
Honeypot Back-propagation for Mitigating Spoofing Distributed
Denial-of-Service Attacks ∗

Sherif Khattab1, Rami Melhem1, Daniel Mossé1, and Taieb Znati1,2

1Department of Computer Science
2Department of Information Science and Telecommunications

University of Pittsburgh, PA 15260
{skhattab, melhem, mosse, znati}@cs.pitt.edu

Abstract

The Denial-of-Service (DoS) attack remains a chal-
lenging problem in the current Internet. In a DoS de-
fense mechanism, a honeypot acts as a decoy within
a pool of servers, whereby any packet received by the
honeypot is most likely an attack packet. We have
previously proposed the roaming honeypots scheme to
enhance this mechanism by camouflaging the honey-
pots within the server pool, thereby making their loca-
tions highly unpredictable. In roaming honeypots, each
server acts as a honeypot for some periods of time, or
honeypot epochs, the duration of which is determined
by a pseudo-random schedule shared among servers and
legitimate clients.

In this paper, we propose a honeypot back-
propagation scheme to trace back attack sources when
attacks occur. Based on this scheme, the reception
of a packet by a roaming honeypot triggers the acti-
vation of a DAG of honeypot sessions rooted at the
honeypot under attack towards attack sources. The
formation of this tree is achieved in a hierarchical
fashion: first at the Autonomous system (AS) level
and then at the router level within an AS if needed.
The proposed scheme supports incremental deployment
and provides deployment incentives for ISPs. Through
ns-2 simulations, we show how the proposed scheme
enhances the performance of a vanilla Pushback
defense by obtaining accurate attack signatures and
acting promptly once an attack is detected.

1 Introduction

The Internet has witnessed a proliferation of ser-
vices, some of which are publicly accessible, such
as google.com and DNS, whereas others, such as
subscription-based services, are private to specific

∗The authors were supported in part by NSF under grant
ANI-0087609.

user communities. Meanwhile, Distributed Denial-of-
Service (DDoS) attacks continue to pose a real threat
to Internet services[10, 9, 11], and the arsenal of DDoS
attackers is full of different mechanisms[25]. For in-
stance, certain fields of attack packets may be spoofed,
or forged, to complicate detection and isolation or to
hide attack sources.

Many schemes have been proposed to defend against
source-address spoofing DDoS attacks [15, 24, 33, 7,
36, 27, 13]. However, difficulties of widespread deploy-
ment reduce the effectiveness of ingress filtering[15].
Whereas traceback schemes [33, 7, 36, 27, 13] can iden-
tify the real sources of spoofed attack packets, it is
still needed to accurately find these attack packets and
to take an action against their sources: to stop them
for instance. By enforcing aggregate-based congestion
control, the Pushback mechanism is effective to some
extent in the containment of DDoS attack traffic. How-
ever, in some attack scenarios, such as highly dispersed
DDoS attacks, Pushback collaterally damages legiti-
mate traffic sharing paths with attack traffic[24].

Honeypots are physical or virtual machines suc-
cessfully used as intrusion detection tools to detect
worm-infected hosts for example [30, 23, 37]. The
Roaming honeypots scheme has been proposed as a de-
fense against non-spoofed service-level DoS attacks[21].
Without causing service interruption, it allows the
camouflaging of honeypot locations within a pool of
server replicas by randomly designating a set of servers
to be active over a period of time and using the remain-
ing servers as honeypots. In other words, each server
in the pool, in coordination with legitimate clients and
remaining peer replicas, assumes the role of a honey-
pot for specific intervals of time. We call these intervals
honeypot epochs. Roaming makes it difficult for attack-
ers to identify active servers, thereby causing them to
be trapped in the honeypots.

The focus of this paper is on defending private ser-
vices against source-address spoofing DDoS attacks. In
private services, legitimate clients are either known a
priori, such as in telecommuting to an enterprise net-
work, or they subscribe to the private service to acquire
access to the network. In either scenarios, legitimate
clients should be able to access the service from any-
where in the Internet [18]. To address this problem,

1

1-4244-0054-6/06/$20.00 ©2006 IEEE

we combine the effectiveness of Pushback mechanism
for tracing back and controlling attack traffic to its
sources, and the roaming honeypots ability to accu-
rately and promptly detect attack signatures.

The proposed honeypot back-propagation is a hierar-
chical traceback scheme, which effectively traces back
to and stops sources of attack streams without signif-
icant impact on the performance of legitimate traffic
streams. The main idea of the scheme is that each
roaming honeypot that receives packets initiates a re-
cursive traceback process by alerting Autonomous Sys-
tems (ASs) across the path(s) towards attack sources.
The alert triggers the AS-level input-debugging [38]
process on traffic destined for the honeypot, and further
propagates honeypot activations upstream towards at-
tack sources. Moreover, within each AS, access routers
of attack hosts are identified and filtering rules are in-
stalled to drop all traffic destined to the honeypot. The
ability of honeypot back-propagation to accurately dis-
tinguish attack packets from legitimate ones enables
the aggressive action of packet dropping, as opposed
to rate limiting, against attack traffic without penaliz-
ing legitimate traffic.

