
Checkpointing and Rollback-Recovery Protocol for Mobile Systems
with MW Session Guarantee∗

Jerzy Brzeziński, Anna Kobusińska, and Micha�l Szychowiak

Poznań University of Technology
Institute of Computing Science

ul. Piotrowo 2,60-965 Poznań, Poland
{Jerzy.Brzezinski,Anna.Kobusinska,Michal.Szychowiak}@cs.put.poznan.pl

Abstract

In the mobile environment, weak consistency repli-
cation of shared data is the key to obtaining high data
availability, good access performance, and good scalabil-
ity. Therefore new class of consistency models, called
session guarantees, recommended for mobile environ-
ment, has been introduced. Session guarantees, called
also client-centric consistency models, have been pro-
posed to define required properties of the system regard-
ing consistency from the client’s point of view. Unfor-
tunately, none of proposed consistency protocols pro-
viding session guarantees is resistant to server failures.
Therefore, in this paper checkpointing and rollback-
recovery protocol rVsMW, which preserves Monotonic
Writes session guarantee is presented. The recovery
protocol is integrated with the underlying consistency
protocol by integrating operations of taking checkpoints
with coherence operations of VsSG protocol.

1. Introduction

In the recent years, there has been a lot of work
dealing with mobile computing, mobility management,
disconnected operations and distributed algorithms for
mobile hosts. Also, the research addressing informa-
tion acccess in mobile environment has proliferated.
Following their line of investigation, researcheres are
unanimous, that mobility gives the opportunity to pro-
vide new services and allows the supplementary access

∗This work was supported in part by the State Committee for
Scientific Research (KBN), Poland, under grant KBN 3 T11C
073 28

to data and services. A key concept in providing high
performance and availability in such access is replica-
tion. Replication introduces, however, the problem of
data consistency that arises when replicated objects are
modified. This problem is directly related to the ques-
tion, how results of operations executed concurrently
on different replicas of the same object (data, service)
can be perceived.

The properties of distributed system concerning con-
sistency depend in general on application and are for-
mally specified by consistency models. Numerous con-
sistency models have been proposed for Distributed
Shared Memory systems. These models, called data-
centric consistency models [9], assume that servers
replicating data are also accessing the data for pro-
cessing purposes. In a mobile environment, however,
clients accessing the data are not bound to particular
servers, they can switch from one server to another.
This switching adds a new dimension of complexity to
the problem of consistency. Session guarantees [10],
called also client-centric consistency models[9], have
been proposed to define required properties of the sys-
tem regarding consistency from the client’s point of
view. They are recommended for mobile environment,
where weak consistency replication of shared data is
the key to obtaining high data availability, good access
performance, and good scalability. Four session guar-
antees have been defined: Read Your Writes (RYW),
Monotonic Writes (MW), Monotonic Reads (MR) and
Writes Follow Reads (WFR).

The dependability requirements of mobile applica-
tions are continually growing, thus, the existing con-
sistency protocols which provide session guarantees
[6, 10, 8, 9] should be provided with the fault–tolerant

1-4244-0054-6/06/$20.00 ©2006 IEEE

techniques. The popular fault–tolerant techniques are
checkpointing and rollback–recovery, which will allow
servers to provide required session-guarantees despite
their failures. However, because of mobility of users,
the traditional fault-tolerance schemes cannot be di-
rectly applied to mobile systems. Moreover, because
of client orientation of most mobile systems, run-time
faults must be corrected with any intervention from the
user. The fault-tolerance capability must be therefore,
self-contained.

According to our knowledge, none of existing consis-
tency protocols for mobile environment which preserve
session guarantees [2, 10], is fault-tolerant. The lack of
consistency protocols optimized in terms of rollback-
recovery, makes the construction of effective solutions
adjusted to real applications requirements more diffi-
cult.

