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Abstract

We propose a new model for image denoising which
is a hybrid of the total variation model and the Lapla-
cian mean-curvature model. An efficient numerical
procedure to compute the hybrid model is also pre-
sented. The hybrid model and its computational pro-
cedure introduce a number of parameters. As a pre-
liminary step to the synthesis of a method for select-
ing optimal parameters, the hybrid model was simu-
lated on a number of known images with synthetically
added moise. The parallel simulation code was easily
composed from existing serial code and a dynamic load
balancing tool. The estimated parallel efficiency of the
simulation is in excess of 96% on 32 processors of a
general-purpose Linux cluster.

1. Introduction

Denoising is an important image processing (IP)
step for various image-related applications and often
necessary as a pre-processing for other imaging tasks
such as segmentation and compression. Thus im-
age denoising methods have occupied a peculiar po-
sition in IP, computer graphics, and their applications
[18, 28, 29, 30, 36]. Recently, as the field of IP re-
quires higher levels of reliability and efficiency, various
powerful tools of partial differential equations (PDEs)
and functional analysis have been successfully applied
to image restoration [1, 10, 14, 21, 27, 31, 33, 35, 41]
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and color processing [6, 15, 22, 24, 37]. In particular,
a considerable amount of research has been carried out
for the theoretical and computational understanding
of the total variation (TV) model [35] and its variants
[1, 10, 11, 14, 21, 23, 27, 28, 38].

However, most of those denoising models may lose
fine structures of the image due to a certain undesired
dissipation. As remedies, the employment of the G-
norm [28] and iterative refinement [32] have been stud-
ied. But these new methods are either difficult to min-
imize utilizing the Euler-Lagrange equation approach
or have the tendency to keep an observable amount of
noise. Recently, in order to overcome the drawbacks,
one of the authors suggested the method of nonflat time
evolution (MONTE) [13] and the equalized net diffu-
sion (END) approach [12]. The MONTE and END
techniques are applicable to various (conventional) de-
noising models as either a time-stepping procedure or
a variant of mathematical modeling.

As another remedy to the undesired dissipation,
fourth-order PDE models have been emerged [19, 26,
40]. In particular, the Laplacian mean-curvature
(LMC) model has been paid a particular attention due
to its potential capability to preserve edges of linear
curvatures. However, it has been numerically verified
[39] that the LMC model can easily introduce granule-
shaped spots to restored images. To overcome the
granularity, this article proposes a hybrid model which
combines a TV-based model and the LMC.

In this paper, we investigate the properties of a
proposed hybrid TV-LMC model for image denoising.



The hybrid model introduces a number of parameters,
highlighting the need for a procedure for selecting op-
timal parameters. Preliminary to the development of
such a selection procedure, we have undertaken a para-
metric study of the hybrid model in order to discover
the solitary and interactive effects of the parameters on
model accuracy. Such a parametric study is necessarily
time-consuming due to the huge number of combina-
tions of the parameter values to be tested. In addition,
the study has to be performed on a number of differ-
ent images, thereby increasing the overall investigation
time. Thus, the parametric study was implemented as
a parallel computing application. This paper focuses
on the performance of the parallel implementation on
a general-purpose Linux cluster.

The rest of this paper is organized as follows. It
discusses the hybrid model for image denoising in Sec-
tion 2. The dynamic load balancing tool utilized to par-
allelize the code for the parametric study is described in
Section 3. Section 4 presents sample results of perfor-
mance tests of the parallel implementation. Section 5
gives a summary and describes future work.

2. A Hybrid Model for Image Denoising

We begin with the Laplacian mean-curvature (LMC)
model:
ou

o+ k() = A(f — ), (1)

where 5 > 0, a constraint coefficient, and x(u) denotes
the mean-curvature defined as

m(u):V~<vu).

[V

In equation (1), f is a contaminated image and the so-
lution u represents a denoised image. The LMC model
has a major drawback: granularity. The restored image
can easily incorporate granule-shaped spots. The LMC
model also shows staircasing, a phenomenon that tends
to make the restored image locally constant. However,
it is relatively easy to cure [22, 27].

2.1. The model

As a remedy for the granule-shaped spots intro-
duced by the LMC model, consider the following hybrid
model

T ok(u) + Ar(u) = B(f — u), (2)

where o > 0 is a regularization parameter and

Fi(u) = |Vul £(u) = |Vu| V - (%).

Here the gradient magnitude |Vu| has been incorpo-
rated into K(u), as a scaling factor, in order to reduce
staircasing [27]. The second-order term is introduced
for (2) to hold a certain degree of maximum principle,
with which the model in turn can eliminate the granu-
larity [39]. In this article, we will call (2) the generalized
LMC (GLMC) model. In the following subsection, we
present an efficient numerical procedure for the GLMC
model.