As a large number of attack sources participate in
a DDoS attack, it becomes increasingly difficult to re-
spond promptly, even when true IP addresses of the at-
tackers are known. This is due to (1) the attack sources
may belong to many administrative domains and (2) it
may not be possible to block the attack sources based
on their IP addresses as these addresses can be assigned
to legitimate machines later on.

To address the above issues, widespread deployment
and cooperation among ISPs are required. Our hon-
eypot back-propagation provides a high payoff in this
regard. First, collateral damage is reduced. Moreover,
filtering in honeypot back-propagation is based on the
victim’s destination address, therefore, it creates rela-
tively few management constraints. This destination-
based filtering allows our proposed scheme to scale to
a large number of attack sources, and it avoids block-
ing legitimate machines that get assigned IP addresses
previously allocated to attack sources, thus, addressing
the second reason of delayed action.

The rest of the paper is organized as follows. In
the next section we review some of the related DDoS
defenses. Section 3 presents service and attack mod-
els. For completeness, we describe the roaming hon-
eypots framework, on which we build honeypot back-
propagation in Section 4. Section 5 describes the hier-
archical honeypot back-propagation scheme with inter-
AS and intra-AS components and discusses some de-
sign issues. In Section 6, we describe our ns-2[5] model
of the honeypot back-propagation scheme and analyze
its benefits. Section 7 concludes the paper.

2 Related Work

In this section, we review some of the related de-
fense systems of the spoofing DDoS attack. If widely
deployed, ingress filtering [15] and IPsec [17] can pre-
vent most spoofing attacks. However, the management

hassle and per-packet performance overhead are ob-
stacles against widespread adoption of ingress filter-
ing and IPsec, respectively. Maintaining ingress filter-
ing rules can incur an overhead, especially with mobile
IP[28] support. In honeypot back-propagation, filter-
ing is based on destination addresses and kicks in only
when attacks are detected. Thus, it suffers from less
management hassles. The honeypot back-propagation
scheme requires light-weight per-packet filtering, and,
moreover, this filtering is performed only in the case of
attacks.

The SOS architecture [18] tackles the same problem
as ours: DoS attack in the context of a private service
with predetermined clients. It uses an overlay network
to hide the locations of a small number of proxy nodes
(servlets) and allows only traffic from these servlets to
enter the protected network. In order to gain access
to the overlay network, a client has to authenticate it-
self with one of the replicated access points (SOAPs),
which routes each client packet to one of the servlets
using hash-based routing. The overhead of the overlay
routing can be up to 10 times the direct communica-
tion latency[18]. Our work aims at providing a more
effective solution by avoiding overlay routing and by
taking actions only when attacks occur.

CenterTrack elegantly uses tunneling over an over-
lay network to determine ingress points of attack traf-
fic [38]. Controlled flooding injects packet floods into
the network and detects attack paths based on traf-
fic perturbations[8]. Packet marking (e.g., [33, 7, 36])
and packet logging [31, 35] represent other approaches
to the traceback problem. Hierarchical traceback [26]
with inter- and intra-domain traceback mechanisms is
similar to our hierarchical honeypot back-propagation
approach. However, our scheme differs in that honey-
pot traceback is triggered only upon attack detection.

Traceback information can be used for filtering at
the victim. For instance, StackPi is a deterministic
packet marking scheme that allows the victim to locally
filter attack packets based on the mark field[29].

Pushback propagates an aggregate-based rate-
limiting filter upstream from a congested router[16].
Both detection of misbehaving aggregates and assign-
ment of rate limits are done using the Aggregate-based
Congestion Control (ACC) mechanism[24]. At each
Pushback-enabled router, the rate limit of an aggregate
is shared in a max-min fairness fashion among input
ports on which traffic matching the aggregate signa-
ture is received. To estimate the arrival rate of each
input port, a feature similar to input debugging is used
to map each packet at the output queue to its corre-
sponding input port. Pushback accepts misbehaving
aggregate signatures through special request messages.
Honeypot back-propagation scheme can be viewed as a
realization of this feature; when a server takes the role
of a honeypot, the server’s destination address forms
the malicious aggregate.

Level-k max-min fairness [41] addresses the draw-
backs of the hop-by-hop application of max-min fair-
ness, which can severely punish legitimate traffic shar-
ing aggregate signatures with misbehaving traffic (see
Section 6.3.1). Client puzzles at the IP level repre-

Autonomous
System

Legitimate
Clients

Attackers

Servers

Edge Router

Figure 1. The service consists of a pool
of servers. Legitimate clients access the
servers from anywhere. Attackers send
spoofed attack traffic to the servers.

sent a promising direction in suppressing DDoS attack
streams[12, 39]. They can more effective when provided
with accurate attack signatures, such as the ones pro-
vided by our scheme. Finally, the Mohonk, or mobile
honeypots, scheme allows for propagation of honeypot
addresses using BGP options [22]. However, these hon-
eypot addresses are simply dark address spaces. Our
scheme camouflages honeypot addresses within servers
so as to make it difficult for attackers to discover and
avoid sending traffic to honeypots.