For this reason, in this paper a checkpointing
and rollback-recovery protocol rVsMW, that preservs
Monotonic Writes session guarantee is presented. The
proposed protocol takes advantage of the underlying
VsSG consistency protocol proposed in [6, 8]. The
checkpointing and rollback- recovery protocol inte-
grates operations of taking checkpoints with coherence
operations of VsSG protocol. As a result, the rVsSG
protocol offers the ability to overcome the servers’ fail-
ures, at the same time preserving MW session guaran-
tee.

2. Basic definitions and problem formu-
lation

2.1. System model

Throughout this paper, a replicated distributed stor-
age system is considered. The system consists of a
number of unreliable servers holding a full copy of a
set of data items and clients running applications that
access these data items. We assume the crash-recovery
model of failures, i.e. servers may crash and recover
after crashing a finite number of times [5]. Servers can
fail at arbitrary moments and we require any such fail-
ure to be eventually detected, for example by failure
detectors [7]. Clients are mobile, i.e. they can switch
from one server to another. Since clients are separated
from one another, a crash of one client does not influ-
ence the processing of other clients. For that reason,
in this paper we consider only failures of servers.

Clients are separated from servers, i.e. a client’s ap-
plication may run on a separate computer than the
server. To access shared data, clients select a single
server and send a direct request to this server. Oper-
ations are issued by clients synchronously, i.e. a new

operation may be issued after the results of the previ-
ous one have been obtained.

The storage replicated by servers does not imply the
particular data model or organization. It is a set of data
items, which may be simple variables, files, objects of
object-oriented programming language, etc. Later in
the paper, the data items are referred to as objects.
Operations performed on shared objects are divided
into reads and writes. Reads do not change the state
of objects, whereas writes may create a new object,
delete the existing one or cause an update of the object
state. Some clients can concurrently submit conflicting
writes on different servers, e.g. writes that modify the
overlapping parts of data storage. From now on, writes,
whose order of execution need not be preserved by all
servers, will be called commutative and those, whose
execution order is required to be the same on all servers,
will be called non-commutative.

Servers occasionally synchronize states of their repli-
cas by exchanging information about writes performed
in the past. As a result, all writes submitted by
clients are eventually propagated and executed by ev-
ery server.

2.2. Notation and basic definitions

Operations on shared objects issued by client Ci are
ordered by relation Ci⇁ called client issue order . As
client processes are sequential, relation Ci⇁ determines
total order on the set of operations issued by Ci. Oper-
ations performed by server Sj are ordered by relation
Sj�, called server execution order . As the operations
are performed one at a time, the server execution or-
der is also totally ordered. Operations on objects are
denoted by w, r or o, depending on an operation type
(write, read or these whose type is irrelevant). The
operation performed by server Sj will be denoted by
o|Sj

, the operation performed on object x will be de-
noted by o|x. Every server maintains the set CWSj

of
indexes of clients from which it has directly received
write requests.

In the paper, it is assumed that clients perceive the
data from the replicated storage according to Mono-
tonic Writes session guarantee. MW session guarantee
orders writes issued by a single client. A server, before
accepting a new write from a client, must perform all
previous writes requested by this client. Formally, MW
session guarantee is defined as follows [8]:

Definition 1 Monotonic Writes (MW) session guar-
antee is a property meaning that:

∀Ci ∀Sj

[
w1

Ci⇁ w2|Sj
=⇒ w1

Sj� w2

]

OSj
is a set of all writes performed by the server in

the past. The writes that belong to OSj
come from

direct requests received by Sj from clients or are incor-
porated from other servers during the synchronization
procedure. The sequence of past writes is called his-
tory . A formal definition of history is given below:

Definition 2 A history HSj
at time moment t, is a

linearly ordered set
(
OSj ,

Sj�
)

where OSj is a set of

writes performed by server Sj, till the time t and rela-

tion
Sj� represents an execution order of writes.

