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Abstract

In this paper, the index space of the (n×n)-matrix
multiply-add problem C = C +A·B is represented as a 3D
n×n×n torus. All possible time-scheduling functions to ac-
tivate the computation and data rolling inside the 3D torus
index space are determined. To maximize efficiency when
solving a single problem, we mapped the computations into
the 2D n×n toroidal array processor. All optimal 2D data
allocations that solve the problem in n multiply-add-roll
steps are obtained. The well known Cannon’s algorithm
is one of the resulting allocations. We used the optimal data
allocations to describe all variants of the GEMM operation
on the 2D toroidal array processor. By controling the data
movement, the transposition operation is avoided in 75% of
the GEMM variants. However, only one matrix transpose
is needed for the remaining 25%. Ultimately, we described
four versions of the GEMM operation covering the possible
layouts of the initially loaded data into the array processor.

1. Introduction

Most of scientific, engineering, and image processing
applications are expressed in terms of matrix operations.
The basic linear algebra subprograms (BLAS) were intro-
duced to make the performance of the dense linear alge-
bra algorithms portable on high performance architectures
[15, 7, 6]. Levels 1 and 2 of the BLAS, which describe
the vector and matrix-vector operations, involve O(n) and
O(n2) computations accompanied with O(n) and O(n2)
load/store operations, respectively, where n is the size of
the problem. The level 3 BLAS describe the matrix-matrix
operations which involve O(n3) computations and O(n2)
data movements. Because of the high ratio of operations to
data movement, the level 3 BLAS are targeted to the high
performance computers with hierarchical memory and par-
allel processing capabilities.

Due to the different organizations of the current and fore

coming high performance parallel computers, it is a tedious
work to optimize the different level 3 BLAS kernels on each
computer system. However, it is possible to express all the
level 3 BLAS kernels in terms of the highly optimized gen-
eral matrix multiply-add operation (GEMM) and a small
percentage of levels 1 and 2 of the BLAS [11, 12].

Different 2D algorithms have been proposed to solve the
matrix multiply-add problem. These algorithms fall into
three main categories based on the communication scheme.
Local communication algorithms include systolic matrix
multiplication and Cannon’s algorithm [13, 9, 2]. The
broadcast-based category includes the outer product matrix
multiplication algorithm by Agarwal et al [1] and SUMMA
(Scalable Universal Matrix Multiplication Algorithm) [18].
The third category combines both broadcasting and local
communication such as the algorithm by Fox et. al. [8],
BiMMeR [10], and PUMMA (Parallel Universal Matrix
Multiplication Algorithms) [3].

In this paper, we describe four versions of the GEMM
operation on the 2D n×n toroidal array processor (AP).
Specifically, we exploit local communications together with
the optimal data allocations that compute C = C + A·B on
the toroidal AP to reduce data redistributions. We used the
skewing operation to avoid the transposition operation in
75% of the GEMM variants. For the remaining 25%, one
transposition operation is needed.

We assume the following for the toroidal AP. Each pro-
cessing element (PE) performs a fused multiply-add-roll
operation at each step. That is, each PE computes c =
c + a × b, where a, b, and c are scalars, then the appro-
priate data is rolled (or circularly shifted) to neighbour PEs.
To overcome latency due to the long wrap around connec-
tions, the toroidal AP can be folded such that all connec-
tions between PEs are equal [17, 4]. For simplicity, the data
allocations of the AP will be shown here in unfolded form.

In Section 2, the index space of the matrix multiply-add
problem is represented as a 3D torus index space. All op-
timal time-scheduling functions are presented. For each
function, the optimal data allocations resulting from map-
ping the 3D index space to the 2D AP space are discussed.
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Section 3 discusses the initial data layouts of the optimal
AP data allocations. The pre- and post-processing needed
for data alignment are also discussed. Four versions of the
GEMM operation on the 2D n×n toroidal AP are described
in Section 4. Section 5 concludes the paper.

