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Abstract

This paper presents a parallel framework of grid-based 

numerical algorithms where data dependencies between 

grid zones can be modeled by a directed acyclic graph 

(DAG). It consists of three parts on how to partition, order 

and calculate the vertices of digraph. Numerical results 

using hundreds of processors on two parallel machines 

show the efficiencies and moderate scalability of this 

framework.

1. Introduction 

In recent two decades, various parallel algorithms have 

been successfully designed for a wide range of numerical 

computations arising from the grid-based simulations of 

partial differential equation where a discrete solution is 

defined on a grid [6]. The grid consists of a set of disjoint 

polyhedrons called zones [5]. Dependencies between 

zones are often symmetric and can be depicted by 

undirected graphs [8]. In sequences, the parallel 

framework of such numerical algorithms can be designed 

in the concept of the Bulk Synchronous Parallel (BSP) 

programming model [20].  

However, such symmetric dependencies don’t hold 

for another type of grid-based numerical computations 

where zones should be calculated in the downstream style 

of dataflow modeled by DAG. For example, in the field of 

high energy density plasma physics [5], radiation transport 

† This work is under the auspices of NSF for DYS (No. 604252 
05) ,National Basic Key Research Special Fund (2005CB321 
702), Chinese NSF (No.60533020) and Funds of CAEP. 

should be mathematically modeled in the form of discrete 

ordinates of the Boltzmann equation [5] as follows 
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Here, ),,,( tzyxImg  is the radiation flux where g shows 

the energy group distinguished with the velocity of gv

and m shows the angular direction mΩ  scaled with the 

weight of mw . mgm I∇•Ω  is the transport term. R(I,t)

denotes the source term including loss factors due to 

absorption Aσ  and scattering Sσ , an additive term due 

to the production of radiation flux from material, and an 

in-scattering term from various directions and energies. 

Implicit stencil for temporal discretization is essential 

for above equation. It can be written as 
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This system is often solved with the following algorithm. 

Algorithm 1 [13, 22]. Iterative solution of a time step.

(1) l
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   } ENDDO 

(3) Update the source term using new flux.  

(4) Source term converges? If no, v=v+1, goto step (2).  

Downstream sweeping is an exact solver for equation 

(3). However, as showed in the left of figure 1, zones 

should be downstream swept for the angular direction 
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from the left upper to the right lower in the following 

sequence {1,6} -> {2,11} -> {3} -> {4} -> {5, 7} -> {8} 

-> {9,12} -> {10,13,14} -> {15} -> {16}. Here, bracket 

denotes zones can be concurrently swept there and an 

arrow denotes the data dependencies. In fact, such 

dependencies can be accurately defined by a DAG as 

showed in the right of figure 1 where each vertex relates to 

a zone, and each arc shows that the zone located at the tail 

must be swept after the zone located at the head. 

Figure 1 [17] Left: direction sweeping across 

unstructured grid. Right: DAG. 

Transport equation is a great challenge for larger scale 

computations in the space of seven dimensions [13]. Many 

parallel realizations have been presented for algorithm 1 

based on the well-known parallel pipelining techniques 

[23]. On the rectangular grid, the realization is trivial 

because regular pipelines can be well predefined [2,3,19]. 

However, on the unstructured grid, it is more difficult 

because of the irregular dependencies. Plimpton et.al.[17] 

and Mo et.al.[15, 16] addressed this problem in different 

coordinate systems for various applications.  

    Besides from transport equation, the downstream 

sweeping are used for realization of many other numerical 

cores for convection dominated or Navier-Stokes equation 

on rectangular grid [14,24] and on unstructured grid [4, 

21]. All these realizations must be carefully designed 

according to the characteristics of zone shapes, discrete 

stencils, downstream directions, and so on. Is a parallel 

framework possible for downstream sweeping independent 

of applications? This paper tries to find a solution.  

    In section 2, the model of DAG is constructed for 

accurate description of data dependencies for a wide range 

of grid-based numerical computations. In section 3, a 

parallel framework is presented to compute the DAG. 

Lastly, numerical results are reported using hundreds of 

processors on two parallel machines in section 4.  

2. The Model of DAG 

We use the basic terminologies and notations introduced in 

monograph [8]. A digraph D consists of a non-empty finite 

set V(D) of elements called vertices and a finite set A(D) of 

ordered pairs of distinct vertices called arcs. We write 

D=(V, A) which means that V and A are the vertex set and 

arc set of D, respectively. The order (size) of D is the 

number of vertices (arcs) in D; the order of D is denoted 

by |D|.  