During synchronization of servers, their histories are
concatenated . Informally, a concatenation of two his-
tories is a sum of writes from the first history and new
writes from the second history. Formally:

Definition 3 Concatenation of two histo-

ries
(
OSj

,
Sj�

)
and

(
OSk

,
Sk�

)
, denoted

by
(
OSj

,
Sj�

)
⊕

(
OSk

,
Sk�

)
, is a history(

OSj
∪ OSj

,
S

′
j�
)

, where relation
S

′
j�has the following

properties:

1. ∀w1, w2 ∈ OSj
: w1

Sj� w2 ⇒ w1

S
′
j� w2

2. ∀w1, w2 ∈ OSk
\ OSj

: w1

Sk� w2 ⇒ w1

S
′
j� w2

3. ∀w1 ∈ OSj
∀w2 ∈ OSk

\OSj
: w1

S
′
j� w2

2.3. General concept of the underlying
VsSG coherency protocol

Data consistency in the paper is managed by the
VsSG consistency protocol [2, 6, 8]. The VsSG protocol
interacts with requests sent from clients to servers and
with replies sent from servers to clients.

The underlying consistency protocol uses a con-
cept of server-based version vectors for efficient rep-
resentation of sets of writes required by clients and
necessary to check on the server side. Server-
based version vectors have the following form: V =[

v1 v2 ... vNS

]
, where NS is a total number of

servers in the system and single position vi is the num-
ber of writes performed by server Sj .

Every write in the VsSG protocol is labeled with a
vector timestamp, set to the current value of the vector
clock VSj

of server Sj performing the write for the first
time. The vector timestamp of a write w is returned
by a function T : O �→ V . A single i-th position of
the version vector timestamp associated with write w is
denoted by T (w)[i]. During writes performed by server
Sj , its version vector VSj

is incremented at position
j and a timestamped operation is recorded in history
HSj .

As opposed to [10], the VsSG consistency proto-
col does not assume total ordering of non-commutative
writes, but only the eventual total propagation of all
writes to all servers.

The request sent from a client Ci to a server Sj car-
ries the operation that is to be performed and vector
W . Vector W is calculated according to the opera-
tion type (read or write). W is set either to vector
WCi— representing writes issued by the client Ci, in
case of write operation, or to 0 when read operation is
required.

On receipt of write request sent by a client, the
server Sj checks whether it has performed all previ-
ous writes requested by the client, which is expected
to be sufficient for providing MW. If the state of the
server is not sufficiently up to date, the request is post-
poned and will be resumed after the synchronization
with another server.

The server which first obtains the write from a client
is responsible for assigning it a globally unique identi-
fier. The current value of the server vector clock is
returned to the client and causes the update of the
client’s vector WCi .

Every server periodically sends an update message
with its own history to all the other servers. On receipt
of such an update message, a server performes writes
stored in the obtained history and missing from its local
one. An update message also updates the vector clock
of server Sj by calculating the maximum of the vector
clock sent with the update message and VSj

of Sj . The
maximum of two vector clocks V1 and V2 is vector clock
V , for which ∀i : V [i] = max (V1[i], V2[i]) holds.

2.4. Checkpoint and log definitions

The VsSG coherency protocol assumes that servers
are reliable, i.e. they do not crash. Such assump-
tion might be consider not plausible and too strong
for certain mobile distributed systems. Therefore,
in this paper we introduce the checkpointing and
rollback–recovery protocol integrated with VsSG pro-
tocol, called rVsMW. The rVsMW protocol ensures
that, after the server failure and its recovery, the MW

session guarantee is preserved. Below, we propose for-
mal definitions of mechanisms used by the checkpoint-
ing and rollback-recovery protocol:

Definition 4 A log LogSj
is a set of triples:

{ 〈i1, o1, T (o1)〉 〈i2, o2, T (o2)〉 ... 〈in, on, T (on)〉 }
,

where in represents the index of the client that issued
a write operation on, in ∈ 1..NC and NC is a number
of clients in the system. The operation on ∈ OSj

and
T (on) is its timestamp.

During a rollback-recovery procedure, operations from
the log are executed according to their timestamps,
from the earliest to the latest one.

