
Parallelization of Module Network Structure Learning and
Performance Tuning on SMP

Hongshan Jiang1, Chunrong Lai2, Wenguang Chen1,
Yurong Chen2, Wei Hu2, Weimin Zheng1, and Yimin Zhang2

1Tsinghua University 2Intel China Research Center Ltd.
Dept. of Computer Science 9/F, Raycom Infotech Park A, Zhong Guan Cun

Beijing, 100084 China Beijing, 100080 China
jhs03@mails.tsinghua.edu.cn {chunrong.lai, yurong.chen, wei.hu,

{cwg, zwm-dcs}@tsinghua.edu.cn yimin.zhang}@intel.com

Abstract

As an extension of Bayesian network, module net-
work is an appropriate model for inferring causal net-
work of a mass of variables from insufficient evi-
dences. However learning such a model is still a time-
consuming process. In this paper, we propose a par-
allel implementation of module network learning algo-
rithm using OpenMP. We propose a static task par-
titioning strategy which distributes sub-search-spaces
over worker threads to get the tradeoff between load-
balance and software-cache-contention. To overcome
performance penalties derived from shared-memory
contention, we adopt several optimization techniques
such as memory pre-allocation, memory alignment and
static function usage. These optimizations have dif-
ferent patterns of influence on the sequential perfor-
mance and the parallel speedup. Experiments validate
the effectiveness of these optimizations. For a 2,200
nodes dataset, they enhance the parallel speedup up to
88%, together with a 2X sequential performance im-
provement. With resource contentions reduced, work-
load imbalance becomes the main hurdle to parallel scal-
ability and the program behaviors more stable in various
platforms.

1. Introduction

In recent years, Bayesian networks [10] have been
widely applied in various fields such as bioinformatics,

0Supported by Intel Corporation, the National Natural Sci-
ence Foundation of China under Grant No. 60273007 and the
ChinaGrid.

speech processing and text mining to represent prob-
abilistic influences among stochastic variables, for in-
stance to identify gene regulatory networks from mi-
croarray data. In real world applications, it is often
the case that the problem domain is so complex that it
contains a mass of variables while there are only a few
instances available due to expensive cost of acquiring
data. In these cases, the amount of data is insufficient
to learn the underlying distribution: statistical noises
tend to lead spurious dependencies that significantly
overfit the data. To fit with these cases, an extension
of traditional Bayesian network, namely module net-
work [11], was introduced.

Module network can be viewed as a Bayesian net-
work in which variables in the same module share the
same parents and conditional probability distribution.
A real world example corresponding to this model is
that many genes in a cell are co-regulated by the same
factors and exhibit the same expression pattern. Mod-
ule network introduces the clustering concept into reg-
ular Bayesian network and make up its aforementioned
defect. Currently it has been successfully used in Gene
regulatory analysis [12].

Compared with traditional Bayesian network struc-
ture learning [10, 8], module network structure learn-
ing has a further structure to learn, namely module
assignment. Once the assignment is determined, learn-
ing dependency structure of a module network is like
that of a Bayesian network except that the targets are
changed from nodes to modules. Module network sig-
nificantly reduces the model complexity and the num-
ber of parameters, however learning such a model is
still a computation-intensive and time-consuming pro-
cess.

1-4244-0054-6/06/$20.00 ©2006 IEEE

A parallel learning program of module network on
distributed memory multiprocessor systems was re-
cently implemented and optimized [9], but as far as
we know the parallel version for shared-memory multi-
processor systems has not appeared. We see that
the behaviors of parallel programs on shared-memory
multi-processors are more difficult to understand. It
is mainly due to the facts that there are more types
of resource contentions in SMP and communications
between processors are implicit. Because of the abun-
dance of SMP systems in recent years and the trend
of on-chip multi-core systems in the future [7], imple-
menting such a hotspot application on SMP systems
and analyze its characteristics is of great importance.

