
Automated Refinement of Security Protocols�

Anders M. Hagalisletto
University of Oslo, Department of Computer Science,

Postbox 1080 Blindern, 0316 Oslo, Norway
Email:andersmo@ifi.uio.no

Abstract

The design of security protocols is usually performed
manually by pen and paper, by experts in security. As-
sumptions are rarely specified explicitly. We present a
new way to approach security specification: The proto-
col is refined fully automated into a specification that
contains assumptions sufficient to execute the protocol.
As a result, the protocol designer using our method does
not have to be a security expert to design a protocol, and
can learn immediately how the protocol should work in
practice.

Keywords: Security protocols, formal specifica-
tion, automated refinement, testing, agent theory.

1 Introduction

Security protocols belong to the core of computer
security, combining classical disciplines like commu-
nication, cryptography and software engineering. Al-
though the number of security protocols increases (the
still highly relevant and thorough survey [2] gives more
than 41 authentication protocols), surprisingly little at-
tention has been devoted to the process of designing
and testing security protocols. Even though the secu-
rity community has contributed over the last decade
with secrecy proofs within several calculi and attacks
discovered through model checking, new protocols are
still designed using pen and paper1.

Recent advances in distributed computer science
suggest a need for more support in the designing and
testing of protocols. The end-user of the specification,

�The author would like to thank Boriss Mejias, Olaf Owe,
Bjarte M. Östvold, Habtamu Abie, Atle Refsdal, Arild B. Tor-
jussen and Thor Kristoffersen for comments on earlier drafts of
this paper.

1Evolutionary development of protocols from a given speci-
fication of security goals have been proposed (see [11] and [5]).
These protocols are derived fully automated based on weight
criterias.

in most cases a programmer, is supposed to understand
and take for granted the specification as presented by
the expert. However, even the experts make serious
mistakes. Errors in protocol specifications can be clas-
sified into three main categories, errors with respect to
syntax, assumptions, and security.

Therefore it is timely to automate the process of
prototyping security protocols. However, taking secu-
rity protocols into automated software engineering, in-
volves some particular challenges that distinguishes it
from standard software engineering: There is no com-
mon paradigm of programming languages that can be
applied directly. Protocols are language-independent
in a strong sense. Therefore the choice of specification
language and semantics is controversial. Concurrency
plays a crucial role, the protocols might run in envi-
ronments with unreliable networks. Unlike computer
science in general, computer security in general and se-
curity protocols in particular, involves intentional con-
cepts, concepts of beliefs, attitudes of agents, and rela-
tions between agents, as the relation of trust. All these
elements are part of our language, which consequently
builds on temporal epistemic logic. The benefits of our
methods can be summarized as follows;

• we provide a uniform way to specify protocols,

• assumptions may be specified explicitly,

• assumptions may be constructed fully automated,

The work presented in this paper is part of a large
project, involving a specification language for security
properties [4] and a simulator for executing protocols
implemented in Maude [9]. Protocol analysis using
specifications in our language is possible since the sim-
ulator is implemented in Maude. However, neither
protocol analysis (by hand-proof or semi-automated)
nor formal semantics (denotational or operational) is
the focus of this paper. This paper is devoted to the
specification and analysis of protocol syntax. We shall

1

1-4244-0054-6/06/$20.00 ©2006 IEEE

explain the language informally and show how proto-
col specifications can be used for rapid testing of the
intended behaviour of protocols. This paper can be
summarized in one single question:

What do we know about a protocol by
considering only its specification?

Fortunately, the answer is: We know a lot! Protocol
specifications as given in the literature contain much
implicit information that can be exploited in a formal
language.

The paper is organized as follows: In section 2, we
present an example of an authentication protocol, the
Wide Mouthed Frog. The textbook version of the pro-
tocol can be given a direct translation in our language.
A formal language for security specifying security prop-
erties is presented and we motivate how this language
can be extended to a language for security protocols.
Section 3 shows how temporal epistemic logic can be
used to precisely define the set of valid textbook proto-
cols. In order both to analyze and design protocol spec-
ifications, two additional notions are introduced, sub-
protocols and protocol composition. It turns out that
orderings and algebra of protocols are exactly what we
need in order to automate the refinement of textbooks
into executable assumption protocols. In section 4 we
show how this formal specification can be refined into
an assumption version of the protocol that contains the
sufficient assumptions about required beliefs and nec-
essary actions performed by the agents. Then finally in
section 6 we compare our approach with related work,
evaluate our approach, and point to some future re-
search directions.

