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Abstract

In this paper, we present a tree-partition algorithm
for parallel mining of frequent patterns. Our work is
based on FP-Growth algorithm, which is constituted of
tree-building stage and mining stage. The main idea is
to build only one FP-Tree in the memory, partition it
into several independent parts and distribute them to
different threads. A heuristic algorithm is devised to
balance the workload. Our algorithm can not only alle-
viate the impact of locks during the tree-building stage,
but also avoid the overhead that do great harm to the
mining stage. We present the experiments on different
kinds of datasets and compare the results with other
parallel approaches. The results suggest that our ap-
proach has great advantage in efficiency, especially on
certain kinds of datasets. As the number of processors
increases, our parallel algorithm shows good scalability.

1. Introduction

Association rule mining searches for interesting re-
lationships among items in a given data set. One of
the most famous examples of association rule mining
is the market basket problem, which was introduced in
[1]. Since the invention of Apriori algorithm [1, 2], a
lot of algorithms have been devised to cope with the
problem of frequent pattern mining, which is the most
time-consuming part of association rule mining pro-
cess. However, as for extremely large datasets, the
currently proposed frequent pattern mining algorithms
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still consume too much time. One solution is to design
more efficient mining algorithms to reduce the repeated
I/O scans as well as to minimize the memory require-
ment and calculating time. So algorithms like kDCI [3],
FP-Growth [4], etc, are proposed. Another alternative
solution is to parallelize the algorithm.

As the recent development of CMP and SMP ar-
chitecture, the shared-memory parallel program is be-
coming more and more popular. The shared mem-
ory structure can provide an economic parallel solution
with good efficiency and high scalability. The present
frequent pattern mining algorithms can be divided into
two categories: apriori-like algorithms, which are the
implementations of the classical apriori algorithm, and
the other ones, which are completely different in struc-
ture with the classical apriori algorithm. Among both
kinds of algorithms, FP-Growth [4] can achieve good
efficiency. It’s faster than any of the apriori-like al-
gorithms and it only has to scan the whole database
twice.

This paper proposed an approach to parallelize the
FP-Growth algorithm on shared-memory structures.
Section 2 gives a brief introduction to FP-Growth Algo-
rithm. Section 3 presents related parallelization work
of FP-Growth. Section 4 and Section 5 introduced our
parallelization algorithm. Section 6 showed the experi-
ment results as well as comparisons with other parallel
algorithms.

2. FP-Growth Algorithm

FP-Growth algorithm is based on tree structures.
The algorithm can be divided into two steps.



2.1. Building FP-Tree

Scan the database twice. The first scan gathers nec-
essary information for the second scan to build the FP-
Tree from each line of transaction. The algorithm is
shown below:

Algorithm 1 FP-tree construction.

Input: A transaction database DB and a minimum
support threshold &.

Output: FP-tree, the frequent-pattern tree of DB.

Method: The FP-tree is constructed as follows.

1. Scan the transaction database DB once. Collect
F, the set of frequent items, and the support of
each frequent item. Sort F in support-descending
order as FList, the list of frequent items.

2. Create the root of an FP-tree, T | and label it as
“null”. For each transaction Trans in DB, do the
following.

Select the frequent items in Trans and sort them ac-
cording to the order of FList. Let the sorted frequent-
item list in Trans be [p|P], where p is the first element
and P is the remaining list. Call insert_tree([p|P],T).

The function insert_tree([p|P],T) is performed as
follows. If T has a child N such that N.item_name =
p.item_name, then increment N’s count by 1; else create
a new node N, with its count initialized to 1, its parent
link linked to T , and its node_link linked to the nodes
with the same item_name via the node_link structure.
If P is nonempty, call insert_tree(P, N) recursively.

2.2. Mining from the FP-Tree

It’s an iterative procedure: each step produces a
set of conditional pattern base and then calculated to-
gether. The algorithm is shown below:

Algorithm 2 FP-growth: Mining frequent patterns
with FP-tree by pattern fragment growth.