In this paper, as our main contribution, we pro-
pose a parallel module network learning algorithm with
OpenMP [4] and present a set of recipes to cope with
performance penalties that arise from resource con-
tentions. Experiments show that these optimizations
have sound effectiveness.

The rest of this paper is organized as follows. In sec-
tion 2, we describe a hill climbing algorithm for learn-
ing module network. In section 3, the parallelized al-
gorithm is proposed. In section 4, measurements of
hotspots and thread profiles by Intel R© VTuneTM [1]
together with corresponding analysis are presented. In
section 5, we give some optimization techniques to deal
with memory sharing. Experiment results are given
and discussed in section 6. In the last section, we give
the summary and future works.

2. Module Network Learning Algorithm

Module network structure learning is an optimiza-
tion problem, in which a very large search space must
be explored to find the optimal solution. Because a
brutal search will lead to super-exponential computa-
tional complexity, we use a greedy hill climbing algo-
rithm to find a local optimal solution.

The hill climbing algorithm first clusters all nodes
into modules, none of which has parent nodes. This
initial module network model is treated as the start
point in the search space (solution space). The algo-
rithm searches all the nearest neighbors of the start
point in the search space, then selects the neighbor
that has the highest score as the new start point. This
procedure iterates until no neighbor has higher score
than the current start point (i.e., it has reached a local
optimal). Here the “neighbors” of a module network
model are of two kinds: dependency neighbors and as-
signment neighbors. The former can be generated from
the current model by adding or deleting a single arc,
subject to the acyclic constraint; the latter can be gen-

erated from the current model by moving a node from
a module to another, subject to the acyclic constraint
and without changing module count.

Learning dependency structure and learning mod-
ule assignment are equally important, so every itera-
tion step combines searches for dependency neighbors
and searches for assignment neighbors. In our imple-
mentation, these searches are organized as two iterative
phases. The algorithm is presented in Figure 1.

Bayesian Information Criteria (BIC) [8] score metric
is used in the algorithm for scoring a module network
model. It equals to the log likelihood of the data sub-
tract the penalty of the model’s complexity. A model
M has BIC score with dataset D as below:

Score(M,D) = log(P (D|M)) − 0.5 × log(E) × C(M)
(1)

where P(D|M) is the probability that data D is gener-
ated from model M; E is the number of evidences in the
dataset D, and C(M) is a constant that describes the
complexity of model M. From the formula, we can see
that the main computation to get a score is to compute
the probability P(D|M). According to the conditional

Figure 1. Sequential algorithm

independence in Bayesian network, the total score of a
model can be decomposed into the sum of its families’
scores:

Score(M,D) =
∑

i

Score(Familyi, D) (2)

Different from that in traditional Bayesian network
model, here a family consists of a module (a set of child

nodes) and its parent nodes. Since each family’s score
will not change once it has been computed out, we use
a cache to store each family’s score after the score has
been computed. Consequently when we need to com-
pute a family’s score, we look for it in the cache first. If
cache hit, we load score from cache directly; otherwise,
when encounter a new family, we compute the score
from scratch and save it into cache for possible future
use.

From Equation 2, we infer that the delta score be-
tween a neighbor and the current model equals to
the delta score of the changed family. Therefore the
problem of computing score of each neighbor model is
changed to computing scores of neighbor families.

Analyze the computational complexity of this algo-
rithm is pretty hard due to the search path is tightly
correlated to the training dataset and the initial clus-
tering. In addition, using of score caches complicated
the situation. In [9] an approximate estimation is
given.

An implementation of the sequential module net-
work learning algorithm is available in the Probabilis-
tic Network Library (PNL) [2]. It constructs the start
point of our work.

3. Workload Parallelization

To parallelize the hill-climbing structure learning al-
gorithm, we first identify the most computational in-
tensive modules, finding parallel opportunities within
it. By using VTuneTM performance analyzer, we find
most of the execution time is spent on computing scores
of neighbor families. On the other hand, each family
score can be computed independently. Therefore each
family score computation becomes a single workload
unit for parallelization.