3 The Spoofing DDoS Attack

We consider a private service as depicted in Figure 1,
whereby legitimate clients are either known a priori or
acquire access to the service through on-line subscrip-
tion. Legitimate clients should be able to access the
service from anywhere in the Internet. The service is
provided by a pool of replicated servers.

A variety of attacks can be staged against the private
service. In this study, we assume that attacks can be
launched from a number of attack hosts, or zombies, by
sending spoofed packets destined for the servers1. The
attack may result in the following: (1) blocking of le-
gitimate connection requests from reaching the servers
and (2) degrading the throughput of both TCP flows
from servers to clients as well as data flows from clients
into servers. For example, if TCP ACK packets from
clients to servers get dropped due to the attack, the
throughput of TCP flows is degraded.

4 Roaming Honeypots Background

The proactive server roaming scheme has been pro-
posed in [19], where a prototype of the scheme is eval-
uated, and has been studied through simulation in

1We assume that legitimate clients are not compromised.

[32]. The roaming honeypots scheme leverages proac-
tive server roaming to camouflage honeypot locations
within a pool of servers, so as to make it difficult for
attackers to direct their traffic away from the honey-
pots and to avoid detection [21]. The scheme allows for
k out of N servers to be concurrently active, whereas
the remaining N−k act as honeypots. The locations of
the current active servers, and, thus, the honeypots, are
changed according to a pseudo-random schedule shared
among the servers and legitimate clients. Therefore,
legitimate clients always send their service requests to
active servers, whereas attack requests may reach the
honeypots. The source address of any request that
hits a honeypot is blacklisted, so that all future re-
quests from this source are subsequently dropped. The
source address is not blacklisted unless a full service
handshake is recorded to ensure that it is not spoofed.

The pseudo-random schedule divides time into
epochs, whereby at the end of each epoch, the set of
active servers changes by migrating active connections
from one server to another. A long hash chain is gen-
erated using a one-way hash function, and used in a
backward fashion. The last key in the chain, Kn, is
randomly generated and each key, Ki (0 < i < n), in
the chain is computed as H(Ki+1) and used to deter-
mine the active servers during epoch i.

Upon subscription to the service, each legitimate
client is assigned a roaming key, Kt from the hash
chain, with a varying value of t according to each
client’s trust level and/or other policies. Kt acts as a
time-based token, whereby it allows the client to track
the service up to and including epoch t. Clients also
receive the list of servers. When subscription expires,
that is, the current service epoch exceeds t, the client
may contact the subscription service to acquire a new
key.

Roaming honeypots require loose clock synchroniza-
tion of servers and legitimate clients. That is, the
clock shift among system components is bounded by a
constant, δ. To maintain loose clock synchronization,
clients synchronize their clocks with servers at each ser-
vice request. However, if a client remains inactive for
a long period of time, it contacts the subscription ser-
vice for resynchronization. At the server side, each
service epoch starts earlier by δ at the new servers and
ends later by δ +γ at the active servers of the previous
epoch, where γ is an estimated communication delay
from clients to servers.

5 Honeypot Back-propagation

Our honeypot back-propagation extends the roam-
ing honeypots scheme to defend against source-address
spoofing DDoS attacks. As described in the previ-
ous section, servers alternate between providing ser-
vice and acting as honeypots according to a shared
pseudo-random schedule [21]. Each server S enters a
honeypot epoch as soon as it is scheduled to be inac-
tive. During a honeypot epoch, S expects to receive
no legitimate traffic, therefore, any packet destined for
S is most likely an attack packet. A honeypot epoch

ClientAttackers

Server

(a) Start (b) During (c) After

AS

Honeypot session

AS connection

Attack traffic

Client traffic

Honeypot request messages

Honeypot cancel messages

Figure 2. The operation of inter-AS honeypot back-propagation at the start of, during, and at the end
of each honeypot epoch. Honeypot sessions are maintained and propagated by honeypot session
managers (HSM) inside ASs. (a) While acting as a honeypot and upon reception of attack packets, a
server S sends honeypot request messages to the HSM(s) in its home AS(s). When a HSM receives
a honeypot request message, it creates a honeypot session. (b) During honeypot epochs, HSMs
propagate honeypot sessions upstream towards attack sources. (c) At the end of honeypot epochs,
S sends honeypot cancel messages to tear down honeypot sessions except at stub ASs hosting
attackers.

ends once S becomes active again. As described ear-
lier, these honeypot epochs are selected in coordination
among servers and legitimate clients so as not to cause
service interruption.