2. Matrix Multiply-Add on the Torus

Consider the (n×n)-matrix multiply-add problem

C = C + A·B,

where A = [a(i, j)], B = [b(i, j)], and C = [c(i, j)] are
n×n dense matrices. The index space is the n×n×n cube
defined by the set of points � = {(i, j, k)T : i, j, k ∈
{0, 1, . . . , n− 1}}, where at each index point p = (i, j, k)T

the computation c(i, j) = c(i, j) + a(i, k)×b(k, j) is per-
formed. Scheduling the computations inside the index
space � is needed so that the elements a(i, k), b(k, j), and
c(i, j) should meet with each other in correct place and time
while preserving data dependencies. To do so, we showed
in [19] that all elements of matrices A and B can be reused
to update matrix C on each computing step. Specifically,
matrix A is rolled along the j-axis while matrices B and C
are rolled along i and k axes, respectively. The three or-
thogonal rolling directions for all elements of matrices A,
B, and C form a 3D n×n×n torus computation space .

2.1. Time-Space Mapping

A Time-scheduling mapping partions all the computa-
tions of an index space into non-overlapping groups of in-
dependent computations and assigns a time-step to each
group. A Space mapping assigns the ordered groups of
computations to PEs so that each group is executed at the
same time.

Different time-scheduling and space-allocation functions
are proposed in the literature [13, 5, 14]. In [16], mod-
ular time-space mappings are used to derive data distri-
bution independent programs for matrix-matrix multiplica-
tion. Here, we use modular time-scheduling to schedule
the computations inside the index space � because of the
circular movement of data and results. The modular time-
scheduling function is defined by:

Step(p) = πT ·p mod n,

where Step(p) : Z
3 → Z, Z is the set of integers, p ∈ �,

and π = (α, β, γ)T is a time-scheduling vector with inte-
ger components. For space-allocation we use the projection
method to allocate the scheduled computations to the AP.
The space-allocation function is defined by the linear map:

Allocation(p) = Sη · p,

where Allocation(p) : Z
3 → Z

2, Sη is a 2×3 space trans-
formation matrix to map the index points to the coordinates
of the PEs, and η is a projection vector orthogonal to the AP
basis, i.e., Sη·η = 0.

2.2. Optimal Mapping

In this subsection, we determine the optimal values of
the time-scheduling vector π and the minimum number of
PEs in the AP to perform the computations in the minimum
number of steps.

Let r0, r1, . . . , rm−1 be ordered objects connected
in a ring. If we start from rl, 0≤ l≤m−1, then
we have two directions to traverse the ring which re-
sult in the two paths rl, rl+1, . . . , rm−1, r0, . . . , rl−1 and
rl, rl−1, . . . , r0, rm−1, . . . , rl+1. The subscript of the next
object to traverse in the two paths is obtained by the modular
operations (l + 1) mod m, and (l − 1) mod m, respectively,
where l is the subscript of the current object. We will say
that the rolling order of index l in the first path is increasing
while in the second is decreasing. The 3D torus space com-
prises from three rings along i, j, and k axes. Each ring has
two degrees of freedom to roll. Therefore, eight different
combinations exist to roll the elements of A, B, and C si-
multaneously along j, i, and k axes, respectively. If the ring
along a given axis is rolled in increasing/decreasing order,
the corresponding component of the time schedule vector
is assigned a positive/negative sign. The magnitudes of the
schedule vector components must be chosen so that data
dependencies are preserved while the communications are
local. Meanwhile, at any step of computing the data is mov-
ing in the three rings which mean that none of the compo-
nents equals to zero. In [19], we found for the vector π that
each of the three components α, β, and γ equals to either
+1 or −1, i.e., π ∈ {(1, 1, 1)T , (−1, 1, 1)T , (1,−1, 1)T ,
(1, 1,−1)T , (−1,−1, 1)T , (−1, 1,−1)T , (1,−1,−1)T ,
(−1,−1,−1)T}. Hence, we have eight different time-
scheduling functions for scheduling the computations inside
the 3D torus.