    Rewrite the downstream sweeping in equation (3) as 

a more general formulation suitable for other numerical 

cores as follows 
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Here, mΩ is perhaps a constant, a linear or a nonlinear 

function for the grid-based numerical algorithms varying 

from transport equation, linear convection equation to the 

nonlinear convection equation. So, we refer them as 

constantly, linearly or nonlinearly downstream sweeping. 

In this paper, we mainly consider the former two cases 

because the digraph can be accurately predefined there.  

2.1 DAG for single constant sweeping 

Consider a digraph D≡D(Ωm) constructed from constant 

direction Ωm across the computational grid composed of N

zones denoted by Z={zi|i=1,2,…,N}. Assign V(D)={vi |

i=1,2,…,N}. Vertex vi corresponds to zone zi. We refer 

each face of a zone be the inflow face or outflow face if 

and only if the inner product immi χθ •Ω=  is negative or 

positive. Here, iχ  is the outer normal vector of this face. 

In the left of figure 2, we depict a zone with four faces, the 

inflow and outflow faces are denoted by ∂ z and ∂+z

respectively. Inflow face means that the flux should enter 

this zone from its neighboring zone called upstream zone

across this face. Moreover, each zone depends on its 



upstream zones. The right in figure 2 depicts the data 

dependencies among three zones where zone z depends on 

both zone z0 and zone z1.

Figure 2. Data dependencies among three zones. 

We generate an arc denoted by eij=(vi,vj) means that 

vertex vi depends on vertex vj if and only if zone zi

depends on zone zj. We assign the weight of each vertex vi

the local computations of zone zi and that of each arc the 

data size on which the downstream zone depends. So, the 

computation of digraph can be defined as algorithm 2 

modified from monograph on digraph theory [8]. 

Algorithm 2: The computation of digraph

(1) FOR (i=1,2,…,N) DO {f(vi)= d
−
(vi): in-degree of 

vertex vi }, list ψ ={vk ∈V(D): f(vk)=0}, list ψ0=φ.

(2) DO WHILE {|ψ0|≠|D|} { 

(2.1) Compute the head vk of ψ, let ψ0=ψ0∪{vk},  

ψ=ψ \{vk}. 

(2.2) FOR (each downstream vj of vk) DO {  

(2.2.1)  f(vj)= f(vj)-1. 

(2.2.2) if ( f(vj)=0) then { ψ=ψ∪{vj}; 

} else { transfer data from vk to vj.} 

        } ENDDO for step (2.2) 

} ENDDO for step (2). 

List ψ always maintain vertices ready for computations. A 

vertex can be joined into ψ if and only if all its upstream 

vertices have been calculated. A digraph is computable if 

and only if step (2) terminates within |D| iterations. In fact, 

we have the trivial conclusions. 

Theorem 1 A digraph is computable if and only if it has 

no cycle.

Property 1. A diagraph is computable on rectangle grid. 

Property 2 A digraph is acyclic on unstructured grid in 

two-dimensional geometry only if each zone is convex.

Proof: Assume the digraph has a cycle denoted by Θ=

vi,1vi,2⋅⋅⋅vi,mvi,1 where the double subscripts indicating the 

indices of vertices. For each zone represented by vertex vi,j,

consider the normal vector of its outflow face to its 

neighbor represented by vertex vi,j+1, then the vector must 

positively intersects with the sweeping direction. So, two 

faces are existed such that their normal vectors negatively 

intersect with each other. This contradicts with the convex 

property of unstructured grid.       

Figure 3. Left: three zones form a cycle. Right: a 

ring of eight hexahedrons form a cycle 

A digraph may include a cycle for concave zones in the 

case of two-dimensional geometry as showed in left of 

figure 3. Fortunately, such zones are usually forbidden for 

numerical simulations of realistic applications [5]. 

However, a digraph may include a cycle in the case of 

three-dimensional geometry even if each zone is convex. 

In fact, as showed in the right of figure 3, the hexahedrons 

will constitute a cycle if we cut a ring along with the 

direction of downstream sweeping.  

For each digraph constructed from the grid-based 

numerical algorithms, the cycle should be detected and 

then be broken before the digraph is computed. Some 

efficient algorithms can detect a cycle [8], Hackbush et.al 

[9,10] present a algorithm for convection dominated fluids, 

Plimpton and Hendrickson [17] present an application- 

specific strategy. In this paper, we always assume the 

digraph is acyclic. 