In other words, honeypot epochs are time windows,
in which a server receives a stream of pure attack pack-
ets, which we term honeypot traffic. In honeypot back-
propagation, we trace the honeypot traffic back to its
origin(s) and install filters as close as possible to the
attack sources.

5.1 Inter-AS Propagation

The basic idea of honeypot back-propagation is that,
during its honeypot epochs, back-propagating honeypot
sessions are created in ASs upstream from the server
S towards attack sources. During a honeypot session
at an AS, packets entering the AS destined for S trig-
ger further propagation of honeypot sessions into the
upstream peering ASs from which the packets are re-
ceived. The back-propagation process stops if no more
attack packets are received or when non-transit ASs
are reached. A non-transit AS does not allow transit
traffic from other ASs to pass through. It is connected
to either a single ISP, or more than one ISP without
allowing traffic from one ISP to pass through on its
way to another ISP. Honeypot sessions at non-transit
ASs install filtering rules to drop traffic exiting the AS
destined for S. Except for the honeypot sessions at
non-transit ASs, all other honeypot sessions are torn
down at the end of honeypot epochs.

To implement honeypot back-propagation, two main

mechanisms are required. The first is needed to identify
the ingress points of honeypot traffic so that honeypot
sessions get propagated to the corresponding upstream
ASs. The second is needed for propagating and tearing
down the honeypot sessions.

The first mechanism uses a honeypot session man-
ager (HSM), which is a host connected in the AS net-
work that HSM maintains honeypot sessions and iden-
tifies the AS edge routers from which honeypot traf-
fic enters the AS. Upon receiving a honeypot session,
ingress honeypot traffic is diverted into the HSM. This
can be achieved by sending iBGP route announcement
declaring the HSM as the next-hop for ingress traffic
destined to S [6]. Upon receiving this route announce-
ment, edge routers forward honeypot traffic into the
HSM. However, it is still needed to identify the hon-
eypot traffic ingress points. To achieve this goal, two
methods can be used: tunneling and packet marking.
In the tunneling approach, Generic Routing Encapsu-
lation tunnels [14] are setup between all edge routers
and the HSM; the HSM identifies the ingress points by
inspecting from which tunnels the diverted traffic is re-
ceived. In packet marking, each edge router is assigned
a unique identifier such that if there are n such routers,
lg n bits are needed. Edge routers stamp their IDs into
the diverted honeypot traffic. Because only the honey-
pot traffic is marked, the ID field in the IP header can
be safely used. This packet marking scheme is similar
to the destination-end provider marking scheme in [34].

Once an ingress point is determined by the HSM,
a honeypot session is propagated to HSM of the cor-
responding peering AS. To achieve honeypot session
propagation and tear-down, we define two messages:

honeypot request and honeypot cancel messages.
Figure 2 illustrates the propagation and tear-down

of honeypot sessions along a DAG of ASs routed at the
server’s AS. As depicted in Figure 2(a), whenever the
server S starts a honeypot epoch, it sends a honeypot
request message to the HSM(s) of its AS(s). Upon re-
ception of a honeypot request message, the HSM cre-
ates a honeypot session, during which the honeypot
traffic ingress points are identified as described earlier.
When an ingress point x is identified, a honeypot re-
quest message is sent to the HSM responsible for the
upstream AS connected to x. Figure 2(b) illustrates a
snapshot of the scheme during a honeypot epoch.

At the end of the honeypot epoch (Figure 2(c)), S
sends a honeypot cancel message to the HSM(s) of its
AS(s). When a HSM receives a honeypot cancel mes-
sage, it sends a cancel message to all upstream HSMs
to whom it has previously sent a honeypot request mes-
sage. The HSM of a non-transit AS retains the honey-
pot session and installs a packet filtering rule at egress
edge routers to drop traffic destined for S, otherwise
the honeypot session is removed. Therefore, there will
be one or more filtering rules applied at non-transit
ASs hosting attackers, effectively stopping the attack.
However, if legitimate clients are hosted on these non-
transit ASs, their traffic will be dropped as well. Also,
an ISP (or an enterprise) may be interested in identify-
ing attack hosts within their networks, since the attack
traffic sent by these hosts may backfire at the ISP by
causing performance degradation inside the ISP net-
work or attacking the ISP’s own customers. To handle
the identification of attack hosts, we propose intra-AS
honeypot back-propagation.

5.2 Intra-AS Propagation

In intra-AS honeypot back-propagation, honeypot
sessions at the HSM of an AS are used to fur-
ther pin down attack hosts. Whereas inter-AS back-
propagation requires minimal changes to routers, the
intra-AS back-propagation imposes higher loads in the
AS routers. The basic tenet of the intra-AS back-
propagation is the use of localized traceback within the
AS to locate access routers, that is, first-hop routers, of
attack hosts. While many proposed traceback mecha-
nisms can achieve this goal, we choose to illustrate the
concept using a hop-by-hop traceback scheme.