Solving a single matrix multiply-add problem using an
n×n×n AP is not efficient since only n2 computations are
active at each step. Therefore, we mapped the computa-
tions to the 2D AP space by an admissible projection vector
η so that exactly one computation point is assigned to ex-
actly one PE at a time, i.e., πT ·η �= 0. Although many ad-
missible projection vectors can be applied, the unit vectors
e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , and e3 = (0, 0, 1)T , and
their negatives are the optimal and give the minimum num-
ber of PEs, n2. The PEs are organized in an n×n toroidal
AP. In this case, each optimal 2D data allocation requires
n multiply-add-roll steps to solve the matrix multiply-add
problem on the resulting toroidal AP.



Figure 1. The distributions of A, B, and C elements for π = (-1,-1,1)T and three different data alloca-
tions to the AP at Step(p) = 0.

2.3. Optimal Time-Space Allocations

In the previous subsection, eight optimal time-
scheduling vectors are obtained. It can be easily seen that
four of the eight vectors are the negatives of the other four.
That is for each scheduling vector πi and its negative -πi,
the elements of A, B, and C have the same distributions in-
side � at the computing steps Stepπi

(p) = q mod n, and
Step−πi

(p) = [n − q] mod n where q = 0, 1, . . . , n − 1.
In other words, there are four distinct time-scheduling func-
tions each activating totally n3 computations in a sequence
of n steps so that n2 computations are active at each step.
However, due to the cyclical nature of processing we can
start computing from any of the different n steps within
each scheduling function and evolve through the remaining
n − 1 steps in one of two possible ways. For each time-
scheduling function, three optimal projections give three
possible 2D data allocations. Totally, 4×3n different initial
data allocations are available to solve the matrix multiply-
add problem. This large number of initial distributions
serves in minimizing the overhead of redistributing the data
to prepare for layout of for the next computation. For each
time-scheduling function we select the scheduling step that
activates the computation at the point p0 = (0, 0, 0)T to be
the initial scheduling step, i.e., Step(p) = 0.

i) α = −1, β = −1, and γ = 1. In this case, the time-
scheduling function is given by Step(p) = [k − i− j] mod
n. The rings along i and j axes are rolled in decreasing
order, and the ring along k-axis is rolled in increasing order.
The distributions of A, B, and C elements inside the 3D

torus index space at Step(p) = 0 are shown in Figure 1
(note that the computation at p0 = (0, 0, 0)T is active at
the initial step). We use the circles (ikj) to show the active
computation points at each scheduling step. At each circle,
the appropriate elements a(i, k), b(k, j), and c(i, j) meet so
that the computation c(i, j) = c(i, j) + a(i, k) × b(k, j)
is performed. Then, the three elements are rolled in the
corresponding directions and the subsequent computations
are activated at Step(p) = 1, 2, . . . , n − 1.

Mapping the 3D torus index space into the 2D AP space
along j, k, and i axes we get three optimal data allocations
for computing matrix C as illustrated in Figure 1(b, c, and
d, respectively). We can see in each allocation that one ma-
trix remains resident inside the AP and the other two ma-
trices are rolled. In order to use for example allocation (c),
which is the classical Cannon’s algorithm [2], both A and
B are initially loaded in the conventional form. Then, ma-
trix A is skewed westward and matrix B northward (see
next section). Next, all PEs synchronously perform a fused
multiply-add-roll operation where the elements of A and B
are rolled westward and northward, respectively, at the end
of the operation. The elements of matrix C remain resident
during computing. After n steps of multiply-add-roll, C is
obtained.

ii) α = −1, β = 1, and γ = −1. The scheduling func-
tion is given by Step(p) = [j − i − k] mod n. The values
of the scheduling vector components indicate that the two
rings along i and k axes are rolled in decreasing order while
the ring along the j axis is rolled in increasing order. Pro-
jecting the 3D computation space parallel to the j, k, and i



axes gives the three allocations (a), (b), and (c) in Figure 2,
respectively.

