
Base Line Performance Measurements of Access Controls For Libraries and
Modules

Jason W Kim and Vassilis Prevelakis
Department of Computer Science

Drexel University
Philadelphia, PA 19104
{jkim,vp}@cs.drexel.edu

Abstract

Having reliable security in systems is of the utmost im-
portance. However, the existing framework of writing, dis-
tributing and linking against code in the form of libraries
and/or modules does a very poor job of keeping track of
who has access to what code and who can call what func-
tion.

The status-quo is insufficient for a variety of reasons. As
the amount of code written that represents some kind of a
rights-protected entity increases, we need a systematic, eas-
ily adopted framework for designating who has access to
what code, and under which conditions.

While adding access controls to libraries and modules
(as well as functions held securely within them), we also
give regard to the performance characteristics and ease-of-
use considerations. In this vein, we discuss the design and
implementation of a framework (called SecModule) used
for generating (and using) libraries under access controls,
as well as performance measurements of invoking functions
that are held inside the protected library.

1 Introduction

UNIX-like operating systems have a long and rich
history deeply intertwined with the C programming
language[10, 9]. The code development process today is
remarkably similar to the early days (modulo the actual de-
velopment tools, which have progressed since then). A pro-
grammer starts off with some source code, which then gets
compiled into object files, perhaps grouped into a library,
which is then linked together to form the final product.

As time goes by, the amount of written code increases,
as well as its complexity and interdependency. Along with
this is the fact that the amount of security vulnerabilities
(both in number and in scope) are increasing as well.[2].

The apex of the current trend is not yet clear. However, we
can identify three related cases where the current model of
software organization and reuse is insufficient.

Suppose the existence of a piece of executable, reusable
code that represents a significant investment of time, effort
and capital. For the owner/creator of the code, the right to
use, or invoke the functions in held in this library can be a
valuable asset in terms of income, or perhaps merely recog-
nition and acceptance. He would like some way to either
get payed, or at least get recognition for his hard work. He
may also wish to limit the possibility outright theft of the
work.

Suppose the existence of a piece of executable code that
represents a significant drain of computational resources.
The owner of the host system may wish to control access
to the rights to invoke this code, purely for the sake of pre-
venting the host system from being flat-lined by over-use.
The administrator may wish to limit access to the resource-
hungry library according to certain criteria other than the
carte-Blanche root access.

Suppose the existence of a piece of code that repre-
sent a critical component of a security infrastructure, such
that misuse (intentional or otherwise) of the call can cause
significant disruption of the host system. The maintainer
would like to make sure that only those who have been cer-
tified to use those functions are allowed access.

We have identified three important issues related to soft-
ware - financial (or fame) aspects, CPU usage and general
system availability aspects, as well as security maintenance
aspects, that our current model of sharing, and allowing ac-
cess to chunks of important code held in a sharable library
or module, is inadequate for the purposes at hand. The cur-
rent UNIX methods for access control is purely binary, and
coarse grain at that. All this point to a need for some kind
of a trust-management[4, 3] framework for the creation and
distribution of, and access to arbitrary pieces of code.

Providing a complete solution that solves the above three

1-4244-0054-6/06/$20.00 ©2006 IEEE

problems is likely to be beyond the scope of any single
work. Nevertheless, we discuss a prototype software frame-
work, called SecModule, which can be the basis of building
such a system. Adding in authentication requirements to the
calling of functions in a library is a very simple concept that
is long overdue. Its very intuitive especially when thinking
of computation as a protected resource.

This work attempts to answer the following questions:

1. What are the ways to generate a secure “handle” which
will allow only processes that has successfully shown
its valid credentials to allow to call or invoke functions
within the library?

2. How are the risks of misusing the access handle min-
imized? That is, is it possible to limit the handle
to be usable only by a validated process? In other
words, only processes that have successfully authen-
ticated should be given the ability to invoke the library
method, and the handle must be valid only for a spe-
cific process.

3. What are the performance implications of having re-
placing normal libraries with the SecModule frame-
work?

In the next section (2) We discuss additional background
material. We then address questions 1 and 2 in section (3).
Question 3 is addressed in the section (4). We conclude with
lessons learned and possible future research.