2 A language for protocols

Mike Burrows proposed the following authen-
tication protocol, called the Wide Mouthed Frog,
which we shall use to illustrate our language and
methods throughout the paper. It consists of two
messages, involving three parties, A is trusted to
generate the session key KAB, S forwards the session
key to B. Timestamps are added by both A and
S to ensure freshness of the session. In standard
notations for security protocol specification it reads:

�P1� A �� S : A, E�KAS : TA, B, KAB�
�P2� S �� B : E�KBS : TS , A, KAB�

The notation A �� S : A, E�KAS : TA, B, KAB�
means that agent A sends to S the message consisting
of the agent name A, followed by the message con-
taining a time-stamp TA, the agent name B, and the

session key KAB encrypted using the symmetric key
KAS.

A language of security LS can be defined as follows:
The terms in LS are of two basic sorts, Agents and
Messages. The agent names are typically written a,
b, c, . . . , while messages are written m, m1, m2,
Agent variables are written x, y, x1, x2, . . ., and agent-
terms tA, tA1 , tA2 , . . . In LS there are two distinguished
atomic sentences; Transmit�a, b, m�, Agent�a� � Atomic.
The sentence Transmit�a, b, m� reads; “a sends the mes-
sage m to b” while Agent�a� reads “a is an agent”. Sec-
ond order variables X, Y are place-holders for arbitrary
sentences.

Definition 1 If a, b, are agent terms, x is an agent
variable, and m is a message, then LS is the least lan-
guage such that:
�i� Atomic � LS.
�ii� If ϕ, ψ � LS, then �ϕ, ϕ � ψ � LS.
�iii� If ϕ � LS, then Bela�ϕ�, ϕU ψ � LS.
�iv� If ϕ � LS then �xϕ � LS.
�v� If Φ � LS then �X Φ � LS.

As usual �, 	 and
 are definable using � and � and
� � ϕ � ϕ. The operator Bela�ϕ� reads “the agent
a believes ϕ holds”. The until operator ϕU ψ means
that ϕ holds until ψ holds. The operator before B is
definable from U by ϕB ψ � ���ϕU ψ�.

The language LS can be used to define both single
agent properties and security properties [4]. A single
agent property (SAP) is a characterization of the
capabilities and behaviour of a single agent. Below we
have defined some SAP’s explicitly:

Honest�a�
� �X �x �Transmit�a, x, X� � Bela�X��
Conscious�a�
�
�X �x �Transmit�a, x, X� � Bela�Transmit�a, x, X���
��Transmit�x, a, X� � Bela�Transmit�x, a, X���

The good agent is both honest and conscious, as
can be observed from the refined protocol specification
in section 4. A security property is a relation between
two or more agents, as for instance the concept trust :

Trust�a, b, ϕ�
� Transmit�b, a, ϕ� � Bela�ϕ�
Trust�a, b�
� �X Trust�a, b, X�

We shall see later that trust plays a crucial role in the
execution of security protocols.

The proper extension of LS to the language for pro-
tocols LP , is obtained by first extending the terms
with notions for protocols and primitives for encryp-
tion. The terms of LP contain the terms of LS and
natural numbers N , N1, N2, . . . , and three additional
sorts, nonces, timestamps, and keys. Variables for the

new sorts are labeled with xN , xT , and xK respec-
tively, when their sorts are emphasized. Constants in-
clude protocol names µ, µ1, µ2, encryption methods
for cryptography s (symmetric) and a (asymmetric),
in addition to the indicators i (private) and u (pub-
lic). Then finally there are function symbols for nonces
n�N, a�, time-stamps stamp�tT , tA�, keys key�s, tA1 , tA2 �,
key�a, i, tA�, key�a, u, tA�, and concatenation of protocol
names can be formed.

Definition 2 Let a denote some agent-term, x an
agent-variable, k is a key, and µ is protocol name, and
N is a natural number respectively. Then the language
of security protocols LP is the least language such that:
�i� LS � LP and ε � LP .
�ii� isKey�k�, isNonce�n�N, a��, Time�stamp�N, a�� � LP

�iii� playRole�a, x, µ�, role�a� � LP .
�iv� If ϕ � LP , then both E�k : ϕ�, D�k : ϕ� � LP .
�v� If ϕ, ξT , ξA, ξS � LP , then

protocol�µ, N, ξT , ξA, ξS , Φ � � LP .
�vi� If ϕ � LP , then Enforcea�ϕ� � LP .

Clause �ii� is self-explanatory. The predicate role�t�
says that agent t plays a specific role inside a pro-
tocol session. role�t� only have meaning in the con-
text of a specific protocol. The ternary predicate
playRole�t, x, µ� states explicitly that “agent t plays
the role x in the protocol named µ”. The sentences
E�k : ϕ� and D�k : ϕ� denote the basic crypto-
graphic primitives encryption and decryption respec-
tively. The sentence protocol�µ, N, ξT , ξA, ξS , ϕ � reads
“protocol named µ with session number N with the
total roles ξT , the agent specific roles ξA, the start-
roles ξS and the protocol body Φ”. The final sentence
Enforcea�ϕ� reads “enforce agent a to do the sentence
ϕ” or “agent a does ϕ”. Enforcement is the only im-
perative construct in the language, and it can be used
by the system specifier or protocol to extend the local
belief of the agent.