Input: A database DB, represented by FP-tree con-
structed according to Algorithm 1 , and a mini-
mum support threshold &.

Output: The complete set of frequent patterns.

Method: Call FP_Growth(FP_tree, null), which is
shown in Figure 1.

3. Related Work

Among those algorithms proposed to address the
problem of mining frequent patterns, one of the key
algorithms, which seemed to be the most popular in
many applications for enumerating frequent itemsets,
is the apriori algorithm [1, 2]. It’s the foundation of
most known algorithms whether sequential or parallel.
Salvatore et al. have proposed Direct Count & Inter-
sect (kKDCI) [3] as well as its parallel version (parDCI
[5]). However, it requires at least 3 full database scans.
FP-Growth [4], which was proposed by Han et al., cre-
ates a relatively compact tree-structure that alleviates
the multi-scan problem and improved the candidate
itemset generation. The algorithm requires only 2 full
database scans. Our approach presented in this pa-
per was based on this idea. In spite of the significance
of the frequent pattern mining, particularly the gen-
eration of frequent itemsets, few advances have been
made on parallelizing frequent pattern mining algo-
rithms. Most of the work on parallelizing association
rule mining on Shared-memory Multi Processor archi-
tecture was based on apriori-like algorithms [5, 6, 7].

Osmar et al. proposed a parallel algorithm [8], which
build extra trees for each process. Each thread builds
its own FP-Tree from certain part of the database, cal-
culates out the candidate pattern base from its own
FP-Tree and then merges the candidate pattern bases
together. It can achieve good acceleration, but as the
number of threads increases, the total memory required
by all FP-Trees increases too, which may cause great
overhead and do harm to scalability.

Tko et al. also tested the multi-tree parallel FP-
Growth algorithm on PC Clusters, and came across the
same problem of extra nodes introduced by multi-tree.
Although they proposed a remerging algorithm [9],
which can minimize the number of extra nodes needed.
However, remerging operation itself consumes much
time and new overhead is introduced.

R.Jin, et al. did an experiment [10], building multi-
trees with full replication as well as building one tree.
They compare the multi-tree solution with one-tree so-
lution and found that one-tree solution has poor scal-
ability. However, their one-tree solution uses locks to
solve the consistency problems whenever the tree needs
to be expanded. Although this method can avoid the
overhead of the extra nodes, the locks make the scal-
ability very poor. In their second approach of paral-
lelization, which uses full replication to reduce locks,
they get a speed-up ratio of 4.72 on an 8 threads par-
allel environment.



Procedure FP_Growth(Tree, «)
begin
/* Mining single prefiz—path FP—tree x/
if Tree contains a single prefix path then
begin
let P be the single prefix—path part of Tree;
let @ be the multipath part with the top branching node replaced by a null root;
for each combination (denoted as () of the nodes in the path P do
generate pattern 8| J o with support = minimum support of nodes in £;
let freq pattern set(P) be the set of patterns so generated,;

end
else let Q) be Tree;
/* Mining multipath FP—tree x/
for each item ai in @ do
begin

generate pattern 8 = a; | o with support = a;.support;

construct ’s conditional pattern—base and then 3’s conditional FP—tree Tree 3;
if Tree 8 = ¢(13) then call FP—growth(Tree 3, 3);

let freq pattern set(Q) be the set of patterns so generated;

end

return (freq pattern set(P) | J freq pattern set(Q) |J (freq pattern set(P)x freq pattern set(Q)))

end

Figure 1. Pseudocode of FP_Growth Procedure

4. Tree Partition Algorithm
4.1. Master/Slave Model

According to [10], if we let each thread to deal with
a mount of transactions dynamically, we have to add
lock to each node of the tree to make sure of the con-
sistency. This will do great harm to the scalability. In
the experiment of [10], the speed-up ratio in 8 threads
circumstances will be less than 1. So we introduced
our Master/Slave Model.

In the multi-thread environments, we make one
thread as the master thread, and the remaining threads
as slave threads. The master thread’s task is to load
each line of transaction from the database and dis-
tribute it to each slave threads. Each slave thread has
its own transaction queue. It gets a transaction from
the queue each time the master thread put one trans-
action into it, and disposes the transaction to build the
tree. Thus the master thread is a producer, which pro-
duces transactions for each slave thread to consume.

