
Towards a Parallel Framework of Grid-based Numerical Algorithms on DAGs

Zeyao Mo Aiqing Zhang Xiaolin Cao

Institute of Applied Physics and Computational Mathematics, P.O.Box, Beijing, 100088.

{zeyao_mo, aiqing_zhang, xiaolincao} @iapcm.ac.cn

Abstract

This paper presents a parallel framework of grid-based

numerical algorithms where data dependencies between

grid zones can be modeled by a directed acyclic graph

(DAG). It consists of three parts on how to partition, order

and calculate the vertices of digraph. Numerical results

using hundreds of processors on two parallel machines

show the efficiencies and moderate scalability of this

framework.

1. Introduction

In recent two decades, various parallel algorithms have

been successfully designed for a wide range of numerical

computations arising from the grid-based simulations of

partial differential equation where a discrete solution is

defined on a grid [6]. The grid consists of a set of disjoint

polyhedrons called zones [5]. Dependencies between

zones are often symmetric and can be depicted by

undirected graphs [8]. In sequences, the parallel

framework of such numerical algorithms can be designed

in the concept of the Bulk Synchronous Parallel (BSP)

programming model [20].

However, such symmetric dependencies don’t hold

for another type of grid-based numerical computations

where zones should be calculated in the downstream style

of dataflow modeled by DAG. For example, in the field of

high energy density plasma physics [5], radiation transport

† This work is under the auspices of NSF for DYS (No. 604252
05) ,National Basic Key Research Special Fund (2005CB321
702), Chinese NSF (No.60533020) and Funds of CAEP.

should be mathematically modeled in the form of discrete

ordinates of the Boltzmann equation [5] as follows

()
,..,G,,....,M; g,mIw

IStIRI
t

I

v

gmmmggSm
mg

mgSAmgmgm

mg

g

2121

),(
1

ˆˆˆ,ˆ,
ˆˆ

==ΣΣ

++−≡=∇•Ω+
∂

∂

→→σ

σσ (1)

Here,),,,(tzyxImg is the radiation flux where g shows

the energy group distinguished with the velocity of gv

and m shows the angular direction mΩ scaled with the

weight of mw . mgm I∇•Ω is the transport term. R(I,t)

denotes the source term including loss factors due to

absorption Aσ and scattering Sσ , an additive term due

to the production of radiation flux from material, and an

in-scattering term from various directions and energies.

Implicit stencil for temporal discretization is essential

for above equation. It can be written as

),(
1 111

1
+++

+

=∇•Ω+
∆
−

lll
mgm

l
mg

l
mg

g

tIRI
t

II

v
 (2)

This system is often solved with the following algorithm.

Algorithm 1 [13, 22]. Iterative solution of a time step.

(1) l
mg

vl
mg IIv ≡= ,,0 ;

(2) FOR (m=1,2,…,M) DO {

,...,G,g
tItRvIItvI lvl

g
vl

mg
vl

mgmg
vl

mg

21
),(1,,1,1,

=
∆+=∇•Ω∆+ +++

 (3)

 } ENDDO

(3) Update the source term using new flux.

(4) Source term converges? If no, v=v+1, goto step (2).

Downstream sweeping is an exact solver for equation

(3). However, as showed in the left of figure 1, zones

should be downstream swept for the angular direction

1-4244-0054-6/06/$20.00 ©2006 IEEE

from the left upper to the right lower in the following

sequence {1,6} -> {2,11} -> {3} -> {4} -> {5, 7} -> {8}

-> {9,12} -> {10,13,14} -> {15} -> {16}. Here, bracket

denotes zones can be concurrently swept there and an

arrow denotes the data dependencies. In fact, such

dependencies can be accurately defined by a DAG as

showed in the right of figure 1 where each vertex relates to

a zone, and each arc shows that the zone located at the tail

must be swept after the zone located at the head.

Figure 1 [17] Left: direction sweeping across

unstructured grid. Right: DAG.