Neglecting score cache factor, the workload distri-
bution of family score computations is inherently not
even. Computing scores of neighbor families from
the same family have close workloads while comput-
ing scores of neighbor families from different families
may vary greatly in workloads.

Unfortunately the introduction of score caches exag-
gerates this workload imbalance. In all rounds except
the first round, only newly encountered neighbor fam-
ilies need to be computed their scores from scratch,
other neighbor families’ scores can be obtained from
score caches. The newly encountered neighbor families
include those neighbors of the just changed family of
current model in the previous round and a few neigh-
bors of the unchanged family due to the possible release
of some acyclic constraint.

In our implementation, score caches are saved as

sparse matrix elements and are indexed by family par-
ents’ numbers. Family children’s (nodes inside the
module) numbers are not used as indices for two rea-
sons. The first is that higher index dimensions lead
to more performance penalty when retrieving content
from sparse matrix. The second is that computation of
delta score of changing children of a family has much
lower complexity than that of changing parents of a
family. As a result, every sparse matrix is bound to a
module. In addition, the score caches are only used in
the dependency-learning phase which makes choice by
altering parents. In assignment-learning phase, delta
score of neighbor families are computed directly.

Now we talk about issues related to parallelization.
Granularity. If we choose to partition each family

score computation into tasks, the granularity is fine but
the parallelism and synchronization overhead become
heavy. Otherwise choosing to parallelize with module
granularity will lead to intolerable workload imbalance.
As a trade-off, we treat each family score computation
as a single workload unit in dependency-learning phase,
while treat delta score computations of those neighbor
families derived from moving one node as a single work-
load unit in assignment-learning phase.

Scheduling. In dependency-learning phase we
notice that resource contention caused by shared-
memory usage hinder us from using a workload bal-
anced scheduling strategy. Sparse matrices for caching
scores are implemented as hash tables with linked lists,
which makes each sparse matrix a critical resource.
But from the second round of learning process, from-
scratch computations concentrate in one module (i.e.
related to the same sparse matrix). So synchroniza-
tion overhead for using critical section will be heavy.
Therefore we make a copy of sparse matrices for every
worker thread. At this point, we choose static schedul-
ing strategy so that the search space mapped in each
spare matrix can be divided into fixed nonoverlapped
sub-spaces which are thereafter assigned to different
worker threads. To use the common acyclic judgment,
actually we group nodes according to the module they
belong to and then schedule workloads statically. This
makes things more complex. But as in one round of
the iteration process at most two modules change their
components by one node, the nonoverlapping feature
of sub-spaces is maintained in an approximate way.
In assignment-learning phase we simply use a dynamic
scheduling strategy to gain good workload balance.

Synchronization. As OpenMP only support sim-
ple reduction variable, we set ∆max and related in-
dices as threadprivate variables. Each worker thread
compute its local maximum score in ∆max, then in
the critical section at the end of each phase, the global

maximum score is collected.
Figure 2 illustrates the parallelized algorithm.

Figure 2. Parallel algorithm using OpenMP

4. First Round Performance Analysis

4.1. Baseline Program and Hardware

The first group of issues before the performance tun-
ing process are the baseline construction and hardware
settings.

According to the descriptions in section 3 we devel-
oped a package, which includes high level optimizations
like common sub-expression elevation and redundancy
elimination [5]. We compile this package with options
“-O3 -openmp”, hence constructed our baseline pro-
gram.

The hardware platforms are two XeonTM SMP ma-
chines. One is a 4-way multiprocessor system named
QP (quad-processors) machine, the other is a Unisys-
Es7000 system which consists of 16 processors. Their
key characteristics are listed in Table 1.