iii) α = 1, β = −1, and γ = −1. The values of α,
β, and γ indicate that the i-index is increasing while the
values of j and k indexes are decreasing during rolling. The
time-scheduling function is given by Step(p) = [i − j −
k] mod n. Three data allocations can be obtained from
projection along ±e1, ±e2, and ±e3.

iv) α = −1, β = −1, and γ = −1. The time-scheduling
function is given by Step(p) = [−i− j− k] mod n, where
the three rings are rolled in decreasing order. Projections
parallel to i, j, and k axes give three different 2D alloca-
tions.

v) Special case. When we solve the (2×2)-matrix
multiply-add problem, the four initial distributions resulting
from the four time-scheduling functions give the same 3D
distribution of the computations. This distribution can be
described by any one of the eight optimal scheduling func-
tions. Therefore, there are only three optimal data alloca-
tions to solve the (2×2)-matrix multiply-add problem on
the 2×2 toroidal AP. The reason behind this result is that
the possible two rolling directions for each ring in the 3D
torus have the same traverse path, i.e., r0, r1. This means
that when n = 2 the direction of rolling has no effect on the
distribution of the data inside the computation space.

3. Initial Data Layouts

In this section, we discuss the possible data layouts that
may be initially loaded into the AP. We also describe the
pre- and post-processing needed to align the three matrices
A, B, and C such that data redistribution overhead for the
subsequent computations is reduced.

We mean by an initial data layout the distribution of the
loaded data relative to the coordinates of the PEs in the AP.
We organize the 2D toroidal AP so that PE(0,0) is located
at the top left corner and PE(n − 1,n − 1) is located at
the bottom right corner of the AP. We call this organiza-
tion of the PEs the canonical layout. Obviously, the canon-
ical layout matches the conventional distribution of a 2D
matrix. In Subsection 2.3, we have discussed four opti-
mal time-scheduling functions inside the 3D torus compu-
tation space for computing the matrix multiply-add prob-
lem. Three different AP data allocations resulted from each
scheduling function. Although, we have totally 12n possi-
ble data allocations to start computing, we only consider in
this paper those allocations that include the elements a(0,0),
b(0,0), and c(0,0) inside PE(0,0) at the initial computing
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Figure 2. The optimal AP data allocations at
Step(p) = 0 for π = (-1,1,-1)T . (a) A remains, B
rolls northward, and C rolls westward. (b) C
remains, B rolls northward, and A rolls east-
ward. (c) B remains, C rolls northward, and
A rolls eastward.

step, Step(p) = 0. That is only twelve optimal data allo-
cations are considered. These allocations require the least
alignment overhead among all resulting allocations because
the distributions of the elements of A, B, and C are more
closer to the conventional layout of a 2D matrix than in the
other allocations.

The twelve optimal allocations can be classified accord-
ing to the direction of projection they resulted from into
three groups each containing four different allocations. In
the first group resulted from the projection vector ±e1, ma-
trix B remains inside the AP during computing while ma-
trices A and C are rolled. In the second group resulted from
±e2, matrix A remains resident and both matrices B and C
are rolled. In the third group resulted from ±e3, matrix C
remains resident while both matrices A and B are rolled.
The Cannon’s algorithm [2] belongs to the last group. No-



tice that the elements of A, B, and C in the optimal data
allocations are aligned before starting computing in order
to give correct results. But, what is the layout of the three
matrices that is initially loaded into the AP before any align-
ment is done? It is easy to see that in the first group of allo-
cations the two matrices AT and B are initially loaded (in
the canonical form) into the AP as in allocation (c) in Figure
2. In the second group, the two matrices A and BT are ini-
tially loaded into the AP, while A and B are initially loaded
into the AP in the third group (see allocations (a) and (b),
respectively, in Figure 2).

