
Coordinated Checkpoint from Message Payload in Pessimistic

Sender-Based Message Logging

Mehdi Aminian, Mohammad k. Akbari, Bahman Javadi

Department of Computer Eng. and Information Technology
Amirkabir University of Technology, Hafez Ave., Tehran, Iran

{maminian, akbari, javadi@ce.aut.ac.ir}

Abstract

 Execution of MPI applications on Clusters and Grid
deployments suffers from node and network failure that
motivates the use of fault tolerant MPI implementations.
Two category techniques have been introduced to make
these systems fault-tolerant. The first one is checkpoint-
based technique and the other one is called log-based
recovery protocol. Sender-based pessimistic logging which
falls in the second category is harnessing from huge
amount of messages payloads which must be kept in
volatile memory. In this paper we present a Coordinated
Checkpoint from Message Payload (CCMP) to reduce the
aforementioned overhead. The proposed method was
examined by MPICH-V2, a public domain platform
implementing pessimistic logging with uncoordinated
checkpoint. Experimental results demonstrated the
reduction of run-time for NPB benchmarks in both fault-
free and faulty environments.

1. Introduction

Recently, as the technologies of processors and
networks have rapidly been developed, message passing
systems consisting of networked computers can provide
supercomputer like performance parallel and distributed
computing environments. However, as the systems scale
up, their failure probability may also be higher.

Especially, if long running applications are executed on
the systems, the failure probability becomes significant.
Thus, the systems require techniques for supporting fault-
tolerance.

Checkpointing and message logging are well-known
techniques to build fault-tolerant systems [1]. For

consistent recovery from a failure, the checkpointing
technique saves the intermediate states of the application
into the stable storage that survives the failure, and the
message logging technique saves the messages each
process has received into the stable storage. After a failure
occurs, a process can restore the checkpointed state and
regenerate the same computational states with the logged
messages. Employing the message logging with periodic
checkpointing in distributed systems, the relatively high
coordination overhead of the methods relying only on
checkpointing can be overcome. Message logging
protocols are classified into three categories: pessimistic,
optimistic and causal. Although pessimistic method results
in high failure-free overhead compared with other
approaches because it logs all the messages received before
it sends a message but pessimistic message logging
approach [9] simplifies recovery procedure of each process
in contrast with others.

All the log-based recovery protocols need to store the
payloads of the messages exchanged between distributed
processes for the recovery purposes. The sender-based
method is a low-overhead approach in which each sender
saves the payloads of the messages in it's volatile memory.
But storing these data in the memory may cause a kind of
congestion and low-performance when using
uncoordinated checkpoint in message logging techniques.

In this paper we present a new method to decrease the
overhead caused by sender-based approach in pessimistic
logging. Our method performs a coordinated checkpoint
from the payloads of messages which are stored in volatile
memory. At the same time the payloads of messages get
flushed to the stable storage that causes a reduction in the
execution time. In the rest of this paper, in Section 2, we
will look at some essential concepts of message logging.
Next in Section 3, we introduce our method and finally in
Section 4, we demonstrate the performance improvements

1-4244-0054-6/06/$20.00 ©2006 IEEE

of MPI programs in faulty and fault-free environments.
Finally, in Section 5 we conclude this study.

2. Background

The important part of a message logging protocol is to
keep the payload of the messages somewhere in the system
to have them available at the recovery time. Storing these
messages can take place in either receiver or sender side, in
the volatile memory or stable storage. In this section we
briefly describe various log-based recovery protocols and
two important techniques of storing message payloads.

2.1. Log-Based Rollback-Recovery Protocols

As opposed to checkpoint-based rollback recovery, log-
based rollback-recovery makes explicit use of the fact that
a process execution can be modeled as a sequence of
deterministic state intervals, each starting with the
execution of a nondeterministic event [4]. Such an event
can be the receipt of a message from another process or an
event internal to the process. Sending a message, however,
is not a nondeterministic event.

Log-based rollback-recovery assumes that all
nondeterministic events can be identified and their
corresponding determinants can be logged to stable storage
[9]. During failure-free operation, each process logs the
determinants of all the nondeterministic events that it
observes onto stable storage. Additionally, each process
also takes checkpoints to reduce the extent of rollback
during recovery. After a failure occurs, the failed processes
recover by using the checkpoints and logged determinants
to replay the corresponding nondeterministic events
precisely as they occurred during the pre-failure execution.
Because execution within each deterministic interval
depends only on the sequence of nondeterministic events
that preceded the interval’s beginning, the pre failure
execution of a failed process can be reconstructed during
recovery up to the first nondeterministic event whose
determinant is not logged.