Recall that honeypot traffic is diverted from edge
routers, both ingress and egress, into the HSM during
honeypot epochs. Ingress routers are upstream towards
attack sources and egress routers are downstream to-
wards the servers. In inter-AS back-propagation, the
HSM sends honeypot request messages to the upstream
ingress ASs. In intra-AS back-propagation, the HSM
sends local honeypot request messages to the egress
routers from which it received diverted traffic. Upon
reception of a honeypot request message, the router
creates a honeypot session, during which the honeypot
traffic input ports are identified using router-level in-
put debugging [38]. When an input port x is identified,
a local honeypot request message is sent to the up-

stream router connected to x provided that local hon-
eypot messages do not cross the AS boundaries. At the
end of the honeypot epoch, the HSM sends a honeypot
cancel message to the egress routers. When a router
receives a honeypot cancel message, it sends a cancel
message to all upstream routers to whom it has previ-
ously relayed a honeypot request message. Recall that
if an access router is reached by the back-propagation
process, it is because it is connected to an attack host.
Therefore, access routers retain the honeypot sessions
and install packet filtering rules to drop traffic destined
for S. On the other hand, honeypot sessions in inter-
mediate routers are removed.

5.3 Design Issues

Here, we discuss some design issues involved in hon-
eypot back-propagation.

Message Security To prevent forging of honeypot
request and cancel messages, which in itself can lead
to DoS attacks, control traffic is encrypted and au-
thenticated using shared keys between ASs, similar to
securing BGP sessions. Moreover, in intra-AS back-
propagation, messages are sent hop-by-hop and, thus,
can be authenticated using the TTL field in the same
way as in ACC/Pushback [24].

Incremental Deployment In order for honeypot
back-propagation to reach attack hosts and stop the
attack, all ASs along the attack path as well as all
routers inside attack-hosting ASs should support the
scheme. However, partial deployment is possible with
some benefits, which increases as more ASs and routers
implement the scheme. Partial deployment of inter-
AS back-propagation can create gaps between ASs im-
plementing the scheme, which would prevent further
propagation of honeypot sessions. To bypass these de-
ployment gaps, we can use a BGP option, in a similar
way mobile honeypots are propagated in [22], such that
when a HSM fails to propagate honeypot sessions to
upstream ASs from which honeypot traffic is received,
the HSM broadcasts the honeypot requests using BGP
announcements to all upstream ASs. These announce-
ments are propagated until they reach an AS with a
HSM from which point normal propagation is resumed.

If an AS does not implement intra-AS back-
propagation, it may be the case that the AS contains
both attack and legitimate hosts, in which case apply-
ing filtering rules will block legitimate traffic as well.
However, as mentioned earlier, it is to the ISP’s own
benefit to apply intra-AS back-propagation in order to
detect compromized hosts, which may degrade the ISP
performance or even attack its own customers.

False Positives Longitudinal studies of honeypots
(e.g., [40]) show that honeypots receive a large amount
of benign traffic, such as non-malicious probing, which
if not adequately handled, may render the honeypot
under attack all the time, causing high unnecessary

overhead of installing and tearing down honeypot ses-
sions. Server-to-server control traffic is another source
of false positives. To tolerate false positives, a server
during its honeypot epoch does not send a honeypot re-
quest message unless either the rate of received traffic
exceed a threshold or an attack is detected using other
methods (e.g., [4]). Selecting an appropriate threshold
is an object of future work.

Protection of the honeypot session manager
(HSM) The HSM within an AS is a critical resource
in the honeypot back-propagation defense. Therefore,
it should be protected from targeted attacks. This pro-
tection can be achieved by replication and load balanc-
ing of customer traffic on replicated HSMs. The cost
of the replication can be amortized over the ISP cus-
tomers. Another way of blocking external attack traffic
to the HSM is to assign it a private IP address (e.g.,
10.0.0.1). This way the HSM is not accessible from
outside the AS. However, for HSMs to be able to com-
municate, another mechanism is needed. BGP can be
used for this purpose.

6 Simulation Results

The main advantage of honeypot back-propagation
stems from the integration of honeypots, which provide
accurate and prompt attack signatures. To analyze the
effect of honeypot usage, we augment the Pushback
scheme [24] with honeypot back-propagation and com-
pare the performance of plain and augmented Push-
back. We note that the Pushback framework is flexible
enough to allow for the plugging of better attack de-
tection, which our honeypot back-propagation scheme
provides. Due to space limitation, we report some of
our results; more detailed results can be found in [20].

6.1 ns-2 Model

We modified the Pushback ns-2 module to imple-
ment intra-AS honeypot back-propagation. First, be-
cause we do not depend on the aggregate-based con-
gestion control, we disabled this feature. We defined
a new message type for honeypot requests, and a new
session type for honeypot sessions, and we modified the
Pushback response to cancel messages in access routers
to comply with our scheme. The roaming honeypots
module [3] is also extended to send honeypot request
and cancel messages, to support roaming with legiti-
mate UDP traffic, and to start and end each honeypot
epoch a little bit later and earlier, respectively, to ac-
commodate in-transit legitimate traffic and clock syn-
chronization.