Processor prefetcher settings are important hard-
ware settings which can influence application perfor-
mance. Whether or not to set a prefetcher on should

Platform QP-machine Unisys-Es7000
Processor 4-way 2.8GHz 16-way 3.0GHz

L1 d-
cache

8KB, hit latency
2 cycles

8KB, hit latency
2 cycles

L2
cache

512KB, hit la-
tency ∼ 10 cycles

512KB, hit la-
tency ∼ 10 cycles

L3
cache

2MB, hit latency
30+ cycles

4MB, hit latency
30+ cycles

L4
cache

None 32MB on-board,
300+ cycles

FSB 400MHz 400MHz
Interconn. FSB Crossbar
Memory 2GB, peak band-

width 2.1GB/s
8GB, peak band-
width 3.2GB/s

OS Linux 2.4.20smp Linux 2.4.20smp

Table 1. Hardware configuration

be determined by memory access pattern of the target
application. From analysis in section 3, we know that
accessing score caches will lead to irregular memory
access pattern, since score caches are implemented as
items in hash table. On the other hand, when comput-
ing family score from scratch, the matrix access stride
has regular pattern. Therefore we need some quanti-
tative measurements to judge which has dominant im-
pact.

In Intel’s PentiumTM4 and XeonTMprocessors, there
are two hardware-based prefetchers which can prefetch
data from memory to cache. The first one is called
stride prefetcher which tries to stay some cache lines
ahead of current data access locations, the other one
is called adjacent line prefetcher which fetches the ad-
jacent cache line (in same sector). These Prefetchers
settings can be changed through BIOS options.

As anticipated, measurements show that prefetcher
settings do impact system performance. Table 2 lists
the running time metrics of the baseline program with
different prefetcher settings on these two machines,
which are normalized to the running time with 4-
threads in the default setting of corresponding ma-
chines. The four-thread (4T) relative speedups are also
listed in the table. It is seen that the benefit of the
prefetchers decreases as processor numbers increase.
And the best relative speedups are achieved if turn-
ing off the prefetchers. So we turn off both prefetchers
in these machines for the following experiments.

After we determine the baseline program and hard-
ware settings, it is seen that the parallel speedup varies
greatly on different platforms and is not good enough
on both of them. As the last line of Table 2 shows, the
4T speedup is 2.56X on the QP-machine and 1.74X on
Unisys-es7000. It needs to be pointed out that the aw-

QP-machine Unisys-Es7000
St./Ad. seq. Par. Sp. Seq. Par. Sp.
on/on 2.37 1.02 2.33 1.70 1.05 1.62
on/off 2.38 0.95 2.50 1.71 0.99 1.73
off/on 2.42 1.00 2.42 1.72 1.11 1.55
off/off 2.47 0.96 2.56 1.74 1.00 1.74

Table 2. Normalized running time and 4T
speedups with prefetcher settings

ful performance is not result from the parallelization
strategies. In fact, both theoretical analysis (in section
3) and profiling (in section 4.2) confirm that we have a
relatively optimum version according to high-level task
partition.

4.2. Thread Profile and Hotspot Functions

To gain the running metrics of our program and
measure which parts influence the whole performance
to what extent, we use VTuneTM analyzer, which con-
sists of thread profiling and sampling profiling, to get
thread profile and hotspot functions.

The thread profiling process creates thread profile
which can be expected to give hints to understand or
optimize the parallel speedup. The process is based on
the instrumentation. The codes are in fact recompiled
with -openmp profile instead of -openmp. Instrument
codes are added to the OpenMP pragma or even the
Pthreads/Winthreads primitives. Finally by running
those instrumented binary, VTune can give a report
of run-time ratio of the parallel-part, sequential-part,
load-imbalance, barrier as well as the synchronization
percentage and the overheads ratio. In our experiments
the thread profile only increases 5%∼8% overhead to
the program. So that the gained thread profile of base-
line program is trustworthy.

Para.
ratio

Seq.
ratio

Imba.
/ barr.

Locks
/ Sync.