Definition 5 A checkpoint CkptSj
is a couple〈

VSj
, HSj

〉
, of a version vector VSj

and a history HSj

maintained by server Sj at the time t, where t is a
moment of taking a checkpoint.

Checkpoints taken by a server are numbered. The n-th
checkpoint of server Sj is denoted by CkptnSj

.
By VCkptn

Sj
and HCkptn

Sj
we denote the version vec-

tor VSj
and the history HSj

kept in a checkpoint
CkptnSj

.
The log and the checkpoint are saved by the server

in the stable storage, which is able to survive failures.
The newly taken checkpoint replaces the old one, so
just one checkpoint is kept for each server.

3. The rVsMW protocol

3.1. The general idea

If the client Ci requires MW session guarantee when
executing write w, then results of all writes preceding
w in a client issue order cannot be lost. However, when
MW guarantee is required and write operation issued
by a client Ci will not be followed by another one, then
the results of the first write are not essential for pre-
serving MW for Ci. Unfortunately, at the moment of
performing the operation, the server does not possess
the knowledge, whether in the future a client will issue
another write request, or not.

So, to preserve the MW session guarantee, the
rollback-recovery protocol must ensure that the results
of all writes issued by the client are not lost after the
server failure and its recovery. Taking a checkpoint
on every write operation fulfills this requirement, but
results in frequent saving of whole server state in the
stable storage, which is time–consuming. The proposed

logging procedure overcomes this disadvantage, by sav-
ing in the stable storage only th eoperation and its
timestamp, and thus takes less time than checkpoint-
ing. On the other hand, the log size may grow infinitely
and may turn out to be too large. To bound the length
of a message log (and hence a recovery time), a server
may periodically take a checkpoint of its state. Stor-
ing the write operations doubly: in the log and in the
checkpoint, although seems to be excessive, leads in
fact to protocol optimization. In such a way the stable
storage space is saved because of checkpointing and less
time is spent to store servers’ states during logging.

Thus, in the proposed rVsMW protocol, the server
which obtains the write request directly from a client,
logs this request to stable storage. According to a def-
inition (definition 4), such a log is a triple of write op-
eration, unique operation timestamp and the index of
client that issued the operation. Having logged the op-
eration, the server performs the just logged write and
continues its processing. Writes received from other
servers during synchronization procedure only cause
servers’ state update and are not logged.

The moment of taking a checkpoint is determined by
obtaining a second write request from the same client.
The server which obtains write operation from a client,
checks whether the write can be performed according to
MW. If it is possible, the server checks whether, since
the latest checkpoint, it has already already performed
a write issued by this client. If such a write has been
performed, the server checkpoints its state, performs
write operation and sends a reply to a client. Other-
wise, the new checkpoint need not be taken. After the
checkpoint is taken, server logs are cleared.

After the failure occurrence, the failed server restarts
from the latest checkpoint and replays operations from
the log to restore the execution to a state before the
failure.

Log-based recovery is widely studied in the context
of process based systems with asynchronous message
passing [4, 3], where three flavors of these protocols
are considered: pessimistic, optimistic and causal log-
ging [1]. The protocol presented in this paper has fea-
tures in general similar to pessimistic message logging.
However, in contrast to systems with message–passing,
we consider the interaction between the client and the
server, not between the servers. This is a novel fea-
ture, that follows directly from the session guarantees
assumptions which are client–oriented. Moreover, in
contrast to systems with message–passing, we also take
into account the semantics of operations.

3.2. The rVsMW protocol implementation

The request sent from client Ci to server Sj car-
ries the operation that is to be performed and a vector
W that is calculated depending on the operation type
which value is returned by the function iswrite(o)
(line 2). W is set to 0 (line 1) or to WCi(line 3) for
reads and writes respectively. Afterwards, the modified
message 〈o, i,W 〉 is send to a server (line 5).

Upon receiving a new write request from client Ci,
server Sj checks whether it has performed all writes
issued previously by client Ci, by comparing version
vectors VSj

and W (line 6)[8]. If the state of server Sj

is not sufficiently up to date, the request is postponed
because MW session guarantee is not fulfilled (line 7).
The request will be resumed after synchronization with
another server (line 45).