6.2 Simulation Topology and Parameters

Our simulation topology is a tree with hop-count
and router-degree distributions shown in Figure 3.
This tree represents the network paths from legitimate
clients and attack hosts to the servers. Although a

tree collected using Internet measurements is more re-
alistic, we use distributions roughly matching those of
measured trees (e.g., [1, 2]).

We model five servers behind a bottleneck link of 1
Mb/s capacity. The bottleneck represents the root of
the tree topology. Links incident on leaf nodes have a
1 Mb/s capacity and 1 ms propagation delay, whereas
links incident on servers are 10 Mb/s in capacity and
1 ms in propagation delay. All other links have a ca-
pacity of 10 Mb/s and a propagation delay of 10ms.
Although these capacities and propagation delays are
not real, their relative values roughly represent rela-
tions between access and core links and were used to
expedite the simulations.

Results with a network of 100 leaf nodes are reported
in this paper, from which we select legitimate clients
and attack hosts. Both legitimate clients and attackers
send CBR traffic destined for the servers. In the results
shown, we vary the number of legitimate nodes while
keeping the total legitimate rate at about 90% of the
bottleneck capacity (similar results were obtained with
lower legitimate loads).

At the start of each periodic epoch, each legitimate
client selects one of the three active servers uniformly
at random and directs its traffic into it. In the case of
Pushback and no-defense experiments, legitimate traf-
fic is uniformly distributed over all five servers. Each
attack host picks a server among the five servers uni-
formly at random and keeps on attacking it. Each sim-
ulation run lasts for 1000 seconds. Legitimate traffic
starts at time 0, while attack traffic is from 50 to 950
seconds. We measure the throughput of legitimate traf-
fic as a percentage of the total bottleneck link capac-
ity. Figure 4 shows an example of how the legitimate
throughput changes with time during one simulation
run. At 50 seconds, legitimate throughput suffers from
a drop for all schemes. However, for honeypot back-
propagation, the legitimate throughput quickly recov-
ers after attack hosts are captured.

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 8 9 10 11 12 13 14 15 16

F
re

qu
en

cy

Hop Count

Hop count distibution used in the simulation.

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8

F
re

qu
en

cy

Node Degree

Node degree distibution used in the simulation.

Figure 3. Hop count and node degree distri-
butions for the simulated topology.

6.3 Effect of Attack Parameters

We study the effect of the location of attack nodes
in terms of hop distance from victim servers, the num-
ber of attackers, and the attack rate per attack host
for. Because we are interested in the system behavior
under attack, in the next figures we average the client
throughput during the attack time (i.e., from 50 to 950
seconds) of each simulation run. Table 1 summarizes
the studied parameters and the values we experiment
with.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800 900 1000

C
lie

nt
 T

hr
ou

gh
pu

t %

Time (Seconds)

75 Clients (0.012Mb/s each)
 and 25 evenly distributed Attackers (0.1Mb/s each).

Honeypot Back-propagation
Pushback

No Defense

Figure 4. Time plot of one simulation run. At-
tack is between 50 and 950 seconds.

Parameter(s) Simulated Values
(Total number of servers, (5,3)
number of active servers)
Bottleneck Link Capacity 1.0 Mb/s

Total Number of Leaf Nodes 100
Epoch length 10 seconds

Total Legitimate Rate 90% of bottleneck
capacity

Number of Attackers 25, 50, 75
Attacker Locations Far, Close,

Evenly Distributed
Rate Per Attacker (0.01, 0.05,

0.1, 0.5) Mb/s

Table 1. Simulation Parameters

6.3.1 Location of Attackers

We consider three scenarios of attacker locations: (a)
close attackers, where the attackers are assigned to the
closest leaves to the victim servers in the topology tree,
(b) far attackers, in which attackers are assigned to
the furthest leaves from the servers, and (c) evenly
distributed attackers, in which the location of attack
nodes are selected uniformly at random over all leaf
nodes. In all scenarios, legitimate clients occupy the
remaining leaf nodes.

As depicted in Figure 5, as the locations of the at-
tackers get closer to the servers, ACC/Pushback pun-
ishes legitimate traffic more. The reason for this behav-
ior is that ACC/Pushback adopts a hop-by-hop max-
min fairness allocation of the rate limit among up-
stream routers without taking into consideration the
number of end hosts behind each upstream router. So,
for example, the fair share of an end-host connected to
a router with another two upstream routers is one third
of the rate limit irrespective of the fact that the two
routers may have many upstream end-hosts connected
through them. The result of this behavior is that as
attackers get closer to the victim, their fair share in-
creases, reducing the residual rate for legitimate clients.
For close attackers, ACC/Pushback is even worse than
no defense at all because it actually protects attack
traffic.