Log-based rollback-recovery protocols guarantee that
upon recovery of all failed processes, the system does not
contain any orphan process, that is, a process whose state
depends on a nondeterministic event that cannot be
reproduced during recovery. The way in which a specific
protocol implements this condition affects the protocol’s
failure-free performance overhead, latency of output
commit, and simplicity of recovery and garbage collection,
as well as its potential for rolling back correct processes.
There are three flavors of these protocols:

• Pessimistic log-based rollback-recovery protocols
guarantee that orphans are never created due to a failure.
These protocols simplify recovery, garbage collection and
output commit, at the expense of higher failure-free
performance overhead.

• Optimistic log-based rollback-recovery protocols reduce
the failure-free performance overhead, but allow orphans
to be created due to failures. The possibility of having
orphans complicates recovery, garbage collection and
output commit.

• Causal log-based rollback-recovery protocols attempt to
combine the advantages of low performance overhead and
fast output commit, but they may require complex recovery
and garbage collection.

2.2. Receiver-Based Message Logging

 With Receiver-Based Message Logging (RBML) [5],
the processes participating in a distributed computation log
on stable storage the messages that they receive during
failure-free operation.

During recovery from a failure, a process restarts from a
previous checkpoint and replays the messages in the log to
restore the execution to a state that occurred before the
failure. As with all message logging protocols, process
execution must be deterministic in order for message
replay to restore a process to the same state as before the
failure. Several techniques exist for recovery, all based on
computing the maximum recoverable state using the
checkpoints and message logs available on stable storage
[2, 8].

2.3. Sender-Based Message Logging

 The Sender-Based Message Logging (SBML) [6]
protocol keeps the contents of the message in the volatile
memory of sender. The receiver sends the dependency
information to stable storage. In recovery time after the
process born again from its recent checkpoint, it wants
from reliable media to send it the determinants and
according to them, it requests the other processes to resend
the payload of desired messages.

3. Motivation and Design

Sender-based logging is considered more efficient than
receiver-based logging because the copying can take place
after sending the message over the network [9].
Additionally, the system may combine the logging of
messages with the implementation of the communication
protocol and share the message log with the transmission
buffers. This scheme avoids the extra copying of the
message. Logging at the receiver is more expensive
because it is in the critical path of the communication
protocol.

Although SBML is the best method in storing the
messages in log-based recovery protocols, it suffers from
some considerable limitations. Since the payloads are
stored in the volatile memory, so this method can tolerate
only one fault at a time [2], because, occurring more than

one fault would clear the payloads which are needy for
troubled processes. Another problem with this protocol is
the amount of space consumed to keep these data in the
volatile memory.

In pessimistic sender-based message logging protocol
the above-mentioned flaws bothers more [7]. In this
protocol, a crashed process resumes its activity from
checkpoint file that was taken by an uncoordinated
checkpoint protocol. In addition to checkpointing the
context of the running process in an uncoordinated
checkpoint protocol, the whole message payloads must be
stored because this information would be useful for other
crashed processes to recover from failure. But these
savings have their price, imposing a high overhead to run-
time. Also occurring simultaneous faults in this
environment may cause too much recovery time. Figure 1
depicts usage of uncoordinated checkpoint protocol in
pessimistic sender-based logging. In this figure, each
checkpoint file contains the entire process information plus
message payloads.

Figure 1- SBML with Uncoordinated Checkpoint

To alleviate these problems in the pessimistic sender-
based protocol, we proposed an extension to sender-based
message logging in which we use a coordinated checkpoint
protocol to flush the payloads of all processes to the stable
storage. In the time interval of two consecutive checkpoints
the messages are kept in the sender's volatile memory
based on traditional sender-based method. By this, the
Coordinated Checkpoint from Message Payloads (CCMP)
can release the uncoordinated checkpoint server from
payloads savings which results in run-time reduction. In
the meantime, flushing payloads to checkpoint files also
releases a huge amount of volatile memory occupied by
traditional sender-based message logging. Besides,
simultaneous faults can be recovered faster, applying the
CCMP protocol.

3.1. The CCMP protocol

In this protocol, each running process sends the whole
messages stored in volatile memory between two
consecutive checkpoints to the stable storage and flushes
the memory too. Checkpointing from payloads is triggered
by a checkpoint request from a scheduler. This scheduler
sends the request to all processes in the same time intervals

to perform the coordinated checkpoint. Figure 2
demonstrates the CCMP protocol in which the Message
Payload Checkpoint (MPC) files contain the messages
stored in the processes’ Volatile Memory (VM). These
checkpoint files are gathered by a checkpoint server which
is supposed to be run on reliable media.

Figure 2- CCMP Protocol Description

Now, if a crash occurs, the crashed node tries to recover
by its last checkpoint file and then requests the dependency
information from the stable storage. According to the
dependency information, other processes would provide
the crashed node with the desired messages as it can be
seen in Figure 3. In this phase all other processes would
resend the needy messages from their volatile memory, if
exists, or from their MPC files if the messages got flushed
to the checkpoint server. To avoid garbage messages to be
fetched from MPC files, we must specify the latest
complete uncoordinated checkpoint from the process
context. It means when a process finishes an uncoordinated
checkpoint, it notifies all other processes. So other
processes will know which MPC files are needed.