This model makes it possible for master thread to
do some preliminary measures of the transaction be-
fore delivering it to the slave thread. According to the
results of the preliminary measures, the master thread
can also decide to which slave thread the transaction
should be delivered.

However, this model cannot eliminate the lock of
each node in the tree. The further work is to partition

the tree into several independent parts, and distribute
them to slave threads.

4.2. Content based tree partition

Now we propose the idea of the content based tree
partition algorithm. The most important point is to
partition the tree equally so that each thread can get
approximately equal workload, i.e. get approximately
equal amount of transactions to process. The idea can
be illustrated as following. A database DATA contains
8 items: “A”, “B”, “«C”, ---, “G”, “H”, where “A”,
“B” and “C” are the first three most frequent items.
DATA has totally 80 transactions. Assume we want to
partition all transactions according to the content of
the first N most frequent items (N can be heuristically
determined according to the number of threads avail-
able, usually N = 10 works well for most databases).
Here we set N = 3 for simplicity and the transactions
are partitioned into 22 = 8 chunks according to items
“A”, “B” and “C” (a content base chunk in database is
equal to a sub-branch in FP-tree, as explained above).
See Table 1 for an example of the distribution chunks
(e.g. 101 means the chunk contain transactions all
have items “A” and “C”, but not “B”). If there are
two threads available, i.e. need to group the chunks
into two groups, a heuristic search algorithm can be
employed to group the 8 chunks into two groups, and
make each group contain approximate equal number




of transactions. The result can be {111,110,101,011}
and {100, 101,001,000}, each group contains 40 trans-
actions. Figure 2 shows the partitioned sub-branches
and grouping result. Two sub-branches circled with
red dashed line are the group assigned to thread 1, and
two other sub-branches circled with blue solid line are
the group assigned to thread 2.

Figure 2. Content based tree partition and
grouping

ABC | count
111 14
110 12
101 10
100 6

011 4

010 5

001 5

000 24

Table 1. Transaction Distribution by Contents

In the real world, we have to set N (the number of
most frequent items we count) large enough to make
the load balanced among each thread. Generally, if we
set N between 10 and 12, we will achieve good load-
balance. However, we have to divide all transactions
into 2V chunks, and form T’ = (Numberofthreads)—1
groups to distribute each group to a thread. It will be
an NP-Complete problem to get the most optimized
result; hence a heuristic method is introduced in the
next section.

4.3. Heuristic Algorithm

As described in the previous part, there are M = 2V
chunks of transactions. Assuming V; is a vector which
contains all chunks that belong to group i; C; is the

number of transactions of group ¢ (the size of V;). Our
goal is to distribute them into 7' — 1 groups, making
the total number of transactions in every group almost
equivalent. It can be formalized as follows:

V:‘/17V27"'7VT71

T-1

>.C

T-1 —
_ o J=
f‘; Ci T-1

The goal is to find V' to make f minimized.

Obviously, it’s possible to find the best optimized
solution to make the load perfectly balanced. How-
ever, it’s an NP-Complete problem. So we have to use
heuristic algorithms to achieve partially optimized so-
lution.

Algorithm 3 Heuristic Algorithm

Input: P={P,,Ps,---, Py}
Output: V = {V;,Va,---, Vr_1}
Method: Call Find_Distribution(P), which is shown

in Figure 3.

Procedure Find_Distribution(P)
begin
Null->V;,i=1,2,---, T —1
0—>Csi=1,2,---,T—1
For each P; do
Find j5,C; = min(Cr,k=1,2,---, T — 1)
V; = V; | chunk ¢
C; = C; + sizeof(chunk 7)
Return V
end

Figure 3. Pseudocode of Find_ Distribution
Procedure

The time complexity of the heuristic algorithm is
O(M(T —1)). In most cases, it will achieve satisfying
results and balances the workloads very well.