Transport equation is a great challenge for larger scale

computations in the space of seven dimensions [13]. Many

parallel realizations have been presented for algorithm 1

based on the well-known parallel pipelining techniques

[23]. On the rectangular grid, the realization is trivial

because regular pipelines can be well predefined [2,3,19].

However, on the unstructured grid, it is more difficult

because of the irregular dependencies. Plimpton et.al.[17]

and Mo et.al.[15, 16] addressed this problem in different

coordinate systems for various applications.

 Besides from transport equation, the downstream

sweeping are used for realization of many other numerical

cores for convection dominated or Navier-Stokes equation

on rectangular grid [14,24] and on unstructured grid [4,

21]. All these realizations must be carefully designed

according to the characteristics of zone shapes, discrete

stencils, downstream directions, and so on. Is a parallel

framework possible for downstream sweeping independent

of applications? This paper tries to find a solution.

 In section 2, the model of DAG is constructed for

accurate description of data dependencies for a wide range

of grid-based numerical computations. In section 3, a

parallel framework is presented to compute the DAG.

Lastly, numerical results are reported using hundreds of

processors on two parallel machines in section 4.

2. The Model of DAG

We use the basic terminologies and notations introduced in

monograph [8]. A digraph D consists of a non-empty finite

set V(D) of elements called vertices and a finite set A(D) of

ordered pairs of distinct vertices called arcs. We write

D=(V, A) which means that V and A are the vertex set and

arc set of D, respectively. The order (size) of D is the

number of vertices (arcs) in D; the order of D is denoted

by |D|.

 Rewrite the downstream sweeping in equation (3) as

a more general formulation suitable for other numerical

cores as follows

11 WIaI v
mm

v
m =∇•Ω+ ++ (4)

Here, mΩ is perhaps a constant, a linear or a nonlinear

function for the grid-based numerical algorithms varying

from transport equation, linear convection equation to the

nonlinear convection equation. So, we refer them as

constantly, linearly or nonlinearly downstream sweeping.

In this paper, we mainly consider the former two cases

because the digraph can be accurately predefined there.

2.1 DAG for single constant sweeping

Consider a digraph D≡D(Ωm) constructed from constant

direction Ωm across the computational grid composed of N

zones denoted by Z={zi|i=1,2,…,N}. Assign V(D)={vi |

i=1,2,…,N}. Vertex vi corresponds to zone zi. We refer

each face of a zone be the inflow face or outflow face if

and only if the inner product immi χθ •Ω= is negative or

positive. Here, iχ is the outer normal vector of this face.

In the left of figure 2, we depict a zone with four faces, the

inflow and outflow faces are denoted by ∂ z and ∂+z

respectively. Inflow face means that the flux should enter

this zone from its neighboring zone called upstream zone

across this face. Moreover, each zone depends on its

upstream zones. The right in figure 2 depicts the data

dependencies among three zones where zone z depends on

both zone z0 and zone z1.

Figure 2. Data dependencies among three zones.

We generate an arc denoted by eij=(vi,vj) means that

vertex vi depends on vertex vj if and only if zone zi

depends on zone zj. We assign the weight of each vertex vi

the local computations of zone zi and that of each arc the

data size on which the downstream zone depends. So, the

computation of digraph can be defined as algorithm 2

modified from monograph on digraph theory [8].

Algorithm 2: The computation of digraph

(1) FOR (i=1,2,…,N) DO {f(vi)= d
−
(vi): in-degree of

vertex vi }, list ψ ={vk ∈V(D): f(vk)=0}, list ψ0=φ.

(2) DO WHILE {|ψ0|≠|D|} {

(2.1) Compute the head vk of ψ, let ψ0=ψ0∪{vk},

ψ=ψ \{vk}.

(2.2) FOR (each downstream vj of vk) DO {

(2.2.1) f(vj)= f(vj)-1.

(2.2.2) if (f(vj)=0) then { ψ=ψ∪{vj};

} else { transfer data from vk to vj.}

 } ENDDO for step (2.2)

} ENDDO for step (2).