2.2. A numerical procedure

Let At be a timestep size and t" = nAt. Set u" =
u(-,t"), n = 0,1,---, with u® = f. Let (D,,,Dy,)T
and (Dag,, Das,)T be the half-step (regular) central
difference and wider central difference operators for the
gradient V, respectively. Assume that the iterates have
been computed up to the (n—1)th time level. For the
computation of the solution in the nth time level, de-
fine matrices: for / = 1,2 and m =n —1,n,

D, u™
_ -1 x
Ko = 9D (i)
DQ u™
2. m _ n—1 x
IC@U = —|VEU |D2$z (W),
Kiu™ = (1—oz)ngum+ole%um, a € 0,1],
L™ = —Dg,Dy,u™,

(3)
where |[Vgpu™~!| and |V,u""!| denote appropriate fi-
nite difference approximations of [Vu™~!|. (The above
matrices depend on u™~'; however, we did not put the
dependence on the matrices for a simpler presentation.)
Let

K= K:l + K:27

K*=KS+KS, L=Ly+Ls.

and
D =pB+cK*+ LK. (4)

Then, a linearized Crank-Nicolson difference equation
for (2) reads

u — un—l um + un—l
D = . 5
Ar T 5 f (5)
Now, let
_B a _
AZ*g"’O”Ce +££IC[, 6—1,2
Since

D = (A1 + .AQ) + (£1/C2 + £2K1),



(5) can be rewritten as

n __ unfl u™ + unfl
A AT

=pf- %(51/@ + LoCy) (u™ +u™h).
(6)

Thus, replacing the last term in (6) by known values
with the error not larger than the truncation error, an
alternating direction implicit (ADI) method for (5) can
be formulated [16, 17] as

() -

u
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(7)

The quantity u* is an intermediate solution. In this
article, we will call (7) the Crank-Nicolson ADI (CN-
ADI) method for (2). Each half step of CN-ADI re-
quires inverting a series of quint-diagonal matrices,
which is computationally inexpensive.

Note that the CN-ADI algorithm (7) is a three-step
procedure, defined well for n > 2. For n = 1, one may

conveniently assume v~ ! = f = ul.

2.3. Algorithm parameters

In addition to having the three model parameters
(8, o and «), the CN-ADI iteration involves two ex-
tra algorithm parameters: At and n. The denoising
computation must stop after an appropriate number
of iterations. However, it is hard to find an analytic
stopping time. Therefore, finding an appropriate iter-
ation count, n, is an important problem. The timestep
size At is also important for the effectiveness of the al-
gorithm, due to the fact that the timestep is strongly
related to the frequencies of image content that will be
eliminated by the algorithm [21].

Thus, for a given contaminated image, values have
to be selected for the algorithm parameters 3, o, a,, At
and n which result in the best restored image. How-
ever, when the original uncontaminated image is not
known, assessing the quality of the restored image is
difficult, if not impossible. In order to gain insight on
the influence of these parameters on the quality of the
restored image, we simulate the model on known im-
ages with synthetically-added noise. This simulation is
discussed in the next section.

2.4. Parametric Study

Preliminary to the development of a procedure for
selecting parameters for the hybrid model described in
the previous section, we simulated the model by apply-
ing it to restore known images with artificial Gaussian
noise. As a measure of the quality of the restored im-
ages, we adopted the peak signal-to-noise ratio (PSNR)
defined as

2552
—Z” 5 | dB,
Zij (gij - Uij)

where ¢ denotes the original uncontaminated image
and wu is the restored image.

In order to gain insight on the influence of the pa-
rameters (3,0, «, At and n on PSNR, we conducted a
parametric study, following the pseudocode in Figure 1.
Various plots from the outputs of the study could be
produced, including animations of PSNR as a function
of 8,0, a, with either At or n fixed and using the other
as the variable for the animation.

The number of combinations of parameter values is
simply Ng x Ny xNg xNag X N,,, which could be huge
even for small to moderate values of the parameter
counts. Fortunately, the denoising procedure can be
computed simultaneously for several combinations of
the parameters, on a parallel machine. However, the
denoising procedure performs nonuniform amounts of
computations for each parameter combination; there-
fore, dynamic load balancing is necessary for efficient
utilization of the parallel machine. For the parametric
study, we used a dynamic load balancing tool we devel-
oped to parallelize serial codes with a structure similar
to Figure 1. This tool is described in the next section.