2 Background

In this section, we discuss additional background mate-
rial as well as related works.

One very important item that can be thought of as a spir-
itual ancestor to our work was not by software engineers,
but by hardware designers. To be more precise, the devel-
opers of the Intel 80286/80386 CPU foresaw the need for
having a hierarchy of access rights to (important) pieces of
software[1].

In their widely disseminated works, the Intel engineers
describe a set of “protection rings” which denote the amount
of privilege that the software belonging to that ring possess.
The innermost (or level 0) is the most privileged, whereas
the outer ring (level 3) is the least privileged user-level code.
Their foresight is underreported today. Matter of fact, newer
versions of Intel CPUs do not possess the full four level
hierarchy, and make do with two privilege levels. To be
fair, what the Intel engineers saw was the privilege sepa-
ration between the kernel, and periphery code such as de-
vice drivers, and finally the user level code. Unfortunately,
software engineering as a science had not quite reached that

level when the 80386 was released, and many system devel-
opers chose to use a simpler model, grouping device drivers
and other system services in the same realm as the OS ker-
nel.

Remote Procedure Call[12] can also be thought of as an
early example of a “session managed” access to functions.
It has very wide spread use in networked environments, and
is used to implement vital services such as Network File
System (NFS)[5].

Traditionally, UNIX and variants all feature a coarse-
grain binary privilege escalation. Access rights were associ-
ated with a specific login ID. Because of this, it was difficult
to formulate and enforce a fine-grain policy with respect to
library access. And access to functions, once given access
to the library containing it, was automatic and irrevocable.

To state by analogy, what we desire is to effect a more
flexible “security region” where access levels and regions
are not necessarily discrete. In other words, the question of
access must now be delegated to some sort of a computa-
tional process that can enforce a complex policy that may
not respond to a discrete privilege level.

Towards this end, there have been some positive signs.
The OpenBSD operating system (www.openbsd.org)
prides itself in being an operating system geared towards
security in mind. Secondly, also related to OpenBSD is
Systrace[11] which can be used to generate and enforce a
fine grain policy based control over applications in the sys-
tem calls they invoke.

Systrace does an admirable job - its only drawback is that
the behavior of software captured by systrace is (counter-
intuitively) too verbose. Because systrace guards the low-
est level services provided by the operating system, certain
higher level actions wind up being difficult to discern. For
example, opening a window on an X11 based application
is achieved through a fairly large set of system calls - and
the final end result of the creation of a new window is hid-
den beneath the massive amounts of verbiage generated by
systrace.

In other words, when one thinks of the sequence of sys-
tem calls needed to implement a complex operations found
in existing system or user supplied libraries, the fine grain
control supplied by systrace, by itself, is immediately in-
sufficient for the task at hand. Even worse, it may intro-
duce subtle problems if the sequence of system calls used
for implementing a higher level functionality is inadver-
tently interrupted in the middle by a misconfigured system
call policy - resulting in the library code being in an incon-
sistent state. Because of this chaining of system calls for
higher level actions, it may also be difficult to phrase a suf-
ficiently precise systrace policies for applications that use
a higher level abstractions many layers removed from the
system calls.

To address this issue, through SecModule, we raise the

protective shield to the library level. In essence, we wish to
provide fine grain policy enforcement over not just system
calls, but calls to user level libraries as well. Our contribu-
tion is system which can be used to systematically formulate
and formalize rights management for software. The access
rights in question would be whether an entity p (which may
be malicious) is allowed to execute some function fi held
secure in the library module m.

3 Generating a Secure Handle

A process p runs, and during its execution, p requests
access to some function fi contained in SecModule m. Ini-
tially, all images in m remain inaccessible to p. Once the re-
quest has been successfully processed, the SecModule sys-
tem provides to p a handle h which allows access from p,
and only p to fi. The last criteria, to enforce that p and only
p is allowed to access to fi is ensured by the following:

The handle h, is a “co-process” that is started upon re-
quest for access to m. The actual dispatch to fi in m is via
an indirect call, managed by the OS Kernel.