List ψ always maintain vertices ready for computations. A

vertex can be joined into ψ if and only if all its upstream

vertices have been calculated. A digraph is computable if

and only if step (2) terminates within |D| iterations. In fact,

we have the trivial conclusions.

Theorem 1 A digraph is computable if and only if it has

no cycle.

Property 1. A diagraph is computable on rectangle grid.

Property 2 A digraph is acyclic on unstructured grid in

two-dimensional geometry only if each zone is convex.

Proof: Assume the digraph has a cycle denoted by Θ=

vi,1vi,2⋅⋅⋅vi,mvi,1 where the double subscripts indicating the

indices of vertices. For each zone represented by vertex vi,j,

consider the normal vector of its outflow face to its

neighbor represented by vertex vi,j+1, then the vector must

positively intersects with the sweeping direction. So, two

faces are existed such that their normal vectors negatively

intersect with each other. This contradicts with the convex

property of unstructured grid.

Figure 3. Left: three zones form a cycle. Right: a

ring of eight hexahedrons form a cycle

A digraph may include a cycle for concave zones in the

case of two-dimensional geometry as showed in left of

figure 3. Fortunately, such zones are usually forbidden for

numerical simulations of realistic applications [5].

However, a digraph may include a cycle in the case of

three-dimensional geometry even if each zone is convex.

In fact, as showed in the right of figure 3, the hexahedrons

will constitute a cycle if we cut a ring along with the

direction of downstream sweeping.

For each digraph constructed from the grid-based

numerical algorithms, the cycle should be detected and

then be broken before the digraph is computed. Some

efficient algorithms can detect a cycle [8], Hackbush et.al

[9,10] present a algorithm for convection dominated fluids,

Plimpton and Hendrickson [17] present an application-

specific strategy. In this paper, we always assume the

digraph is acyclic.

2.2 DAG for multiple constant directions

A vertex is a pair between zone zi and sweeping direction

1

2

3

z1

z

∂+
z

∂+
z

∂-
z

∂-
z

Ω
z0

Ω z

2 3

4

5
67

8

1

Ωm denoted by uim=(zi,Ωm), an arc is an ordered pair of

vertices denoted by eim,,op =(uim,uop) if and only if

(C1) m=p and zo depends on zi for Ωm, or,

(C2) i=o, p>m and Ωp depends on Ωm.

In the case of Cartesian geometry [17], the second

condition is no useful since all directions are independent

from each other. But in the case of cylindrical geometry

[15], or in the sphere geometry [13], these two conditions

should be simultaneously considered.

Property 3. The digraph for multiple directions is acyclic

if and only if each digraph for single direction is acyclic.

Proof. The sufficiency is trivial because each digraph for

single direction is an induced subdigraph. If each digraph

for single direction is acyclic, arcs introduced by condition

(C1) will never form a cycle. Based on these arcs,

condition (C2) always generates arcs pointing from lower

direction to upper direction, so new cycles will never be

introduced.

2.3 DAG for linearly downstream sweeping

Linearly downstream sweeping usually occurs in the

robust solver for convection-dominated fluids where the

convection direction Ωm is a function independent of

solution. The DAG can be similarly defined since a new

arc can be constructed from the direction Ωm for two

neighboring zones independent of solution.

2.4 The model of DAG

We construct another digraph ℜ(D) from the digraph D by

substituting the set of vertices {uim:m=1, 2,…,M}

predefined on zone zi to a single vertex denoted by ui, and

denote the underlying graph of D and ℜ(D) by D and ℜ(D)

respectively. For ℜ(D), we contract the parallel arcs and

delete the loops, then a simple digraph will be resulted,

denote its underlying graph by U(D). In order to

distinguished from the original underlying graph D, we

refer U(D) as the super underlying graph of D, each vertex

as the super vertex and each arc as the super arc.