5. Parallelized FP-Growth

After the first FP-Tree is built, the next step is
called FP-Growth, which is to mine the frequent pat-
terns from the tree. The serial version of the mining
algorithm is a recursive procedure. So we derived the




first iteration of the recursion from the other iterations
and parallelize it.

The loop size of the first iteration depends on the
number of frequent items whose count is no less than
the minimum support. As for most cases, the loop size
is not so large. In order to avoid load-imbalance prob-
lems, we use dynamic scheduling. The experiments in
Section6 demonstrate that the load is perfectly bal-
anced among threads in the FP-Growth stage.

6. Experiment Results

The experiment is based on 4 datasets. The first two
datasets are “Kosarak.dat” and “Accidents.dat”, and
the other two datasets are selected from “Webdoc.dat”.
All datasets are available from [11].

6.1. Execution Time

We compared our parallel algorithm with the multi-
tree version of parallel FP-Growth [8, 9], which is the
most efficient parallel FP-Growth algorithms available.

Tree Building Stage

This stage includes two phases of database scans.
After the stage, a complete frequent pattern tree was
built in the memory.

Figure 4 shows that the tree-building stage is 10-
Intensive for Webdoc dataset. As the number of pro-
cessors increases, the consumed time doesn’t change
much. This is because this kind of data in datasets
like Webdocs requires only a little processing but much
I/O intensive reading from the database. However,
Tree-Partition version has a better scalability than the
Multi-Tree version. We can see from the figure, as the
number of processors increases, the consumed time of
Tree-Partition version decreases a little bit while the
consumed time of Multi-Tree version increases. This
is because as the number of processors increases, the
Multi-Tree version has to build more trees, which con-
tains more nodes than Tree-Partition version.

From Figure 5, the scalability of Tree-Partition
version is not good for both datasets. This is because
both datasets require more data processing than I/0
reading. This kind of datasets is mostly made up of
large amount of small transactions. The Tree-Partition
version has to maintain a task queue to deal with each
line of transaction, which may apparently introduce
locks to maintain the queue. As the number of
processors increases, the locks used to maintain the
queue begin to take effect. However, for this kind of
datasets, the most time-consuming stage is the mining
stage. The next part indicates that the performance

Execution Time Comparison of Webdocs
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Figure 4. Execution Time Comparison of Tree
Building Stage (Webdoc)

of Tree-Partition algorithm over this kind of datasets
is much better in mining stage.

Mining Stage

The time consumed by this stage depends on the
scale of the tree built in the previous stage. All the
processing is done in the main memory.

Execution Time Comparison of Kosarak & Accidents
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Figure 5. Execution Time Comparison of Tree
Building Stage (Kosarak & Accidents)

From Figure 6 and Figure 7, there’re great advan-
tages of the Tree-Partition algorithm over the Multi-
Tree algorithm. Although both algorithms have good
scalability, the Tree-Partition version is 5% to 40%
faster than the Multi-Tree version. The main reason is
that the Tree-Partition algorithm only maintains one
tree in the main memory, while the Multi-Tree version
maintains as many trees as the number of processors.
The extra trees may introduce extra nodes, which will
finally add workload to the algorithm. However, the
number of extra nodes is not linear with the number of
processors. Figure 8 shows the total number of nodes
of multi trees, as a function of number of processors.
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Figure 7. Execution Time Comparison of Min-
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Figure 8. Total Number of Nodes for Multi-
Tree version on Kosarak & Accidents

According to our analysis, the number of extra nodes
introduced by multi-tree algorithm depends on the
datasets. If the datasets are constituted with large
amount of similar transactions, that is, transactions
with fewer items and more duplicated data, will pro-
duce much more extra nodes as the number of proces-
sors increases. As a result, this kind of datasets will
show bad scalability in multi-tree version. However,
this kind of datasets is very commonly used in regular
applications like web data analysis and commercial rule
mining. In tree-partition version of the algorithm, the
total number of tree nodes will not change when the
number of threads increases. As a result, the mining
stage of tree-partition algorithm shows good scalability
in this kind of datasets.