2.2 DAG for multiple constant directions 

A vertex is a pair between zone zi and sweeping direction 
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Ωm denoted by uim=(zi,Ωm), an arc is an ordered pair of 

vertices denoted by eim,,op =(uim,uop) if and only if 

(C1) m=p and zo depends on zi for Ωm, or, 

(C2) i=o, p>m and Ωp depends on Ωm.

In the case of Cartesian geometry [17], the second 

condition is no useful since all directions are independent 

from each other. But in the case of cylindrical geometry 

[15], or in the sphere geometry [13], these two conditions 

should be simultaneously considered.  

Property 3. The digraph for multiple directions is acyclic 

if and only if each digraph for single direction is acyclic.

Proof. The sufficiency is trivial because each digraph for 

single direction is an induced subdigraph. If each digraph 

for single direction is acyclic, arcs introduced by condition 

(C1) will never form a cycle. Based on these arcs, 

condition (C2) always generates arcs pointing from lower 

direction to upper direction, so new cycles will never be 

introduced.                                    

2.3 DAG for linearly downstream sweeping 

Linearly downstream sweeping usually occurs in the 

robust solver for convection-dominated fluids where the 

convection direction Ωm is a function independent of 

solution. The DAG can be similarly defined since a new 

arc can be constructed from the direction Ωm for two 

neighboring zones independent of solution. 

2.4 The model of DAG 

We construct another digraph ℜ(D) from the digraph D by 

substituting the set of vertices {uim:m=1, 2,…,M}

predefined on zone zi to a single vertex denoted by ui, and 

denote the underlying graph of D and ℜ(D) by D and ℜ(D)

respectively. For ℜ(D), we contract the parallel arcs and 

delete the loops, then a simple digraph will be resulted, 

denote its underlying graph by U(D). In order to 

distinguished from the original underlying graph D, we 

refer U(D) as the super underlying graph of D, each vertex 

as the super vertex and each arc as the super arc. 

Obviously, U(D) represents the zones connectivity of 

grid-based numerical algorithms. For the case of single 

direction, U(D) is the same as D.

By above definitions, we can consider the following 

model of DAG 

)(),(),(( DUDADVD ≡                  (5) 

Here, V(D),A(D) and U(D) are the set of vertices, arcs and 

the super underlying graph. It accurately represents the 

data dependencies independent of the characteristics of 

grid-based numerical algorithms no matter what types of 

grid zones, coordinate system, or equation coefficients are 

used.  

3. Parallel framework 

In this section, we present a parallel framework for the 

computation of DAG. It consists of three parts such that we 

firstly partition the digraph for the distribution of vertices 

among processors, secondly design the parallel algorithm 

for downstream sweeping and thirdly present the priority 

strategies for ordering each of vertices.  

The natural method to partition the DAG is the 

application of many undirected graph partitioning methods 

[18] on the super underlying graph. The set of vertices 

predefined on a super vertex is distributed to the same 

processor. For these methods, loads can be well balanced. 

We don’t discuss them here. 

    Assume D has been partitioned into P subdigraphs 

denoted by Dk distributed to processor pk (k=1,2,…,P), 

then the downstream sweeping in algorithm 2 can be 

substituted by the following parallel version.  

Algorithm 3. Parallel downstream sweeping.

FOR (k=1,2,…,P) processor pk DO in parallel { 

(1) f(vi)= d
−
(vi) ∀vi ∈V(Dk ); list ψk ={vi ∈ V(Dk ): 

f(vi)=0}; list ψ0=φ.

  (2) WHILE {|ψ0|≠|Dk|} DO { 

     (2.1)  WHILE (|ψk|≠φ) DO { 

(2.1.1) Compute the head vl of ψk,

ψ0=ψ0∪{vl},ψk=ψk\{vl}; 

(2.1.2) FOR (each downstream vj of vl) DO {  



+ IF (vj ∈V(Dk )) {f(vj)= f(vj)-1; } 

+ IF ( f(vj)=0) {ψ=ψ∪{vj} ;} ELSE { 

                   send a message including vl to  

the processor owning vertex vj.} 

              } ENDDO for step (2.1.2) 

(2.1.3) Receive messages from processors; 

(2.1.4) FOR ( each received message) DO { 

+ unpack this message for vl;

+ FOR(each downstream vj of vl) DO{ 

IF (vj ∈V(Dk )) { f(vj)= f(vj)-1;}  

IF (f(vj)=0) {ψ=ψ∪{vj} ; 

              } ENDDO for step (2.1.4) 

   } ENDDO for step (2.1) 

ENDDO for step (2) 

    The priority strategy for ordering of vertices decides 

the operation in step (2.1.2) and step (2.1.4) on how to join 

a computable vertex into the list. In fact, it is a key factor 

to affect parallel performance. Some geometrical strategies 

are presented in [15,17]. Here, we present a new strategy 

suitable for general model of DAG.  