Over-
heads

QP 94.0% 0.5% 4.1% 0.9% 0.4%
Uni. 90.1% 0.3% 6.5% 0.5% 0.3%

Table 3. Thread profile of the baseline

Table 3 lists the thread profiles. We found that when
running in parallel most of the time spends on the par-
allel part. The most serious parallelism-limiting factor
is the imbalance part that arises from the LearnDepen-
dency function because of the static scheduling strategy
there. But the number 4.1% or 6.5% does not occupy
a large ratio. At this way the parallel speedup should

be much better than what we got. As we have seen
that the aggregate running time increases much from
uni-thread (UT) running to multi-threads (MT) run-
ning. It is highly possible that some operations run
much slower in multi-processors configuration than in
uni-processor configuration.

In the next step, we switch to VTune sampling pro-
cess to get bottlenecks on run time. In this process, in-
terrupts are generated on every interval of given num-
ber of hardware events based on hardware counters,
and then samples are noted down on current PC. Thus
the sampling process can give a run-time hotspot in-
structions distribution for interested events. When the
binary is built with debug information, for example
built with -g in gcc or -zi in Visual studio compiler or
in icc compiler, the distribution can be seen in higher
level such as function-level, class-level or module-level.

In Table 4, we list those hotspot functions which
cost up to 90% of the running time on both machines
with one thread and four threads, respectively. These
hotspot functions can be divided into four modules, as
Table 4 shows. The first module is ModuleNet, which
contains the main part of functions for learning mod-
ule network. Among them, function ScoreCacheAccess
accesses score caches; function ProcessingStatistical-
Data, which include log computations, computes score
from the sufficient statistics [8]. The second module
is Libpthread.so, which deals with primitive operations
of pthead. The third module is Libc-2.3.2.so, which
is mainly about memory operations. The last mod-
ule is libguide.so, which include those part of OpenMP
library calls.

Neglecting libguide.so, which relates to OpenMP
runtime environment, we can see from Table 4 that
vector functions such as push back, erase, assign etc.
significantly increase their percentage as thread count
increased. Other functions such as ScoreCacheAccess
and free have the same tendency but less degree. The
scalability problem in vector functions, malloc and free
give us hints to think about the cost of dynamic mem-
ory allocation/release. While the prolonged accessing
time of ScoreCacheAccess makes us to pay attention to
memory layout [5].

4.3. Memory Hierarchy Statistics

For further assurance, we get the memory-hierarchy
micro-architectural statistics with VTuneTM in Table
5. As this table shows, the Level 1 cache misses, FSB
(front-side-bus) activities, 64KB aliasing, and DTLB
(Data Translation Look-aside Buffer) page walks all
increase from 1T to 4T. These data confirm that the
memory behavior in MP (Multi-Processors) case is not

Module name /
Function name

QP-
1T

QP-
4T

Uni.-
1T

Uni.-
4T

ModuleNet 48.6% ↑61.9% 46.4% 43.2%
ScoreCacheAccess 2.7% ↑3.6% 3.9% ↑5.0%
ProcessingStatis-
ticalData

8.4% 2.8% 7.8% 3.2%

Vector functions 2.0% ↑15.8% 1.7% ↑12.9%
Libpthread.so 32.2% 22.7% 31.2% 22.7%
Libc-2.3.2.so 10.0% 8.6% 11.4% ↑23.5%

malloc 3.8% 2.7% 4.3% ↑13.1%
free 2.3% ↑3.3% 3.7% ↑8.6%

Libguide.so 6.2% 9.6%

Table 4. The hotspot functions

as good as in UP (Uni-Processor) case. It gives the
clue that memory contention of multi-processors may
be the main bottleneck of workload scalability.