The syntactical complexity of sentences in LP ,
deg�ϕ�, and the free variables free�ϕ� are defined in
the standard way by recursion on the structure of
ϕ. The events in a protocol are usually positive sen-
tences, like “send message” or “encrypt message”. The
subset of the language having this property is called
the set of P-positive sentences. They include the
atomic sentences, and composite sentences where a
modal operator is the outermost connective; hence
each of E�k : ϕ�, D�k : ϕ�, Bela�ϕ�, Enforcea�ϕ�
and protocol�µ, N, ξT , ξA, ξS , ϕ � are P-positive. Hence
sentences where the outermost connective is negation,
implication or a temporal connective, are not P-
positive.

protocol [WMF, 0, role�x� � role�y� � role�z�,
role�x� � role�y� � role�z�, role�x�,

Transmit�x, z, Agent�x� �E�key�s, x, z� :
Time�stamp�wT , x�� � Agent�y� � isKey�key�s, x, y����

B
Transmit�z, y, E�key�s, y, z� : Time�stamp�uT , z��
� Agent �x� � isKey�key�s, x, y�����

Figure 1. The Wide Mouthed Frog.

3 Specification of protocols

An event is the minimal unit in a protocol specifica-
tion, for instance the transmission event or the empty
event ε also called skip. A protocol is a chain of events
between agents. A chain of events is a sentence of the
form;
ϕ1 B ϕ2 � ϕ2 B ϕ3 � . . . � ϕn�1 B ϕn, where each ϕi

is P-positive. If the last event is the empty event,
ϕn � ε, then the chain is called final. Skip can only
occur as the tail in a chain of events or alone as the
empty chain ε. Let Φ � ϕB �Φ�� denote a chain of
events written by recursion, hence ϕ is a single event
and ψ chain of events. The length of a chain of events
is given by lth�ε� � 0 and lth�ϕB �Φ��� � 1� lth�Φ��.

Let ϕ and ψ be conjunctions of P-positive sen-
tences. Then ϕ is included in ψ, denoted ϕ � ψ, iff
either �i� ϕ � 	, or
�ii� ϕ � �φ�Ψ�, ψ � �φ�Ψ�� and Ψ � Ψ�

�iii� ϕ � �φ�Ψ�, ψ � �σ �Ψ�� and �φ�Ψ� � Ψ�

for σ
 φ. We first define the class of valid finitary
protocols, and then the class of textbook protocols.

Definition 3 A valid protocol is a sentence in LP

on the form; protocol�µ, N, ξT , ξA, ξS , Φ �, such that
�i� ξT , ξA and ξS are finite conjunctions of roles;

such that ξA � ξT and ξS � ξT ,
�ii� Φ is a final chain of events and
�iii� free�ξT � � free�Φ�.

The specification of the Wide Mouthed Frog in fig-
ure 1 is called a textbook protocol, since it is close to
the way protocols are specified in research articles and
textbooks. Note that variables are introduced, since
an agent may play several roles in a single protocol.

Definition 4 A textbook protocol, is a valid proto-
col P, where each single event is a Transmit�xj , xk, ξ�,
where xj , xk are agent-variables and ξ � LP. (For
short we say P is textbook.)

3.1 Algebra and orderings of protocols

This section contains the sufficient fragment of def-
initions and results regarding ordering and concatena-
tion of protocol syntax. In a protocol, the agents par-
ticipating in the execution have different views on the
protocol depending on the role they play. They all run
what we call executable sub-protocol instances.

Each role that an agent might play in a protocol
determines a specific sub-protocol. Below we shall de-
fine the concept of sub-protocol, through the concept of
transitive embedding:

Definition 5 Let Φ and Ψ be final chains of events.
Then Φ can be embedded transitively into Ψ, written
Φ �E Ψ, if the following holds:
�i� ε �E Ψ and ϕB �Φ� �E ε
�ii� ϕB �Φ� �E ϕB �Ψ�� iff Φ �E Ψ�

�iii� ϕB �Φ� �E ψ B �Ψ� iff ϕB �Φ� �E Ψ, if ϕ � ψ.

Thus for instance e2 B e4 B ε �E

e1 B e2 B e3 B e4 B e5ε. If θ is a set of protocol
names with µ1, µ2 � θ, then µ1 �N µ2 means that µ1

is a subname of µ2. The empty name is denoted ε. �N

is a partial order.

Definition 6 P1 � protocol�µ1, N1, ξ
T
1 , ξA1 , ξS1 , Φ1 � is

a subprotocol of P2 � protocol�µ2, N2, ξ
T
2 , ξA2 , ξS2 , Φ2 �,

written P1 �P P2, if and only if �i� µ1 �N µ2 and
N1 � N2, �ii�, ξT1 � ξT2 , ξA1 � ξA2 , and ξS1 � ξS2 and
�iii� Φ1 �E Φ2.