Algorithm 4: priority strategy using length of shorted  

path away from processor boundry.

(1) Let set of vertices Λ=Λ1=Λ0 =φ;

(2) FOR ( each vertex vi whose out-degree d+(vi)=0) DO    

{ r(vi)=Q, let Λ=Λ∪{vi}; }; 

(3) FOR (each vertex vj is the upstream of at least one 

 vertex in set Λ ) DO { 

(3.1) IF (there is one downstream vertex of vj belongs  

to neighboring processors) { r(vj)=1; } ELSE 

{r(vj)= { }( )Qvr kjSk ,1)(minmin )( +∈ ;}; 

     (3.2) Λ0=Λ∪{vj};  

   } ENDDO for step (3) 

(4) Λ1 =Λ1 ∪Λ0;

(5) IF (|Λ1|≠|V(D)|) {Λ=Λ0; Λ0=φ; goto step (3)}. 

Here, Q denotes the length of critical path, r(vi) is the 

priority, S(j) represents the set of indices for downstream 

vertices of vertex vj. In fact, the priority is equal to the 

length of the shortest path away from the processor 

boundaries. This is coincident with the philosophy of that 

a vertex should be inserted into the list satisfying that the 

current vertex located at the head is most welcomed for the 

release of downstream vertices located at neighboring 

processors.  

    Now, we introduce some new concepts for better 

evaluation of our parallel algorithm. We refer T1 as the 

sequential time for the computation of DAG, denote OP or

O∞ by the optimal or shortest time for parallel execution 

under the assumption of zero overhead for each message 

passing using P or unlimited number of processors 

respectively, and denote TP by the elapsed time for parallel 

execution using P processors on parallel computer. Then, 

we define the optimal speedup, algorithm speedup or 

realistic speedup denoted by S∞ , SA and SP respectively. 

They are defined as the quotient of O∞, OP or TP over T1.

Obviously, S∞ represents the parallelism in the digraph, SA

represents the parallelism extracted using our algorithm 3, 

and SP represents the realistic performance on parallel 

computer. Obviously, we wish SA is close to S∞ and as well 

as SP to SA.

    If vertices have equal weights, S∞ is equal to the 

parameter Q of the length of critical path, and SA can be 

evaluated by the following algorithm.  

Algorithm 5. Computation of algorithm speedup.

(1) Y0 = 0; algorithm 3:(1); X0 = sum reduction of |ψ0|; 

(2) WHILE {X0≠|D|} DO { 

    (2.1) IF (|ψk|≠φ) {algorithm 3 : (2.1.1)∼(2.1.2) }; 

    (2.2)  Update X0; Y0=Y0+1;  

    (2.3)  Algorithm 3: (2.1.3)∼(2.1.4);} 

(3) SA=|D|/Y0.

In the case such that vertices have dynamic weights, the 

algorithm speedup is difficult to calculate. However, for 

many grid-based numerical algorithms including transport 

equation and convection-dominated fluids, we can assume 

vertices have equal weights. So, we can use algorithm 

speedup to evaluate the performance of implementation of 

algorithm 3.    



4. Performance results 

In this section, we will list some performance results 

on the parallel solution of neutron or radiation transport 

equation using our parallel framework. Particularly, two 

parallel computers are used for testing. One is a massively 

distributed memory machine called GX0 with 600 

processors for which the MPI message latency is about 10 

microseconds. Another is a distributed shared memory 

machines called DX0 with 100 processors for which the 

MPI message latency is less than 2 microseconds. Each 

processor has the peak performance of 1.0 Gflops.  

We firstly take the realistic application introduced in 

[15] for comparison. A 44-groups neutron transport 

equation is solved using implicitly discrete ordinates 

stencil S4 (16 directions) based on discontinuous finite 

element discretization for cylindrical geometry on 

two-dimensional unstructured grid. The grid consists of 

750 conforming quadrilateral zones. As depicted in figure 

1, the super underlying graph is partitioned by two 

methods called GP1 and GP3 respectively. Method GP1 

partition the grid by sorting the radial coordinate and 

horizontal coordinate, method GP3 partition the grid using 

the Inertial Kemighan-Lin (IKL) method implemented in 

Chaco [11].  