QP-
1T

QP-
4T

Uni.-
1T

Uni.-
4T

Instru. Loads 36.5% 36.5% 36.5% 36.5%
L1 miss 2.4% ↑3.3% 3.3% ↑3.6%
L2 miss 7.0% 2.6% 5.1% 4.7%
FSB activities 0.6% ↑8.8% 0.5% ↑9.8%
DTLB walks 0.11% ↑0.13% 0.09% ↑0.13%
64KB aliasing 2.8% ↑4.7% 4.3% ↑4.6%

Table 5. Memory performance metrics

5. Memory Issues and Optimizations

The implementation of aforementioned parallel
module network learning algorithm is based on PNL
[2], which is implemented with C++ and STL (Stan-
dard Template Library) [3]. The push back/erase
methods of vectors in STL provide friendly interface
to programmers but also implicitly use heap memory
allocation/release. Due to increased competition for
shared resources like the memory bandwidth and more
interferes among multi-processors for cache coherence,
excessive use of dynamic memory allocation/release
leads to performance degrade on SMP. We used the
HOARD [6] multiprocessor memory allocator trying to
make those lock-free, but the performance is not im-
proved. In the following, we will illuminate those mem-
ory issues that mostly influence the workload scalabil-
ity of our program. However, it is out of the scope of
this paper to describe how to optimize memory usage
on SMP systems in general.

The first issue is the frequency of memory alloca-
tion and release. As memory is a shared resource in

SMP system, allocating memory for multiple concur-
rent threads is inefficient. Also, frequent invocations
to memory allocation and release cause memory frag-
mentation and random memory layout. Further more,
the operations are more expensive when vectors need
to expand allocated space. All of these limit workload
scalability.

The optimizations adopted for this issue are mem-
ory pre-allocation and static function usage. Memory
pre-allocation is applied for those frequently accessed
buffers or vectors. At the beginning of a code region
(usually a loop region), we allocate a memory block
whose length reaches the maximum length needed to
run in this region. At the end of the region, we re-
lease the memory block. This remarkably reduces the
frequency of memory allocation and release.

Static functions are used as substitutes for virtual
functions of an object. It can reduce the overheads of
construction and destruction of an object. In addition,
compared with invoking virtual functions, calling static
function also saves the cost of virtual tables’ access.
As additional costs, few more parameters need to be
transferred when invoking the static functions.

The second issue is memory layout. Memory layout
problem is often caused by dynamic memory alloca-
tion/release. Compiler can perform memory alignment
and padding automatically for global or local variables
according to compile pragma in source code. But it
can not automatically align memory for dynamically
allocated memory yet. This may introduce several
performance issues. Intel manuals mention that the
split loads or blocked store forwarding penalties due to
un-alignment access take the major part of sequential
penalty. Here we point out two more kinds of penal-
ties. One is false sharing[5], which means that if the
buffers are not aligned by cache line granularity, i.e.
many memory lines are each partitioned by more than
one processor, there will be more cache invalidates for
these falsely shared data. The other kind of penalties
comes from the aliasing problem. Intel reports that
the processors in the test platforms have an aliasing
penalty when “64 KBytes aliasing”1 exists. The rea-
son is that the processor is doing way prediction based
on that part of virtual address, so that different data
with the same value for bit 0 through 15 of the linear
address will compete for the same cache lines.

The optimization adopted for memory layout prob-
lem is manual memory alignment. After dynamic al-
location of a large block, we compute a memory ad-
dress closely after the gained memory handle, which is
aligned according to the cache line size of the target

1The newer Intel processor has less aliasing penalties because
there are only “4MB aliasing”

architecture.
To estimate the impact of each optimization on fi-

nal performance, we separate out the static-function-
usage optimization and construct two optimized ver-
sions. The first one called MEMORY only uses memory
pre-allocation and alignment. The second one called
FINAL uses all of the aforementioned optimizations.

Although these optimizations are somewhat
straightforward, they improve both the sequential
performance and parallel speedup significantly. Also
as we will describe in Section 6, these optimizations
have different patterns of influence on the sequential
performance and the parallel speedup.

6. Experiment Results

Experiments were carried out on the machines as
described in Table 1. Hardware settings and compiler
options are set as section 4.1 mentioned. The wall time
was measured by computing the elapsed time between
two invocations of gettimeofday, meanwhile the time
for clustering the initial model were excluded from the
execution time. Five measurements were made for each
test case, and the average value is reported.