Theorem 1 �, �E, and �P are partial orders.

A strong concept of equality may be defined based
on the protocol syntax:

Definition 7 P1 � protocol�µ1, N1, ξ
T
1 , ξA1 , ξS1 , Φ1 � is

equal to P2 � protocol�µ2, N2, ξ
T
2 , ξA2 , ξS2 , Φ2 �, written

P1 � P2, if and only if �i� µ1 � µ2 and N1 � N2, �ii�,
ξT1 � ξT2 , ξA1 � ξA2 , and ξS1 � ξS2 and �iii� Φ1 � Φ2.

Lemma 1 P1 � P2 iff P1 �P P2 and P2 �P P1.

If µ1 and µ2 are protocol names, then µ1µ2 denotes
their concatenation. For any set of protocol names Θ,
concatenation is a monoid over Θ with unit ε.

Definition 8 If Φ and Ψ be final chains of events,
then their concatenation, denoted Φ�Ψ, is given by:
�i� Φ�ε � Φ � ε�Φ
�ii� �ϕB �Φ����Ψ � ϕB �Φ��Ψ�

Lemma 2 If Φ � ϕ1 B . . . B ϕn B ε and Ψ �
ψ1 B . . . B ψm B ε are chain of events, then Φ�Ψ �
ϕ1 B . . . B ϕn B ψ1 B . . . B ψm B ε.

Definition 9 Let P1 and P2 be two arbi-
trary valid protocols in LS. Hence P1 �
protocol�µ1, N1, ξ

T
1 , ξA1 , ξS1 , Φ1 � and P2 �

protocol�µ2, N2, ξ
T
2 , ξA2 , ξS2 , Φ2 �. The composition

of P1 with P2, denoted P1 � P2, is defined by:

protocol�µ1µ2, N1	N2, ξ
T
1
ξT2 , ξA1
ξA2 , ξS1
ξS2 , Φ1

�Φ2 �.

Let E � protocol�ε, 0,�,�,�, ε � denote the empty pro-
tocol, and let P denote the set of valid protocols. Then:

Theorem 2 �P, �
 is a monoid with unit E.

That �P, �
 is a monoid means the following:
If P1, P2 � P then P1 � P2 � P P CL
P1 � �P2 � P3� � �P1 � P2� � P3 P AS
E � P � P � P � E P ID

Lemma 3 P1�P P2
P3�P P4 � P1� P3�P P2� P4

The sub-protocol notion �P, is rather general, an ar-
bitrary sample of events form a protocol may form a
sub-protocol. An important class of sub-protocols, is
the intrinsically connected sub-protocols. An intrin-
sically connected sub-protocol Ps in a protocol P is a
sub-protocol such that Ps is connected in P. For exam-
ple, each of P1, P2 and P3 are intrinsically connected
in P1 � P2 � P3. Intuitively one can understand the
intrinsically connected sub-protocols as regions within
protocols that share a common local concern.

Definition 10 A protocol P1 is intrinsically connected
in a protocol P2, written P1 �PI P2, iff there exists
protocols P� and P�, such that P2 � P� � P1 � P�.

Fortunately, protocol composition is functional :

Lemma 4 P1�P2 �� P�� P1� P� � P�� P2� P�.

4 Explicit specification of assumptions

Many assumptions about the underlying implemen-
tation are not explicitly stated in the textbook pro-
tocol. Since there is no prima facie relations of trust
between the agents, the agents can not add message
content to their beliefs when they receive something
from their environment. Authentication protocols are
ways of establishing trust. Therefore we require that
the agents are honest and that they do not uncondi-
tionally trust other agents. Assumptions about the
state of a given agent is represented by the belief op-
erator. If it is required that agent a possess a key k,
the specification yields Bela�isKey�k��. If a specifica-
tion is on the form, “agent a enforce that a believes”
Enforcea�Bela�ϕ��. Hence we define:

Definition 11 Let xi and xj be agent-variables and
ψ � LP . An assumption protocol is a valid protocol
where each single event is either Transmit�xj , xk, ψ�,
Belxi�ψ�, or Enforcexi�Belxi�ψ��.

Agents may have the capability of producing fresh
nonces and keys and set timestamps. Thus freshness
involves yet another extension of the language of
security, the freshness extension denoted L ext

P gives
the following LS � LP � L ext

P :

newNonce�n�tN , tA�� create new nonce
newKey�key�s, tA1 , tA2 , M�� create new key
Current�stamp�N, tA�� current local time

The use of the double operator Enforcex�Belx�ψ��
shall be rather restrictive. In this paper five kinds of
patterns are used;

�i� Enforcex�Belx�E�k : ψ���
�ii� Enforcex�Belx�D�k : ψ���
�iii� Enforcex�Belx�Trust�x, y, ψ���
�iv� Enforcex�Belx�newKey�k���
�v� Enforcex�Belx�Current�t���

The sentence �i� states that x tries to perform an en-
cryption of sentence ψ and adds this new sentence to its
beliefs. Sentence �ii� expresses that x tries to perform
a decryption of sentence ψ and adds this new sentence
to its beliefs. Clause �iii� says that x is enforced to
trust y with respect to the particular sentence ψ. Fi-
nally, the agent might be enforced to create a fresh key
�iv� and set the current time-stamp derived from its
local clock.