Moreover, the server checks if, since the latest check-
point, it has already performed any write submit-
ted by Ci (line 10), by checking the value of vari-
able secondWrite. At the begining, the value of
secondWrite is FALSE.

If the obtained write is the first write request re-
ceived by Sj from a given client Ci since the latest
checkpoint, then the server Sj stores the identifier of
client issuing a request by adding clients’ index to the
set CWSj (line 13). Otherwise, the server sets the value
of the variable secondWrite to TRUE (line 11), which
indicates that Sj has already performed a write issued
by Ci after the previous checkpoint was taken. In both
cases, Sj updates its data structures: increases the
value of its version vector VSj and timestamps the op-
eration o to give o a unique identifier (lines 15-16). Be-
fore performing operation o, Sj logs data necessary to
recover its state in case of the failure occurrence. Thus,
client’s index i, operation o and its timestamped T (o)
are logged to the stable storage (line 17). When the in-
formation necessary for rollback-recovery is logged, the
server performs the clients’ request (line 18) and adds
it to its history of performed writes (line 19). Finally,
if just performed write is the second write request re-
ceived by Sj directly form Ci, the state of the server
is checkpointed (line 21). By definition, the check-
point contains the version vector and the history of
Sj . Checkpointing the server state causes clearing log
LogSj

and set CWSj
(lines 22-23), as well as setting

the value of variable secondWrite to FALSE (line 24).
When the read request from client Ci is received by

server Sj (line 27), then the request is performed (line
28) and the results are send to client Ci (line 30).

The update message received from other servers
changes the state of server Sj , only if the history H
contains writes not performed by Sj yet (line 39). Ev-

Algorithm 1 rVsMW algorithm.

Upon sending a request 〈o〉 to server Sj

at client Ci

1: W ← 0
2: if iswrite(o) then
3: W ← max (W, WCi)
4: end if
5: send 〈o, i, W 〉 to Sj

Upon receiving a request 〈o, i, W 〉 from client
Ci at server Sj

6: while
�
VSj �≥ W � do

7: wait()
8: end while
9: if iswrite(o) then

10: if i ∈ CWSj then
11: secondWrite ← TRUE
12: else
13: CWSj ← CWSj ∪ i
14: end if
15: VSj [j] ← VSj [j] + 1
16: timestamp o with VSj

17: LogSj ← LogSj ∪ 〈i, o, T (o)〉
18: perform o and store results in res
19: HSj ← HSj ⊕ {o}
20: if secondWrite then
21: CkptSj ← 〈VSj , HSj 〉
22: LogSj ← ∅
23: CWSj ← ∅
24: secondWrite ← FALSE
25: end if
26: end if
27: if not iswrite(o) then
28: perform o and store results in res
29: end if
30: send � o, res, VSj � to Ci

Upon receiving a reply 〈o, res, W 〉 from
server Sj at client Ci

31: if iswrite(o) then
32: WCi ← max (WCi , W)
33: end if
34: deliver 〈res〉

Every ∆t at server Sj

35: foreach Sk �= Sj do
36: send � Sj , HSj � to Sk

37: end for

Upon receiving an update 〈Sk, H〉
at server Sj

38: foreach wi ∈ H do
39: if VSj �≥ T (wi) then
40: perform wi

41: VSj ← max
�
VSj , T (wi) �

42: HSj ← HSj ⊕ {wi}
43: end if
44: end for
45: signal()