The dataset scaling graphs for the baseline version
and the final version are shown in Figure 3. There
are four candidate datasets generated from Bayesian
network models which contain 1,100, 2,200, 4,400 or
8,800 nodes. It is seen that the speedups become much
better in the final version. In addition, different from
baseline version, whose speedup often drops with in-
creasing dataset, the final version increases its speedup
with increasing dataset. Another benefit we noticed
from the two figures is that after the code optimiza-
tions the speedup variance between the two platforms
becomes more similar. Thus the speedups can be un-
derstood more easily.

(a) baseline (b) after optimization

Figure 3. Dataset scaling graphs

Table 6 lists the performance metrics of our three
parallel versions in the two test machines, with the
dataset of 2,200 nodes grouping to 74 modules. We

list the total sequential running time, the running time
in the dependency-learning phases and assignment-
learning phases in Table 6(a), respectively. We also
list the speedups of 4 threads in Table 6(b).

(a) QP-machine Unisys-es7000
Time Total Dep. Ass. Total Dep. Ass.
BASE. 14.8 4.50 10.3 14.6 3.99 10.6
MEM. 10.5 4.04 6.43 10.1 3.92 6.21
FINAL 7.35 3.66 3.69 7.00 3.58 3.42

(b) QP-machine Unisys-es7000
Sp.(4T) Total Dep. Ass. Total Dep. Ass.
BASE. 2.32 1.38 3.28 1.56 0.90 2.04
MEM. 3.33 3.01 3.57 2.37 2.12 2.57
FINAL 3.35 2.97 3.83 2.94 2.37 3.92

Table 6. Performance metrics with dataset of
2,200 nodes

We deduced Table 7 from Table 6. It lists the
relative improvements of sequential performance and
parallel speedup using two different optimizations, i.e.
memory related optimization and static function usage.

(a) QP-machine Unisys-es7000
Time% Total Dep. Ass. Total Dep. Ass.
Mem. 41.8 11.4 61.0 44.3 1.9 71.2
Static 42.4 10.3 74.3 44.7 9.6 81.4

(b) QP-machine Unisys-es7000
Sp.(4T)%Total Dep. Ass. Total Dep. Ass.
Mem. 44 118 8.7 52 135 26
Static 0.60 -1.2 7.4 24 12 52

Table 7. Relative Improvements by different
optimizations

In Table 7, it is seen that the memory related op-
timizations improve not only the sequential perfor-
mance by larger than 40%, but also the relative par-
allel speedup by more than 40%. On the other hand,
static function usage results in lower parallel speedup
improvement compared to its sequential counterpart.
Memory related optimizations and static function us-
age have different effects in the two phases of the
learning process, i.e. dependency-learning phase and
assignment-learning phase. Memory related optimiza-
tions have lower impact on the dependency-learning
phase according to the sequential performance while
it has higher impact according to parallel speedup.
Static function usage has consistent impact patterns
with higher impact on assignment-learning phase. The
reason will be described later in detail.

From the result, we can conclude that memory re-
lated optimizations reduce not only memory access-
ing overheads but also interferences between proces-
sors while static function usage only reduces memory
accessing overheads.

In the dependency-learning phase, using score cache
makes the situation complicated. Firstly, the last
line of Table 6(b) shows that although we have sat-
isfactory parallel speedup of the assignment-learning
phase in the final version, the parallel speedup of the
dependency-learning phase is far from acceptable. The
reason is that to avoid redundant cache computations
we adopt static scheduling strategy, which results in
workload imbalance. After resource contentions be-
ing reduced by aforementioned optimizations, workload
imbalance becomes a major hurdle to the parallel scal-
ability. Secondly, less sequential performance improve-
ments are made in the dependency-learning phase, as
illustrated in Table 7(a). The reason is that loading
score caches, which dominates the dependency-learning
phase, is rarely influenced by these optimizations in
sequential mode. Thirdly, with memory optimizations
we achieved remarkable improvements in the parallel
speedup in dependency-learning phase, as illustrated
in Table 7(b). This is because that memory align-
ment greatly impacts parallel behavior of loading score
caches. Fourthly, static function usage only influences
those from-scratch computations, which include those
miss-cache computations in the dependency-learning
phase and all computations in the assignment-learning
phase. Therefore, more parallel speedup improvements
are achieved in the assignment-learning phase by using
static functions.