Figure 3- Re-execution Phase in CCMP

4. Performance Evaluation

To test our proposed method (CCMP) some standard
benchmarks were run on a cluster platform containing 32
processors under Linux 2.4.29 and using MPICH-V2 tool
from LRI [10]. Each node is equipped with a Pentium III
processor and 256 MB RAM, including 20 GB hard disk.

The cluster has been used in dedicated mode to ensure a
fair comparison between different implementations.

4.1. Overview of the MPICH-V2 Architecture

MPICH-V2 implements the pessimistic sender-based
protocol on top of MPICH 1.2.5, using a dispatcher, a
checkpoint scheduler, some event loggers, checkpoint
servers, computing nodes and their communication
daemons. Figure 4 presents a typical setup of a running
MPICH-V2 system, where the dispatcher, the event logger
and the checkpoint scheduler seat on the same computer.

The sender based pessimistic message logging protocol
of MPICH-V2 assumes that the logging of messages is
split in two parts. One part uses a sender based logging
method storing the messages payload on a non reliable
media. The other part (the event logger) is used to store
dependency information associated to these messages and
must be run on a reliable system.

Figure 4- MPICH-V2 Architecture [10]

Each process increments a local logical clock when it
sends or receives a message. The message payload logging
system is integrated into the communication daemon
located on the computing node. Every time a message is
sent to a computing node, it is stored locally in a list for
further usages (sender based). Moreover the value of the
sender logical clock is stored with the message copy.

The event logger is a repository executed on a reliable
component of the system. It stores and delivers dependency
information about messages exchanged by the computing
nodes. The dependency information is composed of four
fields associated to every received message: (sender’s
identity; sender’s logical clock at emission; receiver’s
logical clock at delivery; number of probes since last
delivery).

This information is collected during receptions of
messages and sent synchronously to the event logger.
However, this information must be sent and acknowledged
by the event logger before the node can modify the state of
another MPI process by performing a send action. In order
to implement this, the communication daemon does not

send messages before the event logger has acknowledged
the reception of the preceding reception events.

We have modified the MPICH-V2 tool by adding one
checkpoint server and one checkpoint scheduler to perform
the coordinated checkpoint from message payloads. As it
can be seen in Figure 5, these two processes communicate
with the communication daemon. It should be noted that all
the message payloads of two consecutive checkpoints are
stored on the communication daemon.

Figure 5- Implementation of CCMP Protocol in
MPICH-V2

4.2. Fault-free Execution

In order to examine the performance of CCMP protocol
on a wide set of well established and optimized MPI
programs, NAS Parallel Benchmark ([3]) NPB 2.3 was
used. In this regard, we ran each benchmark in two
different environments. First environment was the sender-
based pessimistic logging with uncoordinated checkpoint
(which MPICH-V2 implements it) and the second
environment was CCMP protocol in pessimistic message
logging with uncoordinated checkpoint.

The results of our benchmarking are illustrated in
Figure 6. As it can be seen, this figure reveals that the run-
time of CCMP method for small benchmarks (i.e., IS, CG,
MG, and EP) is more than the traditional sender-based
method. But for large benchmarks the CCMP protocol can
obtain better result to reduce the execution time and this is
due to activation of uncoordinated checkpoint. Therefore,
applying CCMP protocol, on the contrary of traditional
sender-based method, we are not required to save the
messages along with process context. This means that we
have a big saving in the run-time, and the improvement is
something between 5% and 10%.

SP, Class A

720

730

740

750

760

770

780

790

Four Processors

T
im

e
(s

e
c
)

IS, Class A

20

21

22

23

24

25

26

27

Four Processors

T
im

e
(s

e
c
)

MG, Class A

16

16.5

17

17.5

18

18.5

19

Four Processors

T
im

e
(s

e
c
)

EP, Class A

75.05

75.1

75.15

75.2

75.25

75.3

75.35

75.4

75.45

Four Processors

T
im

e
(s

e
c
)

CG, Class A

0

5

10

15

20

25

Four Processors

T
im

e
(s

e
c

)

BT, Class A

880

900

920

940

960

980

1000

Four Processors

T
im

e
(s

e
c
)

LU, Class A

0

200

400

600

800

1000

1200

Four Processors

T
im

e
(s

e
c
)

IS, Class B

93

93.5

94

94.5

95

95.5

96

96.5

Eight Processors

T
im

e
(s

e
c
)

EP, Class B

150.6

150.605

150.61

150.615

150.62

150.625

150.63

150.635

Eight Processors

T
im

e
(s

e
c
)