To complete our discussion about all variants of the ini-
tially loaded data layouts, we introduce the fourth expected
data layout where the two matrices AT and BT are ini-
tially loaded into the AP. Although this layout is not in-
cluded in the 2D optimal allocations that solve the problem
C = C+A·B, we will show later how to use it and the three
initial data layouts: A&B, A&BT , and AT &B to describe
four computationally equivalent versions of the GEMM op-
eration. In describing the four initial data layouts, we did
not include matrix C because the distribution of C is im-
plicitly determined by the distributions of A and B. At the
same time, the optimal scheduling of the matrix multiply-
add problem inside the 3D torus index space, we build on,
is determined for computing matrix C not its transpose.

From the point-of-view of the main memory storage for-
mat, the four mentioned initial data layouts cover all pos-
sible variants of storing matrices A and B into memory.
According to the standard format of storing 2D matrices
into the main memory of current systems , either the two
matrices A and B are both stored in row-major or column-
major orders, or one of the two matrices is stored row-major
and the other is stored column major. Therefore, providing
four versions of the GEMM operation gives more freedom
to choose the one that best matches the storing format of the
data inside the main memory.

3.1. The Skewing Operation

Let a matrix X has n rows and n columns. To skew,
for example, the rows of X to the West, the ith row, i =
0,1,. . . ,n − 1, is rolled i times to the West using circular
rolling of data. In general, to skew the rows/columns of a
matrix, each row/column is rolled so that the diagonal ele-
ments of the matrix move to the 0th column/row. Figure 3
shows the result of skewing the rows and columns of a 4×4
matrix. The following pseudo code takes n − 1 rolls (cir-
cular shifts) to skew the rows of the n×n matrix X to the
West.

load matrix X into AP in canonical form
for k = 1, n − 1 do

for all i = k, n − 1 and j = 0, n − 1 do
x(i, j) = x(i, [j + 1] mod n)

x00 x01 x02 x03 x00 x11 x22 x33

x11 x12 x13 x10 x10 x21 x32 x03

x22 x23 x20 x21 x20 x31 x02 x13

x33 x30 x31 x32 x30 x01 x12 x23

(a) (b)

Figure 3. (a) The rows of matrix X are skewed
westward; (b) The columns of matrix X are
skewed northward.
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Figure 4. Optimal AP allocations at Step(p)=0.
(a) π = (-1,-1,1)T , A rolls westward, and B rolls
northward. (b) π= (1,-1,-1)T , A rolls wesward,
and C rolls northward.

3.2. Pre- and Post-Processing

By analyzing the different data allocations in Subsec-
tion 2.3, we can see that some pre-processing is needed
to align the loaded data into the proper layout for comput-
ing. The same is true after getting the final result C, some
post-processing may be needed to return the result matrix
to the canonical form. There are two types of pre- and post-
processing for aligning the optimal data allocations: skew-
ing and permuting the rows/columns of a matrix. We mean
by permuting the rows/columns reversing their order except
row/column #0. To illustrate, consider for example alloca-
tions (a) and (b) of Figure 2. In allocation (a), the columns
of matrix B are skewed northward before computing while
the rows of matrix C are skewed westward after comput-
ing. In allocation (b), before computing, the rows of ma-



trix A are skewed eastward. The columns of matrix B are
skewed northward then, the order of rows is reversed ex-
cluding row #0, i.e., only rows #1 and #3 are exchanged.
Now the twelve optimal allocations can be divided accord-
ing to the type of pre- and post-processing into two groups.
One of them contains the allocations that require the skew-
ing operation only. This groups contains the three alloca-
tions: allocation (a) in Figure 2 and the two allocations (a)
and (b) in Figure 4. The other group contains the remaining
allocations that need both the skewing and the permutation
operations. Nine allocations belong to this group (see for
example allocations (b) and (c) in Figure 2). In the next
section, we will use the skewing operation and the three op-
timal data allocations (Figure 2(a) and Figure 4) together
with the matrix transpose algorithm [20] to describe four
versions of the GEMM operation on the n×n toroidal AP
where n ≥ 2.