Obviously, U(D) represents the zones connectivity of

grid-based numerical algorithms. For the case of single

direction, U(D) is the same as D.

By above definitions, we can consider the following

model of DAG

)(),(),((DUDADVD ≡ (5)

Here, V(D),A(D) and U(D) are the set of vertices, arcs and

the super underlying graph. It accurately represents the

data dependencies independent of the characteristics of

grid-based numerical algorithms no matter what types of

grid zones, coordinate system, or equation coefficients are

used.

3. Parallel framework

In this section, we present a parallel framework for the

computation of DAG. It consists of three parts such that we

firstly partition the digraph for the distribution of vertices

among processors, secondly design the parallel algorithm

for downstream sweeping and thirdly present the priority

strategies for ordering each of vertices.

The natural method to partition the DAG is the

application of many undirected graph partitioning methods

[18] on the super underlying graph. The set of vertices

predefined on a super vertex is distributed to the same

processor. For these methods, loads can be well balanced.

We don’t discuss them here.

 Assume D has been partitioned into P subdigraphs

denoted by Dk distributed to processor pk (k=1,2,…,P),

then the downstream sweeping in algorithm 2 can be

substituted by the following parallel version.

Algorithm 3. Parallel downstream sweeping.

FOR (k=1,2,…,P) processor pk DO in parallel {

(1) f(vi)= d
−
(vi) ∀vi ∈V(Dk); list ψk ={vi ∈ V(Dk):

f(vi)=0}; list ψ0=φ.

 (2) WHILE {|ψ0|≠|Dk|} DO {

 (2.1) WHILE (|ψk|≠φ) DO {

(2.1.1) Compute the head vl of ψk,

ψ0=ψ0∪{vl},ψk=ψk\{vl};

(2.1.2) FOR (each downstream vj of vl) DO {

+ IF (vj ∈V(Dk)) {f(vj)= f(vj)-1; }

+ IF (f(vj)=0) {ψ=ψ∪{vj} ;} ELSE {

 send a message including vl to

the processor owning vertex vj.}

 } ENDDO for step (2.1.2)

(2.1.3) Receive messages from processors;

(2.1.4) FOR (each received message) DO {

+ unpack this message for vl;

+ FOR(each downstream vj of vl) DO{

IF (vj ∈V(Dk)) { f(vj)= f(vj)-1;}

IF (f(vj)=0) {ψ=ψ∪{vj} ;

 } ENDDO for step (2.1.4)

 } ENDDO for step (2.1)

ENDDO for step (2)

 The priority strategy for ordering of vertices decides

the operation in step (2.1.2) and step (2.1.4) on how to join

a computable vertex into the list. In fact, it is a key factor

to affect parallel performance. Some geometrical strategies

are presented in [15,17]. Here, we present a new strategy

suitable for general model of DAG.

Algorithm 4: priority strategy using length of shorted

path away from processor boundry.

(1) Let set of vertices Λ=Λ1=Λ0 =φ;

(2) FOR (each vertex vi whose out-degree d+(vi)=0) DO

{ r(vi)=Q, let Λ=Λ∪{vi}; };

(3) FOR (each vertex vj is the upstream of at least one

 vertex in set Λ) DO {

(3.1) IF (there is one downstream vertex of vj belongs

to neighboring processors) { r(vj)=1; } ELSE

{r(vj)= { }()Qvr kjSk ,1)(minmin)(+∈ ;};

 (3.2) Λ0=Λ∪{vj};

 } ENDDO for step (3)

(4) Λ1 =Λ1 ∪Λ0;

(5) IF (|Λ1|≠|V(D)|) {Λ=Λ0; Λ0=φ; goto step (3)}.

Here, Q denotes the length of critical path, r(vi) is the

priority, S(j) represents the set of indices for downstream

vertices of vertex vj. In fact, the priority is equal to the

length of the shortest path away from the processor

boundaries. This is coincident with the philosophy of that

a vertex should be inserted into the list satisfying that the

current vertex located at the head is most welcomed for the

release of downstream vertices located at neighboring

processors.