On rollback-recovery
46: 〈VSj , HSj 〉 ← CkptSj

47: Log�

Sj
← LogSj

48: vrecover ← 0
49: foreach o�

j ∈ Log�

Sj
do

50: choose 〈i�, o�

i, T (o�

i)〉 with minimal T (o�

j) from

Log�

Sj
where T (o�

j) > VSj

51: VSj [j] ← VSj [j] + 1

52: perform o�

j

53: HSj ← HSj ⊕ � o�

j �
54: CWSj ← CWSj ∪ i�

55: vrecover ← T (o�

i)
56: end for
57: secondWrite ← FALSE

ery such write wi, after being performed (line 40), is
added to the history HSj

(line 42) and its timestamp
updates the version vector VSj

(line 41).
After the failure, the server state is recovered accord-

ing to the information remembered in the latest check-
point CkptSj of server Sj (line 46) and in log LogSj ,
which keeps the information about writes, that were
performed after the latest checkpoint has been taken
and before the failure occurred (lines 49-57). Opera-
tions from the log are reexecuted, according to their
timestamps, from the earliest to the latest one. The
timestamp of just recovered operation is stored in the
vector RSj (line 48). The next operation chosen from
the log to be recovered, has the minimal timestamp,
which is greater than the one stored in RSj

(line 49).
According to recovered operation, the vector VSj

is in-
cremented at the position j by 1 (line 51) and CWSj

(line 54) as well as history HSj (line 53) are recovered.
Operations received during synchronization proce-

dure are lost. However, by the assumption, writes ob-
tained during synchronization procedures are saved in
the stable storage (in the log or in the checkpoint)
of servers which received them directly from clients.
Hence, we notice, that the loss of writes obtained dur-
ing synchronization procedure from other servers, does
not violate the MW session guarantee, because such
writes will be obtained again in consecutive synchro-
nizations.

3.3. Analysis of rollback-recovery mecha-
nism

The recovery-based approach ensures the reliability
of the system by restoring values of the data lost in such
a way, that after the recovery the system remains in a
consistent state, according to the assumed consistency
model.

Section 3.1 presents the general idea of the recovery
mechanism applied in the proposed rVsMW protocol.
In this section, we analyze this mechanism in details by
considering various possible moments of server failures
and discussing the actions, that are taken when such
failures occur.

First, let us assume, that server Sj obtains the write
request w1 from client Ci, and crashes before updating
its data structures (between lines 6 and 13 of rVsMW
protocol). In such a situation, the client will not get the
results of its request and, after the predefined timeout,
it issues write w1 again. After the failure and rollback-
recovery, server Sj does not possess any information on
write w1, as its state is recovered according to the data
stored in the latest checkpoint and in the log. Thus,
performing w1 by Sj once again does not violate MW
session guarantee, as w1 is treated by the server as the
request received from Ci for the first time.

The server failure that happens after: updating the
value of variable secondWrite, storing the client iden-
tifier in set CWSj , increasing the number of performed
writes or timestamping operation w1 (i.e. respectively
after lines 11, 13, 15 and 16 of the protocol), also forces
the client to issue the request w1 once again. In this
situation, although servers’ data structures were up-
dated before the failure, after the rollback-recovery the
carried out modifications are lost. Therfore, another
execution of request w1 does not violate the MW. The
order of operations described in lines 11, 13, 15 and 16
of the protocol is not crucial to the recovery mecha-
nism.

The operation w1 that has been logged before the
failure of Sj occurred, (the server failure took place
after lines 17, 18 or 19 of the protocol) is performed
again during the recovery and execution of operations
saved in log LogSj

. In this case, it is important that
logging of write w1 took place before performing this
request. Such an order is crucial because, if the oper-
ation is performed but not logged, it could be lost in
the case of a failure.

Let us now assume, that server Sj receives another
write request w2 from client Ci. If the server failure oc-
curs after the request has been obtained, but before it
has been checkpointed (before line 21), then the write
w2 is recovered from the log, similarly to write request
w1. On the contrary, if the new checkpoint is taken,
then according to the protocol such a checkpoint con-
tains the most recent values of vector VSj and history
HSj . Thus, in case of failure, the checkpoint contains
all data necessary to recover the server state according
to MW. Essential here is the fact, that first the check-
point is taken, and only afterwards the content of log
LogSj is cleared.