Further evaluation of the parallel scalability of our
program on Unisys-es7000 machine was performed,
with dataset of 8,800 nodes running on 16 threads. The
result is consistent with the conclusion we made.

One thing we should emphasize here is that those
“näıve optimizations” such as the manual redundant
computation removal, computation reuse and loop un-
rolling [5], are observed to slightly reduce the parallel
speedup. It is because that those optimizations mainly
focus on hotspots, which are most likely in parallel re-
gions of the program. Thus those optimizations lead
to less parallel ratio, and finally less relative speedup
according to the Amdahl’s Law.

7. Summary

In this paper, we presented a parallel implemen-
tation of module network learning algorithm with
OpenMP. The key contributions of this paper are as
follows. First, we give parallelization of an emerging

application using OpenMP. Second, we identify some
performance penalties and give effective recipes. Con-
sidering the 2,200 nodes dataset, the optimizations en-
hance the parallel speedup up to 88% (2.94/1.56 - 1),
together with a 2X (14.6/7) sequential performance
improvement. Third, we analyze impact patterns of
different optimizations on sequential performance and
parallel speedup.

The results from this paper emphasize the impor-
tance of a memory-friendly program to increase the
parallel efficiency of a shared-memory multi-processor,
especially the importance of control the random data
layout caused by the dynamic memory allocation. At
the same time, the efficiency of memory usage of STL
vectors on SMP needs also be improved.

References

[1] Intel vtune performance analyzer. Intel Corporation.
http://developer.intel.com/software/products/vtune/
index.htm.

[2] Pnl: Probabilistic network library. Intel Corporation.
http://sourceforge.net/projects/openpnl/.

[3] Standard template library programmer’s guide. SGI
Corporation. http://www.sgi.com/tech/stl/.

[4] OpenMP C and C++ Application Program Inter-
face, 2.0 Edition. The OpenMP Architecture Review
Board, Mar. 2002.

[5] D. Bacon, S. Graham, and O. Sharp. Compiler trans-
formations for high performance computing. ACM
Computing Surveys, 26(4):345–420, Dec. 1994.

[6] E. Berger, K. McKinley, R. Blumofe, and
P. Wilson. Hoard: A scalable memory al-
locator for multithreaded applications, 2000.
http://www.cs.umass.edu/ emery/hoard/.

[7] S. Borkar, P. Dubey, and et al. Plat-
form 2015: Intel processor and plat-
form evolution for the next decade, 2005.
ftp://download.intel.com/technology/computing/
archinnov/platform2015/download/Platform 2015.pdf.

[8] D. Heckerman. A tutorial on learn-
ing with bayesian networks, 1996.
ftp://ftp.research.microsoft.com/pub/tr/tr-95-06.pdf.

[9] L. Liu, W. Hu, C. Lai, H. Jiang, W. Chen, W. Zheng,
and Y. Zhang. Parallel module network learning on
distributed memory multiprocessors. In 2005 Interna-
tional Conference on Parallel Processing Workshops
(ICPPW’05), pages 129–134, 2005.

[10] K. Murphy. A brief introduction to graph-
ical models and bayesian networks, 1998.
http://www.cs.ubc.ca/˜murphyk/Bayes/bayes.html.

[11] E. Segal, D. Pe’er, A. Regev, D. Koller, and N. Fried-
man. Learning module networks. The Journal of Ma-
chine Learning Research, 6:557–588, Sept. 2005.

[12] X. Xu, L. Wang, and D. Ding. Learning module net-
works from genome-wide location and expression data.
FEBS Lett., 578(3):297–304, Dec. 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