 Now, we introduce some new concepts for better

evaluation of our parallel algorithm. We refer T1 as the

sequential time for the computation of DAG, denote OP or

O∞ by the optimal or shortest time for parallel execution

under the assumption of zero overhead for each message

passing using P or unlimited number of processors

respectively, and denote TP by the elapsed time for parallel

execution using P processors on parallel computer. Then,

we define the optimal speedup, algorithm speedup or

realistic speedup denoted by S∞ , SA and SP respectively.

They are defined as the quotient of O∞, OP or TP over T1.

Obviously, S∞ represents the parallelism in the digraph, SA

represents the parallelism extracted using our algorithm 3,

and SP represents the realistic performance on parallel

computer. Obviously, we wish SA is close to S∞ and as well

as SP to SA.

 If vertices have equal weights, S∞ is equal to the

parameter Q of the length of critical path, and SA can be

evaluated by the following algorithm.

Algorithm 5. Computation of algorithm speedup.

(1) Y0 = 0; algorithm 3:(1); X0 = sum reduction of |ψ0|;

(2) WHILE {X0≠|D|} DO {

 (2.1) IF (|ψk|≠φ) {algorithm 3 : (2.1.1)∼(2.1.2) };

 (2.2) Update X0; Y0=Y0+1;

 (2.3) Algorithm 3: (2.1.3)∼(2.1.4);}

(3) SA=|D|/Y0.

In the case such that vertices have dynamic weights, the

algorithm speedup is difficult to calculate. However, for

many grid-based numerical algorithms including transport

equation and convection-dominated fluids, we can assume

vertices have equal weights. So, we can use algorithm

speedup to evaluate the performance of implementation of

algorithm 3.

4. Performance results

In this section, we will list some performance results

on the parallel solution of neutron or radiation transport

equation using our parallel framework. Particularly, two

parallel computers are used for testing. One is a massively

distributed memory machine called GX0 with 600

processors for which the MPI message latency is about 10

microseconds. Another is a distributed shared memory

machines called DX0 with 100 processors for which the

MPI message latency is less than 2 microseconds. Each

processor has the peak performance of 1.0 Gflops.

We firstly take the realistic application introduced in

[15] for comparison. A 44-groups neutron transport

equation is solved using implicitly discrete ordinates

stencil S4 (16 directions) based on discontinuous finite

element discretization for cylindrical geometry on

two-dimensional unstructured grid. The grid consists of

750 conforming quadrilateral zones. As depicted in figure

1, the super underlying graph is partitioned by two

methods called GP1 and GP3 respectively. Method GP1

partition the grid by sorting the radial coordinate and

horizontal coordinate, method GP3 partition the grid using

the Inertial Kemighan-Lin (IKL) method implemented in

Chaco [11].

In table 1, we list the algorithm speedup for parallel

downstream sweeping using algorithm 3. The algorithm

speedup presented in [15] is also listed for comparison. In

essence, the difference mainly comes from the priority

strategy. In work [15], geometrical strategies are used, but

here, algorithm 4 is used. Results show that the new

priority strategy has improved performance by 10% for 64

processors. Compared with the optimal speedup S∞=168,

the algorithm speedup is satisfying.

Table 1. Algorithm speedup for two priority strategies.

#processors P=16 P=64

Strategies GP1 GP3 GP1 GP3

[15] 11.9 6.8 40.7 30.9

Algorithm 4 13.4 7.4 44.3 32.3

In table 2, we list the realistic speedup for 64

processors on machine DX0 and GX0. The results on DX0

show that the small network latency can be ignored for

such applications because they are almost the same as

algorithm speedup. On machine GX0, the larger network

latency still likes the partitioning method GP3 because it

has the smallest surface-to-volume ratio though it has the

smallest algorithm speedup. However, we can find that the

new priority strategy has obviously improved the

performance especially on machine GX0.