6.2. Speed-Up Ratio

Table 2 shows the comparison of the speed-up ra-
tio of the mining stage between multi-tree version and
tree-partition version of the parallel FP-Growth. We
can see that tree-partition version gets up to 45% ad-
vantage over multi-tree version.

2P 4P 8P 16P
smallwebdocs | 1.99 | 3.28 | 6.12 | 9.98
Tree bigwebdocs 1.93 | 3.54 | 7.93 | 14.01
Partition| kosarak 1.86 | 3.53 | 5.40 | 10.38
accidents 1.72 1 3.20 | 6.77 | 12.48
smallwebdocs | 1.80 | 3.10 | 5.81 | 9.61
Multi bigwebdocs 1.92 | 3.51 | 7.89 | 12.97
Tree kosarak 1.88 | 3.44 | 5.49 | 8.29
accidents 1.72 | 3.15 | 4.66 | 6.88

Table 2. Speed-Up Ratio of the Mining Stage
of the two Parallel Algorithms

Figure 9 shows the speed-up ratio of the min-
ing stage of tree-partition version of the parallel FP-
Growth. As most of the processing in this stage is
done in main memory, the scalability is good and we
achieved nearly linear speed-up ratio.

The total speed-up ratio, which is shown in Table 3
and Figure 10, is lower than that of the mining stage.
This is because there are still two phases of database
scan, which turn out to be I/O intensive and could
hardly be parallelized. However, when we face the big
datasets like webdocs, the scalability turns out to be
good because the mining stage takes up much more
time than the I/O scan phases. And our algorithm can
efficiently reduce the time spent on mining stage.

Among these 4 datasets, kosarak is a special case.
As shown in Table 3, the total speed-up ratio is not
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Figure 9. Speed-Up Ratio of the Mining Stage
of Tree Partition Parallel Algorithm

good. This is because of the bad performance at the
tree-building stage, which had been described in 6.1.1.
We consider this kind of datasets as an extreme condi-
tion. This is because kosarak consists of large amount
of items and short transactions, and most transac-
tions do little contribution to the final association rules
mined from the whole database. In most cases, espe-
cially when dataset is very large, this kind of extreme
condition cannot be satisfied, and our parallel algo-
rithm can achieve good speed-up ratio.

2P 4P 8P 16P

smallwebdocs | 1.93 | 3.35 | 6.07 | 9.24

Tree bigwebdocs 1.79 | 3.01 | 5.19 | 6.93
Partition| kosarak 1.64 | 3.50 | 3.39 | 3.63
accidents 1.62 | 2.64 | 3.74 | 4.38
smallwebdocs | 1.80 | 3.07 | 5.58 | 8.83

Multi bigwebdocs 1.79 | 3.00 | 5.27 | 6.49
Tree kosarak 1.88 | 3.36 | 4.92 | 6.97
accidents 1.64 | 2.74 | 3.50 | 4.68

Table 3. Total Speed-Up Ratio of the two Par-
allel Algorithms

7. Conclusion

In this paper, we have focused on shared memory
parallelization of FP-Growth algorithm. By building
one global FP-Tree, a parallel algorithm with good
scalability is designed. Our algorithm successfully
avoided the overhead introduced when building multi-
trees. And the tree partition algorithm can minimized
the lock overhead and make the workload perfectly bal-
anced.
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Figure 10. Total Speed-Up Ratio of Tree Parti-
tion Parallel Algorithm

The experiment results include consuming time
comparison with multi-tree parallel algorithm as well
as the speed-up ratio. These experiments established
the following;:

1. Good efficiency is achieved for the tree-partition
based parallel algorithm.

2. The tree-partition based parallel algorithm pro-
duces no overhead of extra nodes while multi-tree
parallel algorithm produces many redundant extra
nodes.

3. Different datasets show different characters. Some
datasets requires much more I/O operations than
pure processing, so the speed-up ratio will not ap-
pear to be so good. However, as the datasets be-
come larger, the performance of the tree-partition
based parallel algorithm becomes better.
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