4. GEMM on the 2D Torus

The GEMM operation is the very important kernel of the
level 3 BLAS kernels. The GEMM-based approach was
introduced to express the level 3 BLAS routines in terms
of one basic operation, the GEMM, and a small percentage
of levels 1 and 2 of the BLAS [11, 12]. In this section we
describe four versions of the GEMM operation on the 2D
n×n toroidal AP.

The four different variants of the GEMM operation are:

C = λC + µA·B,
C = λC + µA·BT ,
C = λC + µAT ·B,
C = λC + µAT ·BT ,

where λ and µ are scalars. For simplicity, we set λ = µ =
1.0. We use the skewing operation to perform three of the
above four variants of the GEMM operation without explic-
itly making a transposition operation. What is needed is
two skewing operations at most for aligning the data. The
initial data layout of matrix A and matrix B inside the AP
determine which GEMM variant will be performed with-
out applying the transposition operation. To perform the
remaining GEMM variant we need to transpose only one
matrix beside using the skewing operation as will be shown
at the end of this section.

The importance of the skewing operation appears in
solving the GEMM operation when the two matrices A and
B commute, i.e., solving C = λC + µop(B) op(A) where
op(X) denotes X or XT . In this case, no need to reload A
and B into the AP. We only need to apply the skewing op-
eration properly to align the data for the new computation.
For example, to find the product A·B, assuming the layout
A&B is initially loaded into the AP, matrix A is skewed
westward and matrix B is skewed northward to align the

data. After computing is finished, the data distribution in-
side the AP returns to the same alignment before starting the
computing because of the rolling of data at the end of each
multiply-add-roll step. Now, to compute C = C + B·A
with the same initial layout A&B, both A and B must be
returned to their canonical distribution inside the AP which
costs two skewing operations. The directions of rolling and
skewing of A and B are exchanged to give the required new
result. That is, matrix A and matrix B are skewed north-
ward and westward, respectively. During computing, A is
rolled northward and B is rolled westward while matrix C
remains resident. We can apply the same rules in the above
example to find the products B·AT and BT ·A. But, for
finding the product BT ·AT the transposition operation is
needed.

4.1. Four GEMM Kernels

Four initial data layouts (A&B, A&BT , AT &B, and
AT &BT ) can be loaded into the AP. Therefore, we provide
four versions of the GEMM operation on the toroidal AP
so that the one that matches the current layout of the two
matrices A and B inside the AP is selected. The differences
among the four GEMM versions are the initially loaded lay-
out of A and B (assuming C is canonically distributed), and
consequently, the skewing and the rolling directions applied
to the three matrices. It suffices here to discuss one of the
four GEMM versions in detail and summarize the results of
the others.

Consider the initial data layout A&B in which the two
matrices A and B are initially loaded into the n×n 2D
toroidal AP in the canonical form. By letting one of the
three matrices A, B, and C resides in the AP during com-
puting and rolling the other two matrices in predefined di-
rections, we can compute the products A·B, A·BT , and
AT ·B without any explicit transposition operation. How-
ever, to compute the product AT ·BT one transposition op-
eration is needed as will be shown below.

i) Matrix C resides. This case is Cannon’s algorithm [2]
where matrix A is skewed westward and matrix B is skewed
northward to align the elements for computing. At each step
of computing, matrix A is rolled westward and matrix B
northward. After n multiply-add-roll steps, matrix C is the
solution of the problem C = C + A·B.

ii) Matrix A resides. Only matrix B is skewed northward
before computing. During computation, matrix B is rolled
northward while matrix C westward. After computing, ma-
trix C is the solution of problem C = C + A·BT . The
first two steps of the computing are shown in Figure 5. To
return matrix C to the canonical form after getting the final
result, the skewing operation is applied to skew matrix C