4.1 Automated refinement

The process of refining a textbook protocol by hand
into a specification containing all the assumptions, is
both time consuming and error prone. Typically we
used from 2-4 days of hard and boring work to specify
the assumption version of the classical authentication
protocols, yet several errors occurred during the pro-
cess of specification.

A surprising discovery made during this investiga-
tion was that the refinement of textbook protocols can
be fully automated. There are two advantages: First,
the process of refining a textbook protocol is speeded
up dramatically. Using our method, it is a practically
feasible task to build a large library of authentication
protocols including assumptions. Second, the specifier
does not have to be an expert in cryptography in order
to specify and test protocols. Principles of both sym-
metric and asymmetric cryptography are built into the
refinement algorithm. A consequence of this is that

the automated refinement also gives an automated ex-
planation of the underlying cryptographic mechanisms
in the protocol! The core idea is thus that we take a
textbook protocol as input, and return an executable
refined assumption protocol. For every transmission,
preconditions are generated for the sender of the mes-
sage and receiver’s knowledge is maximized.

Definition 12 If P is a textbook protocol, then P can
be refined (automated) into an assumption protocol by
the function � as follows:

(AR0) ��protocol�µ, N, ξT , ξA, ξS , Φ �� �
protocol�µ, N, ξT , ξA, ξS ,��Φ� �

(AR1) ��ε� � ε
(AR2) ��Transmit�x, y, F �B �Φ�� �

pre�x, F ���Transmit�x, y, F � �i�
B Enforcey �Bely�Trust�y, x, F ���B ε� �ii�
�post�y, F ����Φ� �iii�

The clauses AR0 and AR1 take care of the start and
end of the automated refinement, respectively. The re-
cursion is carried out through in the final clause AR2,
and splits into four successive parts: �i� the sender’s as-
sumptions, �ii� trusted transmission, �iii� the receiver’s
information extraction, and �iv� recursion on the re-
mainder. The function pre�x, F � thus takes an agent-
term x, the sender, and message content F , what is
sent, as arguments and returns a chain of assumptions
that is required to be true for the agent x in order for
x to be able to transmit the message. The function
post�y, F � returns the sequence of local events that the
receiver y should perform in order to be cryptographic
competent. Note that our security protocols run in an
environment where the agents are supposed to trust the
particular content of transmissions in protocol sessions.

Definition 13 The assumption function pre is defined
by recursion on the complexity of the message content:

(AA) pre�x, Agent�t�� � Belx�Agent�t��B ε
(AK) pre�x, isKey�k�� � Belx�isKey�k��B ε
(AN) pre�x, isNonce�n�� � Belx�isNonce�n��B ε
(AT) pre�x, Time�r�� � Belx�Time�r��B ε
(AC) pre�x, F �G� � pre�x, F ��pre�x, G�
(AE1) pre�x, E�key�s, x, y� : F �� �

pre�x, F � isKey�key�s, x, y����

Enforcex�Belx�E�key�s, x, y� : F ���B ε
(AE2) pre�x, E�key�s, y, z� : F �� �

Belx�E�key�s, y, z� : F ��B ε if x � y � x � z

The function generating assumptions thus makes ex-
plicit the content of F in a message Transmit�x, y, F �,
with respect to what the sender x should know in order
to be able to send the message to y.

Similarly, the receiver may extract information from
a message, by enforcing as many decryptions as possi-
ble. The information extracted is then implicitly pos-
sessed by the receiver y.

Definition 14 The extraction function post is defined
by recursion on the complexity of the message content:

(PA) post�y, Agent�t�� � post�x, isKey�k�� �
post�y, isNonce�n�� � post�y, Time�r�� � ε

(PE1) post�y, E�key�s, y, x� : F �� �
post�y, isKey�key�s, y, x���
��Enforcey�Bely�D�key�s, y, x� :

E�key�s, y, x� : F ����B ε��post�y, F �
(PE2) post�y, E�key�s, x, z� : F �� � ε if y�x� y�z

Lemma 5 lth�P���1 �� ��P��� ��P� � ��P��P�.