 0

 20

 40

 60

 80

 100

Far Evenly Distributed Close

C
lie

nt
 T

hr
ou

gh
pu

t %

Attacker Location

75 Clients, .0120Mb/s per client, 25 Attacker, 0.1Mb/s per attacker

Honeypot Back-propagation
Pushback

No Defense

Figure 5. Effect of Attacker Locations.
6.3.2 Number of Attackers

Figure 6 shows that, for ACC/Pushback and for evenly
distributed attackers, as the number of attackers in-
creases, the number of attackers close to the victim
increases, leading to an increase of the (protected) at-
tack rate, and thus, the negative impact on legitimate
throughput consequently increases. However, for far
attackers, that is, close legitimate clients (not shown),
client throughput is independent of the number of at-
tackers, because in this case ACC/Pushback protects
the legitimate traffic of the clients.

 0

 20

 40

 60

 80

 100

 25 30 35 40 45 50 55 60 65 70 75

C
lie

nt
 T

hr
ou

gh
pu

t %

Number of Attackers

0.05Mb/s Per Attacker, Evenly Distributed Attackers

Honeypot Back-propagation
Pushback

No Defense

Figure 6. Effect of Number of Attackers.
As long as attacks last for enough time for honey-

pot back-propagation to reach their sources, which is
the case in Figure 6, honeypot back-propagation is in-
dependent of the number of attackers. However, for
higher number of attackers, some attack hosts may not
be reached by honeypot back-propagation with our pa-
rameter values. For example, with 500 attackers, if
each attacker sends at a rate of 5 Kb/s, the 1 Mb/s
bottleneck link will be clogged. With a packet size of
1000 bytes basic scheme, epoch length has to be at least
≥ 1000∗8bits

5Kb/s ·hi ≈ 1.6·hi seconds to reach an attacker hi

hops away from the server, without accounting of the
delay of honeypot session propagation. For instance,

to reach an attacker 10 hops away, the epoch length
has to be at least 16 seconds.

 0

 20

 40

 60

 80

 100

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

C
lie

nt
 T

hr
ou

gh
pu

t %

Attack Rate Per Node(Mb/s)

25 Clients, .0360Mb/s per client, 75 Attacker, Close Attackers

Honeypot Back-propagation
Pushback

No Defense

Figure 7. Effect of Attack Rate per Node.

6.3.3 Rate Per Attacker

As shown in Figure 7, for ACC/Pushback and close at-
tackers, as the attack rate per attacker increases, the
attack can grab more of the ACC/Pushback-enforced
rate limit, resulting in reduction of legitimate through-
put. For far attackers, however, legitimate through-
put is independent of the individual rate per far at-
tacker, because of ACC/Pushback protection of legiti-
mate traffic of the close clients[20].

7 Conclusion

In this paper we presented honeypot back-
propagation, a hierarchical traceback defense against
DDoS attacks with spoofed source addresses. In co-
ordination with its legitimate clients and other server
replicas, a server enters honeypot epochs at times un-
predictable to attackers. This allows the honeypots to
receive pure attack streams, whereby honeypot back-
propagation makes use of this stream to push honey-
pot sessions towards the attacker without disrupting
the service provided to legitimate traffic.

Through ns-2 simulations, we show the feasibility
of the honeypot back-propagation scheme and confirm
its added benefit to the ACC/Pushback defense. Also,
honeypot back-propagation supports incremental de-
ployment, and it incurs a small overhead, since it is
activated only during attacks.

References

[1] Cooperative Association for Internet Data Analysis.
http://www.caida.org/.

[2] Internet Mapping Project.
http://research.lumeta.com/ches/map/.

[3] NetSec Group. http://www.cs.pitt.edu/NETSEC.
[4] Snort. http://www.snort.com.
[5] The Network Simulator - ns-2.

http://www.isi.edu/nsnam/ns/.
[6] S. Agarwal, T. Dawson, and C. Tryfonas. DDoS Mitigation

via Regional Cleaning Centers. Technical Report RR04-ATL-
013177, SPRINT ATL Research, Jan 2004.

[7] S. M. Bellovin, M. Leech, and T. Taylor. ICMP Traceback
Messages. In draft-ietf-itrace-01.txt, internet-draft, October
2001. Expired draft.

[8] H. Burch and B. Cheswisk. Tracing Anonymous Packets to
Their Approximate Source. In 14th Systems Administration
Conference, LISA 2000.

[9] C. C. C. A. CA-2003-04. MS-SQL Server Worm.
http://www.cert.org/advisories/CA-2003-04.html, January
2003.

[10] CAIDA. Nameserver DoS Attack October 2002.
http://www.caida.org/projects/dns-analysis/oct02dos.xml.

[11] CAIDA. SCO Offline from Denial-of-Service Attack.
http://www.caida.org/analysis/security/sco-dos/.

[12] W. chang Feng. The case for TCP/IP puzzles. In ACM SIG-
COMM workshop on Future directions in network architec-
ture, 2003.