Table 2. Realistic speedup on 64 processors.

Machines DX0 GX0

Strategies GP1 GP3 GP1 GP3

[15] 40.5 36.0 14.2 22.2

Algorithm 4 44.2 31.7 20.2 26.4

Secondly, we consider another realistic application for

24-groups neutron transport equation with implicitly

discrete ordinates stencil S8 (40 directions) on machine

GX0. This grid consists of 13214 quadrilateral zones

moving in accordance with hydrodynamics. Only method

GP3 is used to partition the domain. Table 3 lists the

elapsed time (seconds) for each time step and the realistic

speedup for parallel downstream sweeping on processors

scaling from 1 up to 512. These results show that the

parallel framework is moderately scalable.

Table 3. Performance results on machine GX0.

P 1 32 64 128 256 512

Time 2850 102 54.0 29.8 18.5 14.7

SP 1.00 28.0 52.8 95.6 154 194

Figure 4. Left: GP1; Right: GP3.

 Now, we consider the third realistic application for

20-groups radiation transport equation with stencil S8 (40

directions) on the rectangular Cartesian grid. This grid

consists of 128×50 zones. It is noting that these zones

vertically move as well as the hydrodynamics, the grid is

often nonconforming. An example is depicted in the left of

figure 5. Such nonconforming grids will complicate data

dependencies for downstream sweeping. We only consider

the horizontal stripe decomposition for the super

underlying graph. In the right of figure 5, we give an

example for two processors. In table 4, we list the

algorithm speedup at the second line on processors scaling

from 1 up to 128. We can find that the parallel framework

is almost the optimal. On machine DX0, we again achieve

the realistic speedup close to the algorithm speedup.

However, similar cases don’t hold on machine GX0. In the

worst case, only speedup 13.5 is gained on 64 processors.

The worse performance mainly comes from too many

message issued in algorithm 3. So, we buffer multiple

short messages into a longer message in order to reduce

the number of communications in step (2.1.2) of algorithm

3 towards larger network latency. Take the number of short

messages buffered together be four, the speedup is listed in

the last line of table 4, the performance is significantly

improved.

5. Conclusions and Prospects

The model of directed acyclic graph (DAG) presented here

is suitable for general description of data dependencies for

grid-based numerical algorithm varying from the complex

transport equation on the unstructured grid to the simple

numerical cores on the rectangular grid. The parallel

framework for solution of DAG is moderately scalable on

hundreds of processors, so it is also suitable for parallel

implementation of such kinds of grid-based algorithms and

their realistic applications.

We look forward to more efficient partitioning

methods for DAG, more clever techniques for latency

tolerance besides from the simplest method presented at

the end of last section, and also more efficient methods for

cycle detection and tie breaking. Most of all, we prospect

more and more realistic applications.

Figure 5. Nonconforming grid and

its stripe decomposition.

Table 4. Performance results on machine GX0.

P 4 8 16 32 64 128

AP 4 8 16 31 62 121

SP/DX0 4.1 7.7 15.6 29.1 54.6 -

SP/GX0 3.8 7.4 13.3 19.2 13.5 -

SP/GX0 3.8 7.7 15.2 27.2 41.6 66.1

 In this paper, we only consider DAG for both

constantly and linearly downstream sweeping, however,

the nonlinear cases should also be addressed where

dynamical digraph should be constructed. In fact, our

parallel framework can be generalized to be suitable for

such digraphs. However, the priority strategy should be

modified.

References

1. Ardra: Scalable parallel code system to perform

neutron and radiation transport calculations,

http://www.llnl.gov/casc/ardra.

2. R.S.Baker, R.E.Alcouffe, Parallel 3-d Sn Performance

for MPI on Cray-T3D, in Proc. Joint Intl. Conference

on Mathematics Methods and Supercomputing for

Nuclear Applications, Vol. 1, pp.377-393, 1997.

3. R.S.Baker, K.R.Koch, An Sn algorithm for the

massively parallel CM-200 computer, Nucl.Sci.Eng.,

128:312-320,1998.