The failure may occur just after the checkpoint is
taken, but before the log is cleared (i.e. between lines
21 and 22). Such a failure causes that operations re-
membered in the checkpoint are also stored in the log.
As a result, they might be performed twice: first time
during rolling back to the checkpoint and secondly, dur-
ing recovering operations from the log. Against this
situation, the condition in line 49 of the algorithm is
given, which allows to recover on the basis of the log
only those operations, for which T (o�

j) > VSj
holds.

Failures, which occur during the synchronization
procedure, are not important from our point of view.
Even, if results of such synchronization are lost, they
can be obtained and applied again during next synchro-
nization with servers which had checkpointed or logged
these operations.

Finally, let us assume that the server fails during
the rollback-recovery procedure. If the failure happens
straight after the server state has been recovered (after
line 46), then it has to be rolled back to this checkpoint
again. If the failure occurs during data recovering from
the log (anywhere between lines 49-56), then the results
of operations executed according to the log, are lost.
However, due to such a failure the recovery action is
just prolonged, as the server must be rolled back again
and operations from the log have to be executed from
the beginning. The repeated recovery procedure works
correctly, as the content of the checkpoint and the log
are not changed (line 47).

3.4. The example of applying the protocol

Below, the example of a computation is presented,
in which the server fails due to failures and is recovered
on the basis of the proposed protocol .

The system is assumed to consist of two clients C1,
C2 and two servers S1, S2 that maintain x and y object
replicas. The initial consistent values of both x and y
are 0. The values of version vectors VS1 and VS2 are
0. The checkpoints of both servers are 〈0, ∅〉. The fol-
lowing scenario is considered: client C1 issues a write
request w(x)2. The request is received by server S1,
which logs the information about the write issued by
C1 and performs it. Therefore, the state of the server
is the following: VS1 = [1, 0], HS1 = 〈w(x)2〉, LogS1 =
〈1, w(x)2, [1, 0]〉. After the write has been stored in
the log and performed, S1 sends the reply to client C1

that sets client vector WC1 to [1, 0]. Then, a write
w(y)1 is issued by C2 and received again by server S1.
After logging and performing this request, the server
state is as follows: VS1 = [2, 0], HS1 = 〈w(x)2, w(y)1〉,
LogS1 = {〈1, w(x)2, [1, 0]〉, 〈2, w(y)1, [2, 0]〉} and the
client vector WC2 = [2, 0]. Another write request is-

Figure 1. The checkpointing and rollback-
recovery protocol.

sued by C1 is received by server S2. After logging
and performing this request, the server state is VS2 =
[0, 1], HS2 = 〈w(x)1〉, LogS2 = {〈1, w(x)1, [0, 1]〉} and
WC1 = [1, 1].

In the meantime, another write w(y)4 issued by
C1 is obtained by S1. The state of the server after
performing the new write is the following: VS1 = [4, 0],
HS1 = 〈w(x)2, w(y)1, w(y)4, w(x)5〉, LogS1 =
{〈1, w(x)2, [1, 0]〉, 〈2, w(y)1, [2, 0]〉, 〈1, w(y)4, [3, 0]〉}.
Since w(y)4 is a second write issued by C1

and obtained by S1, S1 takes a checkpoint
〈[3, 0], {w(x)2, w(y)1, w(y)4}〉 . After the checkpoint is
taken, log of S1 is cleared.

Finally, the write request send by C2 is performed
by the server S1 and as a result VS1 = [4, 0], HS1 =
〈w(x)2, w(y)1, w(x)5〉, LogS1 = {〈2, w(x)5, [4, 0]〉}.

4. rVsMW optimizations

Since in rVsMW protocol only write operations ob-
tained directly from the client are logged, in the case of
server failure, results of all writes performed by Sj dur-
ing synchronization procedure are lost. However, there
might happen a situation, when the results of lost write
are required to fulfill the MW session guarantee.

For example, if client Ci requiring MW has issued
a write w1 which has been performed by server Sk,
then another server Sj before performing next write
w2 issued by the same client, should have performed
w1 first.