The next lemma shows that automated refinement is
a homomorphism, and is proven using that composition
� is a monoid and functional:

Theorem 3 ��P1� � ��P2� � ��P1 � P2�

Proof: By induction on lth�P1�. Ind. basis yields:

��E�� ��P2� �
�a� E � ��P2� �

�b� ��P2� �
�c� ��E � P2�

�a� follows by definition of � AR1, �b� and �c� by PID.
Consider the ind. step. Let P1 � P� � P, where
lth�P�� � 1:

��P� � P� � ��P2� lemma 4 and 5
� ���P��� ��P�� � ��P2� theorem 2, PAS
� ��P�� � ���P�� ��P2�� ind. hyp. and lemma 4
� ��P�� � ��P� P2� lemma 5
� ��P� � �P � P2�� theorem 2, PAS
� ���P� � P� � P2�, which is what we wanted.

Lemma 6 If P is a textbook protocol containing only
one message transmission, then P �P ��P�.
Theorem 4 If P is textbook, then P �P ��P�.

Proof: By induction over lth�P�. The basis is ob-
vious using (AR-1). Consider the induction step: Sup-
pose that lth�P� � k and that ξA � role�x1� � . . . �
role�xn�. By induction hypothesis P �P ��P�. Sup-
pose without loss of generality that P is extended with
one clause at the end. Since we consider arbitrary ex-
tensions of the protocol, it is convenient to consider
the extension as a protocol addition: P � P�, where
lth�P�� � 1. Since P� �P ��P��, then

P � P�
�P ���P� � ��P��� � ��P � P��

which follows by the monotonicity of automated re-
finement over the sub-protocol relation (lemma 3) and
since � is a homomorphism (theorem 3).

The previous algorithm can handle neither freshness
nor duplication of protocol statements. Superfluous in-
formation appears normally in the refinement process
by duplicated belief statements, since � typically tra-
verses the same elementary facts several time.

Theorem 5 Any textbook protocol P, can be refined
fully automated into an assumption protocol PÆ with
explicit generation of fresh timestamps and nonces.

Proof: Let P� � ��P� be an automated refined
protocol. The function eq�P�� recursively traverses
the protocol body and only keeps the first occurrence
of every belief statement and removes the remaining.
P� � eq�P��. Since belief statements of the kinds

Belx�isNonce�n�zN , x��� andBelx �Time�stamp�wT , x���

occur as early as possible in the assumption proto-
col, each occurrence might be replaced by statements
creating the fresh local values. The function Æ thus
takes P� as argument and returns an explicit freshness
protocol: Each occurrence of Belx�isNonce�n�zN , x���
is replaced by newNonce�n�zN , x�� and each occur-
rence of Belx�Time�stamp�wT , x��� is replaced by
Current�stamp�wT , x��. Then PÆ � Æ�eq���P���.
By theorem 5 we assure that the agent’s nonces and
timestamps are explicitly constructed in the specifi-
cation. If P is a textbook protocol then let �Æ de-
note the function constructed in the proof of theo-
rem 5, that is: �Æ�P� � Æ�eq���P���. Figure 2 shows
how the algorithm refines the textbook specification.
Fortunately, the previous results about straightforward
automated refinement can be transfered to automated
refinement including fresh nonces and timestamps, al-
though the proof is more delicate. The reason is that
neither Æ nor eq is a homomorphism over � ; in
other words eq�P1� � eq�P2� � eq�P1 � P2� and
Æ�P1� � Æ�P2� � Æ�P1 � P2�. Hence we can not reuse
the proof of theorem 4, since theorem 3 does not gen-
eralize to freshness refinement �Æ. Fortunately, we can
prove a couple of useful properties

Lemma 7 Let P1 and P2 be textbook protocols, then
�i� eq��Æ�P1� � �Æ�P2�� � eq��Æ�P1 � P2��
�ii� Both eq�P1� � P1 and eq��Æ�P1�� � �Æ�P1�

Lemma 8 If P is a textbook protocol, with lth�P� � 1,
then we have that P �P �Æ�P�.

Theorem 6 If P is textbook, then P�P�Æ�P�.

Proof: By induction on lth�P�. Ind. basis is verified
by �Æ�ε� � Æ�eq���ε��� � ε. Consider the induction
step: Analogous to theorem 4 we consider one-step

protocol [WMF-AUTO-REFINE, 0,
role�x� � role�y� � role�z�, role�x� � role�y� � role�z�, role�x�

Enforcex�Belx�newKey�key�s, x, y, vK ���� (1)
B

Belx�Agent�x�� (2)
B

Enforcex�Belx�Current�stamp�wT , x���� (3)
B

Belx�Agent�y� � isKey�key�s, x, y, vK �� � isKey�key�s, x, z��� (4)
B

Enforcex�Belx�E�key�s, x, z� :
Time�stamp�wT , x�� � Agent�y� � isKey�key�s, x, y, vK ����� (5)

B
Transmit�x, z, Agent�x� � E�key�s, x, z� :