Initial

Layout
Problem

Before Computing During Computing After Computing

Transpose
Skew Roll Skew
A B A B C C

A&B

C = C + A·B W N W N
C = C + A·BT N N W E
C = C + AT ·B W W N S

C = C + AT ·BT A N N W E
B W W N S

A&BT

C = C + A·B N N W E
C = C + A·BT W N W N

C = C + AT ·B A N N W E
B W W N S

C = C + AT ·BT W W N S

AT &B

C = C + A·B W W N S

C = C + A·BT A N N W E
B W W N S

C = C + AT ·B W N W N
C = C + AT ·BT N N W E

AT &BT

C = C + A·B A N N W E
B W W N S

C = C + A·BT W W N S
C = C + AT ·B N N W E
C = C + AT ·BT W N W N

Table 1. Summary of the four GEMM versions on the n×n toroidal AP.

eastward. We can see in this case that without an explicit
transpose to the matrix B and with only proper application
of the skewing operation, the product A·BT is calculated.

iii) Matrix B resides. Here, matrix A is skewed west-
ward before starting computing. The two matrices A and
C are rolled at the end of each computing step westward
and northward, respectively. After the final step, matrix C
is the solution of the problem C = C +AT ·B where matrix
A is not explicitely transposed. To return matrix C to the
canonical form, the skewing operation is applied to skew its
columns southward.

iv) Transpose one matrix. To solve the problem C =
C + AT ·BT one matrix transpose is needed. There are
two approches to do this. The first is performing an explicit
transpose to either matrix A or matrix B but not both. This
means one matrix transposition can be avoided. If matrix
A is transposed, then we proceed as if we have the layout
AT &B inside the AP which is equivalent to applying case
ii) above where matrix B is skewed northward and both B
and C are rolled northward and westward, respectively. But,
if the transposition is applied to matrix B then, matrix BT

remains inside the AP and we apply case iii) above. The

second approach is to find the product B·A, then transpose
the result to give the matrix C. Both approaches use the
transposition algorithm given in [20] which transposes an
n×n matrix in 3n multiply-add-roll steps.

In Table 1, we summarize the directions of rolling and
skewing (North, West, South, and East) of the elements of
the three matrices A, B, and C for the four initial data
layouts. Each initial data layout corresponds to a differ-
ent version of the GEMM operation. We assume that the
data is aligned relative to the canonical form of the toroidal
AP. For each initial data layout, we show the directions of
skewing for the three matrices before and after computing
(if needed). The directions of rolling during computing are
also shown. For illustration, consider the initial data layout
A&B where matrix A and matrix B are initially loaded in
the canonical form into the AP. To solve C = C + A·BT

only matrix B needs northward skewing before computing.
During computing, matrix B is rolled northward and matrix
C is rolled westward. After n steps of multiply-add-roll, C
needs eastward skewing to return to its canonical form.

The transposition information in Table 1 describes the
application of the first transposition approach only. To illus-
trate, consider solving the problem C = C +AT ·BT where
the initial data layout is A&B. Two choices are available
for the transposition; either matrix A or matrix B is explic-
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Figure 5. The first two steps in computing
C = C + A·BT , where matrix B rolls north-
ward and matrix C rolls westward.

itly transposed inside the AP. The selection depends on the
subsequent operation and whether the transpose of A or B
is needed.

5. Conclusions

We have presented the GEMM operation on the 2D n×n
toroidal AP. Depending on the optimal 2D data allocations
that solve the matrix multiply-add problem C = C + A·B
in n multiply-add-roll steps, we have discussed four data
layouts that can be initially loaded into the AP. For each
initial data layout we provided one version of the GEMM
operation. Therefore, we have four versions of the same
operation so that the one that best matches the initial data
layout of the current computation is selected. We used the
skewing operation to describe the alignment of data before
and after the computing phase. This alignment overhead re-
quires two skewing operations which cost 2(n−1) data rolls
using circular shift of data. We have shown that 75% of the
GEMM variants for each version can be performed without
any matrix transposition. However, only one matrix trans-
pose is needed to describe the remaining 25% of the GEMM
variants which costs additional 3n multiply-add-roll steps.
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