MG, Class B

0

20

40

60

80

100

Eight Processors

T
im

e
(s

e
c
)

LU, Class B

1195

1200

1205

1210

1215

1220

1225

1230

Eight Processors

T
im

e
(s

e
c
) SBML with uncoordinated ckp

SBML with CCMP

Figure 6- NPB Benchmark Results

4.3. Faulty Execution

The next evaluation is measuring the performance
degradation of the BT and SP benchmarks when fault
occurs during the execution. Figure 7 presents the
execution time of BT and SP for the class A dataset size
using 4 computing nodes. The test is done for the both
situation, the CCMP and the traditional sender-based
methods. We simulate faults by sending a termination
signal to a randomly selected MPI process. The execution
resumes immediately from the checkpoint file provided by
the uncoordinated checkpoint server. If no checkpoint file
is available, the MPI process restarts the execution from
the beginning. In the traditional sender-based environment
each crashed process must fetch its checkpointed messages
payloads from the uncoordinated checkpoint server after
it’s born from the last checkpoint and other processes
resend their previous messages from the volatile memory.
But in the CCMP method the crashed process only requests

the others to resend the messages saved in the MPC files or
volatile memory (if exists). It should be noted that on the
contrary of previous method we do not need to fetch any
messages to the volatile memory.

However, as illustrated in the Figure 7, the average time
of recovery is much better in our approach and can recover
the crashed process faster.

5. Conclusions

We proposed a coordinated checkpoint method from
message payloads for the pessimistic logging. In our
method we tried to take coordinated checkpoint from the
stored messages payloads in the volatile memory and flush
them to stable storage.

The experimental results of NAS benchmarks on the
MPICH-V2 platform showed that CCMP protocol can
reduce the run-time in contrast with sender-based
pessimistic logging in fault-free and faulty modes. This

improvement is due to the time consumption of the
uncoordinated checkpoint in traditional sender-based
method to save the messages payloads along with the
context of the process.

Consistency between uncoordinated and coordinated
checkpointing and applying different policies to each
scheduler can be considered as a future work for this
project.

BT, Class A

940

960

980

1000

1020

1040

1060

1080

Four Processors

T
im

e
(s

e
c
) SBML with

uncoordinated ckp

SBML with CCMP

SP, Class A

810

820

830

840

850

860

870

880

Four Processors

T
im

e
(s

e
c
) SBML with

uncoordinated ckp

SBML with CCMP

Figure 7- Re-Execution Result

6. Acknowledgments

We would like to thank A.Jalalzadeh and
S. M. Shojaei for remarks and discussions. This Work was
done in Iranian High Performance Computing Research
Center (IHPCRC). The tests were done on AkuCluster
system provided by IHPCRC.

7. References

[1] W. Gropp and E. Lusk, ”Fault tolerance in MPI programs,”
Special issue of the Journal High Performance Computing
Applications (IJHPCA), 2002.

[2] D. B. Johnson and W. Zwaenepoel, ”Sender-based message
logging,” 17th international symposium on fault tolerant
computing, pp. 14-18, July 1987.

[3] D. H. Bailey, T. Harris, et al, ”The NAS parallel benchmarks
2.0,” Report NAS-95-020, NASA Ames Research Center,
Moffett Field, CA, December 1995.

[4] E. Strom and S. Yemini, ”Optimistic recovery in distributed
systems,” ACM Transactions on Computer Systems, vol. 3,
no. 3, pp. 204-226, August 1985.

[5] E. N. Elnozahy and W. Zwaenepoel, ” On the use and
implementation of message logging, ” In Proceedings of the

24th International Symposium on Fault-Tolerant Computing,
pp. 298-307, June 1994.

[6] D.B. Johnson, ”Distributed System Fault Tolerance Using
Message Logging and Checkpointing,” PhD thesis, Rice
University, December 1989.

[7] A. Bouteiller, T. Herault, et al, ”MPICH-V: a Multiprotocol
Fault Tolerant MPI ,” To appear in International Journal of
High Performance Computing and Applications.

[8] A. P. Sistla and J. L. Welch, ”Efficient distributed recovery
using message logging,” In Proceedings of the 8th Annual
ACM Symposium on Principles of Distributed Computing,
pp. 223-238, August 1989.

[9] M. Elnozahy, L. Alvisi, Y. M. Wang and D. B. Johnson, ”A
survey of rollback-recovery protocols in message passing
systems,” Technical Report CMU-CS-96-181, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA, USA, October 1996.

[10] A. Bouteiller, F. Cappello, et al, ”MPICH-V2: a fault
tolerant MPI for volatile nodes based on pessimistic sender
based message logging,” Proceedings of High Performance
Networking and Computing (SC2003), Phoenix USA,
IEEE/ACM, November 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