4. J.Bey, G.Wittum,On the robust and efficient solution

of convection diffusion problems on unstructured

grids in two and three space dimensions, Appl.

Numer. Math. 23:177-192,1997.

5. R.L.Bowers, J.R.Wilson, Numerical modeling in

applied physics and astrophysics, Jones and Bartlett

publishers, 1991.

6. J.Dongarra,K.Kennedy,L.Torczon,et.al, Sourcebook of

parallel computing, Morgan Kaufmann Publisher,

California, 2003.

7. W.Gropp,E.Lusk and A.Skjellum,Using MPI: portable

parallel programming with the message-passing

interface, 2nd edition, MIT Press, MA, 1999.

8. J.L.Gross, J.Yellen, eds., Handbook of Graph Theory,

Series: Discrete Mathematics and Its Applications

Volume: 25, CRC Press, December, 2003.

9. W.Hackbush, T.Probst, Downwind Gauss-Seidel

smoothing for convection dominated problems,

Numer. Linear Alg. Appl., 4:85-102,1997.

10. W.Hackbusch, On the feedback vertex set problem for

a planar graph, Computing, 58:129-155,1997.

11. B.Hendrickson, R.Leland, The Chaco user’s guide:

Version 2.0, Technical Report, SAND94 -2692,Sandia

National Laboratories, Albuquerque, NM,1994.

12. C.Koutsougeras, C.A.Papachristou, Data flow graph

partitioning to reduce communication cost, in Proc. of

19th annual workshop on mircoprogramming, pages

82-91,1986.

13. E.E.Lewis, W.F.Miller, Computational Methods of

Neutron Transport, John Wiley & Sons Publisher,

1984.

14. Z.Mo,X.Li, Parallel multigrid computation for

anisotropic diffusion problems, Chinese J. Numer.

Math. & Appl., 20:31-43,1998.

15. Z.Mo,L.Fu, Parallel flux sweeping algorithm for

neutron transport on unstructured grid, Journal of

Supercomputing, 30(1):5-17,2004.

16. Z.Mo, Concatenation algorithm for parallel numerical

simulation of hydrodynamics coupled with neutron

transport, Intern. J. Parallel Programming, 33:57-71,

2005.

17. S.Plimpton, B.Hendrickson, S.Burns, W.McLendon,

Parallel algorithms for radiation transport on

unstructured grids, in Proc. of SuperComputing’2000,

Dallas, Nov.4-10, 2000.

18. K.Schloegel,G.Karypis,V.Kumar, Graph partitioning

techniques for high performance scientific simulations,

Chapter 18, Sourcebook of Parallel Computing, edited

by J.Dongarra, K.Kennedy, L.Torczon, et.al., Morgan

Kaufmann Publisher, California, 2003.

19. SWEEP3D:3D Discrete Ordinates Neutron Transport

Benchmark Codes, http://www.llnl.gov/asci_benchmarks

/asci/limited/sweep3d/sweep3d_readme.html.

20. L.G.Valiant, A bridging model for parallel

computation, Communications of the ACM, 33(8):

108-111,1990.

21. F.Wang, J.Xu, A cross-wind strip block iterative

method for convection-dominated problems, SIAM J.

Comput., 21:646-665,1999.

22. T.A.Wareing, J.M.McGhee, J.E.Morel and S.D.Pautz,

Discontinuous Finite Element Sn Methods on 3-D

unstructured Grids, in Proceeding of International

Conference on Mathematics and Computation,

Reactor Physics and Environment Analysis in Nuclear

Applications, Madrid,1999.

23. B.Wilkinson, M.Allen, Parallel programming:

techniques and applications using networked works

-tations and parallel computers, Prentice Hall, 2002.

24. L.Zhang, Pipelining parallelization of a cluster of

recursive formulae, Chinese J. Numer. Math. &

Comput. Appl., 20(3):184-191,1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