In table 1, we list the algorithm speedup for parallel 

downstream sweeping using algorithm 3. The algorithm 

speedup presented in [15] is also listed for comparison. In 

essence, the difference mainly comes from the priority 

strategy. In work [15], geometrical strategies are used, but 

here, algorithm 4 is used. Results show that the new 

priority strategy has improved performance by 10% for 64 

processors. Compared with the optimal speedup S∞=168, 

the algorithm speedup is satisfying.  

Table 1. Algorithm speedup for two priority strategies. 

#processors P=16 P=64 

Strategies GP1 GP3 GP1 GP3 

[15] 11.9 6.8 40.7 30.9 

Algorithm 4 13.4 7.4 44.3 32.3 

In table 2, we list the realistic speedup for 64 

processors on machine DX0 and GX0. The results on DX0 

show that the small network latency can be ignored for 

such applications because they are almost the same as 

algorithm speedup. On machine GX0, the larger network 

latency still likes the partitioning method GP3 because it 

has the smallest surface-to-volume ratio though it has the 

smallest algorithm speedup. However, we can find that the 

new priority strategy has obviously improved the 

performance especially on machine GX0. 

Table 2. Realistic speedup on 64 processors. 

Machines DX0 GX0 

Strategies GP1 GP3 GP1 GP3 

[15] 40.5 36.0 14.2 22.2 

Algorithm 4 44.2 31.7 20.2 26.4 

Secondly, we consider another realistic application for 

24-groups neutron transport equation with implicitly 

discrete ordinates stencil S8 (40 directions) on machine 

GX0. This grid consists of 13214 quadrilateral zones 

moving in accordance with hydrodynamics. Only method 

GP3 is used to partition the domain. Table 3 lists the 

elapsed time (seconds) for each time step and the realistic 

speedup for parallel downstream sweeping on processors 

scaling from 1 up to 512. These results show that the 

parallel framework is moderately scalable.  

Table 3. Performance results on machine GX0. 

P 1 32 64 128 256 512 

Time 2850 102 54.0 29.8 18.5 14.7 

SP 1.00 28.0 52.8 95.6 154 194

Figure 4.  Left: GP1; Right: GP3.



    Now, we consider the third realistic application for 

20-groups radiation transport equation with stencil S8 (40 

directions) on the rectangular Cartesian grid. This grid 

consists of 128×50 zones. It is noting that these zones 

vertically move as well as the hydrodynamics, the grid is 

often nonconforming. An example is depicted in the left of 

figure 5. Such nonconforming grids will complicate data 

dependencies for downstream sweeping. We only consider 

the horizontal stripe decomposition for the super 

underlying graph. In the right of figure 5, we give an 

example for two processors. In table 4, we list the 

algorithm speedup at the second line on processors scaling 

from 1 up to 128. We can find that the parallel framework 

is almost the optimal. On machine DX0, we again achieve 

the realistic speedup close to the algorithm speedup. 

However, similar cases don’t hold on machine GX0. In the 

worst case, only speedup 13.5 is gained on 64 processors. 

The worse performance mainly comes from too many 

message issued in algorithm 3. So, we buffer multiple 

short messages into a longer message in order to reduce 

the number of communications in step (2.1.2) of algorithm 

3 towards larger network latency. Take the number of short 

messages buffered together be four, the speedup is listed in 

the last line of table 4, the performance is significantly 

improved.  

5. Conclusions and Prospects 

The model of directed acyclic graph (DAG) presented here 

is suitable for general description of data dependencies for 

grid-based numerical algorithm varying from the complex 

transport equation on the unstructured grid to the simple 

numerical cores on the rectangular grid. The parallel 

framework for solution of DAG is moderately scalable on 

hundreds of processors, so it is also suitable for parallel 

implementation of such kinds of grid-based algorithms and 

their realistic applications. 

We look forward to more efficient partitioning 

methods for DAG, more clever techniques for latency 

tolerance besides from the simplest method presented at 

the end of last section, and also more efficient methods for 

cycle detection and tie breaking. Most of all, we prospect 

more and more realistic applications. 

Figure 5. Nonconforming grid and 

its stripe decomposition. 

Table 4. Performance results on machine GX0. 

P 4 8 16 32 64 128 

AP 4 8 16 31 62 121 

SP/DX0 4.1 7.7 15.6 29.1 54.6 - 

SP/GX0 3.8 7.4 13.3 19.2 13.5 - 

SP/GX0 3.8 7.7 15.2 27.2 41.6 66.1 

    In this paper, we only consider DAG for both 

constantly and linearly downstream sweeping, however, 

the nonlinear cases should also be addressed where 

dynamical digraph should be constructed. In fact, our 

parallel framework can be generalized to be suitable for 

such digraphs. However, the priority strategy should be 

modified.  
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