[13] D. Dean, M. Franklin, and A. Stubblefield. An algebraic
approach to IP traceback. ACM Trans. Inf. Syst. Secur.,
5(2):119–137, 2002.

[14] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina. Generic
Routing Encapsulation (GRE). In RFC 2784, March 2000.

[15] P. Ferguson and D. Senie. Network Ingress Filtering: Defeat-
ing Denial of Service Attacks which employ IP Source Address
Spoofing. In RFC 2827, May 2001.

[16] J. Ioannidis and S. M. Bellovin. Implementing Pushback:
Router-Based Defense Against DDoS Attacks. In NDSS, 2002.

[17] S. Kent and R. Atkinson. Security Architecture for the Internet
Protocol. In IETF, RFC 2401, November 1998.

[18] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure Over-
lay Services. In ACM SIGCOMM, 2002.

[19] S. M. Khattab, C. Sangpachatanaruk, R. Melhem, D. Mossé,
and T. Znati. Proactive Server Roaming for Mitigating Denial-
of-Service Attacks. In ITRE, 2003.

[20] S. M. Khattab, C. Sangpachatanaruk, R. Melhem, D. Mossé,
and T. Znati. Honeypot Back-propagation for Mitigating
Spoofing Distributed Denial-of-Service Attacks. Technical Re-
port TR-04-111, Department of Computer Science, University
of Pittsburgh, Sept 2004.

[21] S. M. Khattab, C. Sangpachatanaruk, D. Mossé, R. Melhem,
and T. Znati. Roaming Honeypots for Mitigating Service-level
Denial-of-Service Attacks. In ICDCS, 2004.

[22] B. Krishnamurthy. Mohonk: mobile honeypots to trace un-
wanted traffic early. In NetT ’04: Proceedings of the ACM
SIGCOMM workshop on Network troubleshooting, pages 277–
282, New York, NY, USA, 2004. ACM Press.

[23] J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver. The
Use of Honeynets to Detect Exploited Systems Across Large
Enterprise Networks. In Proceedings of the 2002 IEEE Work-
shop on Information Assurance and Security.

[24] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Pax-
son, and S. Shenker. Controlling high bandwidth aggregates in
the network. In ACM SIGCOMM Computer Communication
Review, volume 32, pages 62–73. ACM Press, 2002.

[25] J. Mirkovic and P. Reiher. A Taxonomy of DDoS Attack
and DDoS Defense Mechanisms. ACM SIGCOMM Computer
Communication Review, 34(2):39–53, April 2004.

[26] M. Oe, Y. Kadobayashi, and S. Yamaguchi. An implementation
of a hierarchical IP traceback architecture. In SAINT 2003
Workshop on IPv6 and applications, Jan 2003.

[27] K. Park and H. Lee. On the effectiveness of probabilistic packet
marking for IP traceback under denial of service attack. In
IEEE INFOCOM, pages 338–347, 2001.

[28] C. Perkins. IP Mobility Support. In RFC 2002, October 1996.
[29] A. Perrig, D. Song, and A. Yaar. StackPi: A New Defense

Mechanism against IP Spoofing and DDoS Attacks. Tech-
nical Report CMU-CS-02-208, School of Computer Science,
Carnegie Mellon, Pittsburgh, PA 15213, December 2002.

[30] T. H. Project. Know Your Enemy. Addison-Wisley, Indi-
anapolis, IN, 2002.

[31] G. Sager. Security fun with OCxmon and cflowd. Internet2
working group meeting, November 1998.

[32] C. Sangpachatanaruk, S. M. Khattab, T. Znati, R. Melhem,
and D. Mossé. A Simulation Study of the Proactive Server
Roaming for Mitigating Denial of Service Attacks. In ANSS,
2003.

[33] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical
network support for IP traceback. In ACM SIGCOMM, 2000.

[34] V. Siris and I. Stavrakis. Provider-Based Deterministic Packet
Marking against Distributed DoS Attacks. In SSN, 2005.

[35] A. C. Snoeren. Hash-based IP traceback. In ACM SIGCOMM,
pages 3–14, 2001.

[36] D. X. Song and A. Perrig. Advanced and Authenticated Mark-
ing Schemes for IP Traceback. In IEEE INFOCOM, 2001.

[37] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the In-
ternet in your spare time. In Proceedings of the 11th USENIX
Security Symposium, 2002.

[38] R. Stone. CenterTrack: An IP Overlay Network for Track-
ing DoS Floods. In Proceedings of the 9th USENIX Security
Symposium, 2000.

[39] X. Wang and M. Reiter. Mitigating Bandwidth-Exhaustion
Attacks using Congestion Puzzles. In ACM CCS 2004.

[40] N. Weiler. Honeypots for distributed denial-of-service attacks.
In Proceedings of WET ICE 2002.

[41] D. K. Y. Yau, J. C. S. Lui, and F. Liang. Defending
Against Distributed Denial-of-service Attacks with Max-min
Fair Server-centric Router Throttles. In IWQoS, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