PSNR = 101log,, (

3. Dynamic Load Balancing Tool

We describe in this section a dynamic load bal-
ancing tool we developed to simplify the paralleliza-
tion and load balancing of applications that contain
computationally-intensive parallel loops (like in Fig-
ure 1) on message-passing clusters. These clusters are
usually organized into racks that are connected by a
cluster switch, each rack consisting of a number of
nodes connected by a rack switch, and each node con-
taining one or more processors. Figure 2 illustrates
a popular interconnection configuration. Heterogene-
ity is inherent in such a cluster, more so if it was
constructed incrementally over a period of time, be-
cause the processors would have different capabilities.
Rates of communication between processors are also
variable. Typically, the cluster scheduler attempts to



Establish uncontaminated image g
Add Gaussian noise to g to produce contaminated image f
Establish parameter counts Ng, N;, Ny, Na¢, Ny,
Establish parameter values S[1],...,8[Ngl;  o[1],...,0[Ny];
afl],...,a[N,];  Atl],...,At[Nas;  n[l],...,n[N,]
For each combination of 3, o, o, At, n values
Apply denoising procedure on f to produce restored image u
Calculate PSNR; output 3,0, a, At,n and PSNR,
End for

Figure 1. High-level outline of parametric study

assign nodes from a single rack to a job for efficient
communications. Even with excellent job scheduling
algorithms, the scattering of processors across a num-
ber of racks occurs with a high probability, especially
for jobs that request large numbers of processors. Thus,
applications running on clusters typically need to incor-
porate load balancing for highest possible performance.

2
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2
g

Figure 2. A popular interconnection network
for clusters

The tool we developed can be integrated into exist-
ing sequential applications with minimal code changes.
The tool is a simplified version of the dynamic load
balancing tool based on MPI described in [9]. In a
parallel loop, nonuniformity of the iterate execution
times or heterogeneity of the processors usually give
rise to load imbalance. If the number of iterates N is
significantly larger than the number of processors P,
load balancing through dynamic loop scheduling will
be appropriate. Figure 3 illustrates the modification
of a Fortran 90 program containing a parallel loop to
integrate the tool. Only a few lines are added; essen-
tially, the original do loop is converted to a while loop
where chunks of iterates can be executed concurrently

on different processors. Since the i-iterate invokes
CPU-intensive computations, which may be expressed
in hundreds or thousands of lines of code, the addi-
tional code to integrate the tool constitutes a tiny per-
centage of the total number of lines of code for the
application.

program Serial_Version

do i=1,N
. i-iterate
end do

program Parallel_Version_With_Load_Balancing
use DLS
include ’mpif.h’
type (infoDLS) info
integer method, iStart, iSize, ilters, mpierr
double precision iTime
call MPI_Init (mpierr)

method = (choice of loop scheduling technique)
call DLS_Setup (MPI_COMM_WORLD, info)
call DLS_StartLoop (info, 1, N, method)
do while ( .not. DLS_Terminated(info) )
call DLS_StartChunk (info, iStart, iSize)
do i=iStart, iStart+iSize-1 ! was i=1,N
. i-iterate
end do
call DLS_EndChunk (info)
end do
call DLS_EndLoop (info, ilters, iTime)

Figure 3. Parallelization with dynamic load
balancing of a Fortran 90 program containing
a parallel loop.

The module DLS (abbreviation for Dynamic Loop



Scheduling) contains the type definition of infoDLS
and the codes for the DLS_* routines. Based on the
Message-Passing Interface (MPI) library the routines
implement a scheduler—worker strategy of load bal-
ancing, where the scheduler participates in executing
loads, in addition to being responsible for assigning
loads. The DLS routines are briefly described as fol-
lows:

DLS_Setup (MPI_COMM_WORLD, info) initializes
a dynamic loop scheduling environment on
MPI_COMM_WORLD. Information about this envi-
ronment is maintained in the data structure
info.

DLS_StartLoop(info,1,N,method) is the syn-
chronization point for the start of loop execution.
(1,N) is the loop range, and method is a user-
specified index for the selected loop scheduling
technique. The following techniques are imple-
mented: static scheduling, a modification of fixed
size chunking [25], guided self scheduling [34], fac-
toring [20], variants of adaptive weighted factoring
[3, 5, 7, 8], and adaptive factoring [2, 4].

DLS Terminated(info) returns true if all loop it-
erates have been executed.

DLS_StartChunk(info,iStart,iSize) returns a
range for a chunk of iterates. This range starts
with iterate iStart and contains iSize iterates.

DLS_EndChunk (info) signals the end of execution
of a chunk of iterates. Internally, a worker proces-
sor requests its next chunk from the scheduler.