If synchronization of servers has took place, but, be-
cause of Sj failure w1 has been lost, then w2 will be
postponed (line 7) until the time of the next synchro-
nization (line 45).

By computing the difference of the timestamp of the
latest operation recovered from the log, saved in the
RCi

and the value of recovered vector VSj
, the infor-

mation on servers from which synchronization messages
were received, can be obtained. Thus, to shorten the
awaiting time for synchronization procedure, the syn-
chronization on demand may be applied. In such a
synchronization the request for update message is sent
to servers, from which synchronization messages were
obtained, but results of synchronization have been lost.

5. Conclusions

Applications in the mobile domain usually tend to
be structured as client-server interactions. For such
applications, the management of data consistency from
the clients’ perspective seems to be very attractive.

According to our knowledge, although several stud-
ies have examined the issues of checkpointing, logging
and rollback-recovery in mobile systems, none of the
existing solutions integrates these issues with the con-
sistency protocol. Especially client-centric consistency
models, have not been considered in the context of
rollback-recovery.

Therefore, this paper addresses a problem of inte-
grating the consistency management of the mobile sys-
tem with the recovery mechanism. We introduce the
rollback-recovery protocol rVsMW for distributed mo-
bile systems, which preserve Monotonic Writes session
guarantee. The proposed recovery protocol is inte-
grated with the underlying VsSG consistency protocol.

The rVsMW protocol, in contrast to systems with
message–passing, takes into account the semantics
of operations during the rollback-recovery procedure.
This results in checkpointing only results of every sec-
ond write operation received from the same client.

Moreover, the proposed rVsMW protocol combines log-
ging and checkpointing in order to save space in the
stable storage and spend less time while storing opera-
tions. As a result, rVsMW protocol offers the ability to
overcome the servers’ failures and preserves MW ses-
sion guarantee, in the optimized way.

The proposed protocol preserves one of four exist-
ing session guarantees. Thus, our future work encom-
passes the development of rollback-recovery protocols
that are integrated with VsSG consistency protocol,
and preserve other session guarantees.

References

[1] L. Alvasi and K. Marzullo. Message logging: pes-
simistic, optimistic, causal and optimal. IEEE Trans.
Softw. Eng, 24(2):149–159, 1998.

[2] J. Brzeziński, C. Sobaniec, and D. Wawrzyniak. Safety
of a server-based version vector protocol implementing
session guarantees. Proc. of Int. Conf. on Compu-
tational Science (ICCS2005),LNCS 3516, pages 423–
430, May 2005.

[3] N. Elmootazbellah, Elnozahy, A. Lorenzo, Y.-M.
Wang, and D. Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput-
ing Surveys, 34(3):375–408, Sept. 2002.

[4] E. Elnozahy and W. Zwaenepoel. Manetho: Transpar-
ent rollback-recovery with low overhead, limited roll-
back, and fast output commit. IEEE Transactions on
Computer, 41(5):526–531, May 1992.

[5] R. Guerraoui and L. Rodrigues. Introduction to dis-
tributed algorithms. 2004.

[6] A. Kobusińska, M. Libuda, C. Sobaniec, and
D. Wawrzyniak. Version vector protocols implement-
ing session guarantees. Proc. of Int. Symp. on Cluster
Computing and the Grid (CCGrid 2005), May 2005.

[7] N. Sergent, X. Défago, and A. Schiper. Failure detec-
tors: Implementation issues and impact on consensus
performance. (SSC/1999/019), May 1999.

[8] C. Sobaniec. Consistency protocols of session guaran-
tees in distributed mobile systems. Sept. 2005.

[9] A. S. Tanenbaum and M. van Steen. Distributed sys-
tems — principles and paradigms. 2002.

[10] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch. Session guarantees
for weakly consistent replicated data. Proc. of the
Third Int. Conf. on Parallel and Distributed Informa-
tion Systems (PDIS 94), pages 140–149, Sept. 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

