efficient MPI execution in that it improves
energy and performance efficiency on shared-memory
multiprocessors and SMT/CMP architectures. Our scheme,
similarly to the just-in-time DVFS technique presented in [7],
performs timing analysis across outer iterations of parallel
codes, however it applies energy optimizations at a different
granularity, namely that of phases enclosed by parallel loop
boundaries, rather than entire outer iterations. Furthermore,
our work uses a different approach for energy savings, that
is, the deactivation of processors and execution contexts.

Our study of power and performance implications of tun-
ing thread granularity in parallel codes shares similar objec-
tives with a study of the power-performance trade-offs of chip
multiprocessors presented in [11]. The authors investigate the
implications of both DVFS and thread granularity on perfor-
mance using a single, simulated CMP. Our work differs in
several respects. It is conducted on a real multi-SMT system
and the power-performance optimizations proposed are appli-
cable at runtime via live timing analysis, rather than derived
statically from a power-performance model [11]. Further-
more, our approach looks for power-performance optimiza-
tion opportunities by granularity control in program phases,
rather than by fixing the granularity of the entire program.

Runtime analysis of loops for granularity control towards
energy savings has been considered in [6], where the authors
proposed compiler support for generating multiversion loops
to control thread granularity at runtime. The work in [6] per-
forms thread control at the granularity of loop iterations in-
stead of entire loops, which is the case in our scheme. No re-
sults were reported in [6] and the work, as with [11], targeted
individual chip multiprocessors rather than systems with mul-
tiple physical processors.

The use of hardware event counters for the estimation of
energy consumption on microprocessors has been explored in
[3, 20]. The CPU power estimation model used in this study
was adopted from the Pentium 4 model presented in [3]. The
work presented in [20] is the first to use event counters at
runtime to derive an estimation of power which can be used
to dynamically scale voltage and frequency from within the
OS scheduler during system operation.

6 Conclusions

Using physical experimentation with a real system and a
realistic power model based on hardware event counters, we
have evaluated the CPU energy / performance tradeoffs that
arise by tuning thread granularity during the execution of par-
allel applications on multi-SMT systems. Our study shows
that the execution time-wise optimal static configuration of-
ten leaves idle processors and execution contexts. Because
of the diminishing returns of using more processors for per-
formance, it is natural to consider deactivating processors in
order to improve energy efficiency.

We have presented an adaptive approach, HPPATCH,



which takes advantage of the limitations in the exploitable
parallelism of parallel applications to leave execution con-
texts or entire physical processors idle during certain pro-
gram phases. HPPATCH works by searching for a number
of threads and processors which optimizes execution time
for each program phase. In so doing, it provides the poten-
tial to reduce not only execution time, but also CPU power
consumption by reducing the number of processors actively
consuming power. In our experiments, HPPATCH was able
to reduce execution time by 8%, CPU energy consumption
by 17% and Energy ∗ Delay2 by 29% on average over a
range of parallel applications compared to using all avail-
able execution contexts, which would be the natural choice
of a performance-conscious programmer. Furthermore, HP-
PATCH’s localized search method proves to be significantly
more effective than exhaustive runtime searching of program
configurations and a viable approach to autonomous opti-
mization of parallel programs on dense parallel architectures.
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