Time�stamp�wT , x�� � Agent�y� � isKey�key�s, x, y, vK ���� (6)
B

Enforcez�Belz�Trust�z, x, E�key�s, x, z� :
Time�stamp�wT , x�� � Agent�y� � isKey�key�s, x, y, vK ������ (7)

B
Belz�isKey�key�s, x, z��� (8)

B
Enforcez�Belz�D�key�s, x, z� : E�key�s, x, z� :

Time�stamp�wT , x�� � Agent�y� � isKey�key�s, x, y, vK ������ (9)
B

Enforcez�Belz�Current�stamp�uT , z���� (10)
B

Belz�Agent�x� � isKey�key�s, x, y, vK �� � isKey�key�s, y, z��� (11)
B

Enforcez�Belz�E�key�s, y, z� :
Time�stamp�uT , z�� � Agent�x� � isKey�key�s, x, y, vK ����� (12)

B
Transmit�z, y, E�key�s, y, z� :

Time�stamp�uT , z�� � Agent�x� � isKey�key�s, x, y, vK ���� (13)
B

Enforcey�Bely�Trust�y, z, E�key�s, y, z� :
Time�stamp�uT , x�� � Agent�x� � isKey�key�s, x, y������� (14)

B
Bely�isKey�key�s, y, z��� (15)

B
Enforcey�Bely�D�key�s, y, z� : E�key�s, y, z� :

Time�stamp�uT , x�� � Agent�x� � isKey�key�s, x, y, vK ������ � (16)

Figure 2. Automated refinement of WMF.

extensions of the protocol: P � P� � P�, where
lth�P�� � 0 and lth�P�� � 1. By induction hypothesis
P� �P �Æ�P��, and by lemma 8, P� �P �Æ�P��. Then
by lemma 3, P� � P� �P �Æ�P�� � �Æ�P��. Now
comes the delicate part: Since eq is monotone over �P,
we have that eq�P� � P�� �P eq��Æ�P�� � �Æ�P���
(1). By lemma 7 �i�, eq�P� � P�� � P� � P� (2),
since P is a textbook protocol. By lemma 7 �ii� and
�iii�, eq��Æ�P�� � �Æ�P��� � eq��Æ�P� � P��� (3),
and eq��Æ�P�� � �Æ�P� (4). Then the equations;

P� � P� ��1� eq�P� � P�� �P eq��Æ�P�� � �Æ�P���

��2� eq��Æ�P�� � �Æ�P��� ��3� eq��Æ�P� � P���

��4� �Æ�P� � P�� proves the theorem.

4.2 Public key cryptography extension

Let us consider asymmetric cryptography. In public
key cryptography the following two axioms hold for any
agent x, relating to decryption and encryption:

PKI1 D�key�a, i, x� : E�key�a, u, x� : F �� � F
PKI2 D�key�a, u, x� : E�key�a, i, x� : F �� � F

The public key is considered to be a public fact. Ev-
ery cryptographic competent agent may have access to

any public key among the agents participating in the
network. The private key is required to be secret, no
other agent at the same level of trust is supposed to
possess the key.

Both the assumption construction and information
extraction functions must be extended. Consider first
the assumption construction: There are two cases, ei-
ther the sender x intends to send a message encrypted
with x’s public or private key, or the sender x encrypts
a message with assumptions for sending messages:

(AE3) pre�x, E�key�a, i, x� : F �� �
pre�x, F � isKey�key�a, i, x����

Enforcex�Belx�E�key�a, i, x� : F ���B ε
(AE4) pre�x, E�key�a, u, y� : F �� �

pre�x, F � isKey�key�a, u, y����

Enforcex�Belx�E�key�a, u, y� : F ���B ε

In case of asymmetric cryptography, the receiving
agent is supposed to follow the principles of public key
infrastructure:

(PE3) post�y, E�key�a, u, y� : F �� �
�Bely�isKey�key�a, u, y�� � isKey�key�a, i, y���

B Enforcey �Bely�D�key�a, i, x� :
E�key�a, u, x� : F ����B ε��post�y, F �

(PE4) post�y, E�key�a, i, z� : F �� �
�Bely�isKey�key�a, u, y���B
Enforcey�Bely�D�key�a, u, y� :

E�key�a, i, y� : F ����B ε��post�y, F �

Thus, whenever y receives a message encrypted with
y’s public key, y should possess both its private and
public key and therefore be able to decrypt the message
according to the axiom.

Observation 1 All the previous results are main-
tained in case the functions pre and post are extended
with the equations for asymmetric cryptography.

4.3 Experimental results

A protocol-simulator written in Maude is the
underlying basis of the project. The implementa-
tion includes totally 2600 lines of code. It includes
rules for execution, and the algebra for protocol
composition. We have refined several classical au-
thentication protocols as given in Clark and Jacobs
[2]. The table below shows three protocols that use
symmetric cryptography, and one public key protocol,
the Needham Schroeder Public Key Protocol. The
symmetric key protocols include the Wide Mouthed
Frog, Needham Schroeder Symmetric Key, and the
Otway-Rees authentication protocol. The refinement
functions can be extended with rules for asymmetric

cryptography, the final row in the table show the
results for Needham Schroeder Public Key.