DLS_EndLoop(info,ilters,iTime) is the syn-
chronization point at the end loop execution.
ilters is the number of iterates done by the
calling processor, and iTime is the cost (in sec-
onds) measured using MPI_Wtime(). iIters and
iTime are useful for assessing the performance
gains achieved by dynamic load balancing. For
example, the sum of the iTimes from all partici-
pating processors gives an estimate of the cost of
executing the loop on a single processor.

After loop execution, the results of the computa-
tions (in i-iterate) will be distributed among the
participating processors. A reduction operation like
MPI_Reduce() may be necessary to collect the results
in one processor, or MPI_Allreduce to make the re-
sults available to all processors in MPI_COMM_WORLD.
This would be the responsibility of the user, since DLS
only manipulates the indices of the loop. Information

about the mapping of the chunks of iterates to proces-
sors is maintained in the chunkMap component of the
infoDLS structure.

The performance of the code for the parametric
study of the denoising procedure with the dynamic load
balancing tool on a general-purpose Linux cluster is de-
scribed in the next section.

4. Parallel Performance

We conducted preliminary parametric studies with
Ng =9 N, =9, Ny =9, Nag, =9 and N,, = 15,
for a total of 98,415 parameter combinations, for a
number of images. The studies were executed on the
heterogeneous general-purpose EMPIRE cluster of the
Mississippi State University. The cluster can be ab-
stracted as in Figure 2 and has a total of 1038 pro-
cessors. A rack contains 32 nodes of dual 1.0GHz or
1.266GHz Pentium IIT processors and 1.25GB RAM.
Each node is connected to a 100Mb/s Ethernet rack
switch. The rack switches are connected by a giga-
bit Ethernet cluster switch. Installed software includes
RedHat Linux and PBS. The general submission queue
allows 64-processor, 48-hour jobs; a special queue al-
lows 128-processor, 96-hour jobs from a restricted set
of users. According to the Top 500 Supercomputer
Sites list published in June 2002, EMPIRE then was
the 126th fastest computer in the world and the 10th
among educational institutions in the U.S.

Figure 4 gives a summary of the performance of
the parallel code for the parametric study on the im-
age LenaGray256. This study was submitted as a
32-processor job on the EMPIRE cluster; the cluster
scheduler assigned homogeneous processors to the job.
Since jobs were also executing on the cluster along with
the study, the contention for network resources was
a source of system-induced load imbalance. However,
the major source of load imbalance was the nonuniform
amount of computations required by the denoising pro-
cedure for different sets of parameter values. The left
axis (for the bars) denotes the number of iterations of
the loop in Figure 1 executed by a processor, while the
right axis (for the diamonds) denotes the time in sec-
onds taken by the processor to execute the iterations.
The large differences in the number of iterations done
by the processors is evidence for application-induced
load imbalance. However, the difference between the
maximum and minimum work times is only 2581.3 sec-
onds, which is a relatively narrow range. The job time
measured by the cluster scheduler was 8.453 hours. An
estimate of the sequential cost of the study is 260.4547
hours (~10.9 days), which is the sum of the work times
of the 32 processors. Thus, an estimate of the effi-



ciency is: (estimated sequential cost)/(parallel cost)
= (260.4547)/(32x8.453) = 0.963. The high efficiency
indicates that the dynamic load balancing tool success-
fully addressed the load imbalance.
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Figure 4. Distribution of iterations and work
times for the parametric study on the image
LenaGray256

Figure 5 gives the summary for the parametric study
on the image BlackClircle. The cluster scheduler again
assigned homogeneous processors to the study, and the
job time was 39.546 hours. The differences in itera-
tion counts are significant, indicating the presence of
application-induced load imbalance. An estimate of
the sequential cost is 1,223.279 hours (~51 days), which
is the sum of the work times of the 32 processors. Thus,
an estimate of the efficiency is: (estimated sequen-
tial cost)/(parallel cost) = (1223.279)/(32x39.546) =
0.967.
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Figure 5. Distribution of iterations and work
times for the parametric study on the image
BlackCircle

5. Summary

We proposed a hybrid model for restoring noisy im-
ages. The hybrid model, which is based on the to-
tal variation model and the Laplacian mean-curvature
model, contains a number of parameters that need to
be fine-tuned in order to produce the best restored im-
ages. To guide the development of a procedure for se-
lecting the parameters, we simulated the hybrid model
by applying it to restore known images that were con-
taminated with Gaussian noise. The simulations were
conducted as parametric studies on a general-purpose
heterogeneous Linux cluster. To address the load im-
balance that potentially arises from algorithmic and
systemic sources, we used a dynamic load balancing
tool in the simulation code. The simulations achieved
very high estimated efficiencies.

We are currently analyzing the outputs of the para-
metric studies to develop methods for selecting optimal
parameters of the hybrid model. The results of this
analysis will be reported in the future.
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