Automated refinement Simul
Protocol T� � �Æ ation

lh lh rew lh rew rew
WMF 3 20 100 16 531 5693
Need. sym. 6 39 250 31 1594 11136
OtwayRees 5 47 295 29 1733 13656
Need. pub. 7 50 259 38 2188 10240

We let T� denote the extension of the textbook
protocol to include explicit specification of generation
of fresh keys. The results of the automated refine-
ments are divided into core refinement � and freshness
refinement �Æ, where both the length (lh) and the
number of rewrites in Maude (rew) are reported. The
rightmost column gives the number of rewrites in a
successful execution of the refined �Æ-protocols in
the simulator. Each of the scenarious involved three
agents “Alice”, “Bob”, and “Server”, where each
agent possesed the protocol in advance. Each agent
in the scenario was able to construct fresh nonces
and timestamps, and “Server” was in addition able to
produce fresh keys.

The first three protocols are manually extended to
enforce creation of fresh symmetric keys, therefore the
length of these protocols (T�) is extended with one
compared to their conterparts in [2]. As expected,
the core automated refinement � gives significantly
longer protocols, bounded by the maximal complex-
ity of the message content in the original protocol.
Since �Æ removes superflous information, we always
have lth��Æ�P�� � lth���P��.

5 Related work

State based techniques and model-checking ([6],
[8]) have been used extensively the last decade as a
paradigm for discovering possible attacks of protocols,
since state machines closely model system behaviour.
Epistemic logic and theorem proving techniques ([1],
[10]) have been used both in attempts to verify secu-
rity protocols and to precisely describe security proper-
ties, because the proof techniques are advanced and the
languages involved are high level. Some tools like the
protocol analyzer NRL [8], have been successful in rep-
resenting many protocols and discovering several new
attacks, while others like CAPSL [3] and Casper [7]
have been used to specify protocols in a uniform way.
The model that most closely resembles our approach
is the strand-space apprach [12]. Some authors have
investigated techniques to generate security protocols
automatically by evolutionary methods ([11] and [5]).

6 Conclusion

We have shown how a straightforward sorted lan-
guage for security can be used to assist in explaining
authentication protocol semantics through automatic
refinement of the specification syntax. This certainly
speeds up the time it takes to understand and test both
classical and new protocols. The automatized refine-
ment proved to work gently for any protocol fed into
the algorithm.

References

[1] M. Burrows, M. Abadi, and R. Needham. A logic
of authentication. ACM Transactions on Computer
Systems, 8(1):18–36, February 1990.

[2] J. Clark and J. Jacob. A Survey of Authentication
Protocol Literature, 1997. Version 1.0.

[3] M. J. Denker G. and R. H. The CAPSL integrated pro-
tocol environment. Technical Report SRI-CLS-2000-
02, SRI, 2000.

[4] A. M. Hagalisletto and J. Haugsand. A formal lan-
guage for specifying security properties. In Proceedings
for the Workshop on Specification and Automated Pro-
cessing of Security Requirements - SAPS’04. Austrian
Computer Society, 2004. book@acs.at.

[5] J. C. Hao Chen and J. Jacob. Automated Design
of Security Protocols. Computational Intelligence,
20(3):503 – 516, 2004. Special Issue on Evolutionary
Computing in Cryptography and Security.

[6] G. Lowe. Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR. In Proceedings of
the Second International Workshop on Tools and Al-
gorithms for Construction and Analysis of Systems,
pages 147 – 166. Springer-Verlag, 1996.

[7] G. Lowe. Casper - a compiler for the analysis
of security protocols. http://web.comlab.ox.ac.

uk/oucl/work/gavin.lowe/Security/Casper/, 1998.
SRI-CLS-2000-02.

[8] C. Meadows. The NRL protocol analyzer: An
overview. Journal of Logic Programming, 26(2):113–
131, 1996.

[9] J. Meseguer and G. Rosu. Rewriting logic semantics:
From language specifications to formal analysis tools.
In D. A. Basin and M. Rusinowitch, editors, IJCAR,
volume 3097 of Lecture Notes in Computer Science,
pages 1–44. Springer, 2004.

[10] L. Paulson. The inductive approach to verifying cryp-
tographic protocols. Journal of Computer Security,
6(1-2):85–128, 1998.

[11] A. Perrig and D. Song. A first step towards the auto-
matic generation of security protocols. In Network and
Distributed System Security Symposium, NDSS ’00,
pages 73–84, February 2000.

[12] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand
spaces: Proving security protocols correct. Journal of
Computer Security, 7(2/3), 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