Arguments and return values are marshaled and unmar-
shalled in the traditional stack passing mechanism, de-
scribed next. The simplest policy is to allow access to m
for the lifetime of p. Other policies may be implemented
with this scheme.

A separate tool chain registers the SecModule m with
the kernel, which must keeps track of the registered Sec-
Modules. At some point in time, the client process p, with
credential c then makes a request to the kernel for access to
the SecModule m. The kernel then verifies that c, is valid
with respect to m’s policy, and that m (consisting of name
and version) actually is a registered SecModule. If so, then
the kernel starts a new “co-process” h, linked with p, al-
lowing a form of shared memory access between the two
processes.

There are several problems in trying to share memory be-
tween processes using existing mechanisms (e.g. SystemV
shared memory). First, any explicit shared memory model
precludes sharing of large amounts of data. In fact, the
required argument marshaling and unmarshalling develops
the same flavor as that of the XDR (External Data Represen-
tation) Protocol used in RPC[12], and we were considering
the generation of tools akin to rpcgen for SecModule.

It also became apparent that this design precluded its use
for “retrofitting” much of the existing libraries into Sec-
Modules. The most fundamental call that was precluded
was malloc(). Therefore, relying on an explicit shared
memory model using existing OS primitives limits Sec-
Module to “new” libraries.

The above problems go away if we presume that the pro-
cesses p and h share the entire data, heap and stack por-
tions of their virtual address space. It is important to point

out that the text (or code) section is not shared between the
client process and the handle. We achieved this by modi-
fying several functions in the UVM[6] virtual memory sub-
system of OpenBSD. With this approach, the handle has
complete access to the entire data region of the client, such
that even C library functions like malloc() can be placed
inside a SecModule, working identically to its man-page
specification within the SecModule framework. Some func-
tions in libc does need to be handled specially, discussed
later in 4.3.

3.1 Security Implications for the Operat-
ing System

In this section we answer a question that was implicitly
stated in the prior section.

Why is the code body of fi mapped to the handle h in-
stead of the requester process p?

The answer is simple. With the limitation that C, as-
sembly or some derivation thereof, is used to develop the
application that spawns the in-memory process p, there can
be no trust placed on any memory portion directly under
the control of p. The code for fi can not be available to p,
because then p can jump past any guard code that protects
fi directly to the important parts, negating any protective
aspects.

Assuming that the user who owns p received the cre-
dentials legitimately, the requirement for allowing access
to m is still there. So the obvious solution is to control
access to each call to fi through a kernel level call, to get
around the restriction that p can not directly access the code
body of fi. The arguments for fi are passed on the shared
stack like a normal (non-SecModule) function call. Then
p invokes fi indirectly by invoking a new kernel method
smod_call() which will then verify that p did provide
the proper credentials, and passes control over to h which
will execute fi on p’s behalf.

This abstracted function call is not necessary if the OS
and programming language itself did not allow arbitrary
formulation of addresses and jumps, and code generation
resources themselves are part of a trustworthy policy man-
agement. But such OS and language does not yet exist, and
we are forced to accept this slowdown in order to increase
the level of security.

In summation, the minimal set of changes needed in the
OS are as follows:

1. Several new kernel level calls with the associated user
level wrappers. See Figure 4 in Appendix A. The sev-
eral void * arguments are pointers to structures that
contain the needed arguments, i.e. additional informa-
tion about the bodies themselves - generated through
external tools.

2. Several new functions, as well as modifications of ex-
isting functions in the UVM virtual memory system.
See figure 6 in Appendix A.

3. Processes no longer generate a core image when they
crash. Certainly no Handle process should! Otherwise,
fi can be easily stolen by the user.

4. ptrace() and related kernel calls must not allow
tracing of any processes associated with the handle.

4 Implementation Details

Our prototype of the SecModule system is implemented
on top of OpenBSD v3.6 running on an PentiumIII PC. Fig-
ure 1 shows a high level overview of the steps by the client
process p to access a function (in this case malloc()) held
secure within the SecModule version of libc.

In step (1), the client’s initialization code in crt0
tries to open access to the module that holds the routine
we want to access. Once the kernel has acknowledged
that the requested module exists, the client executes the
smod start session() call, which relays to the ker-
nel the formal request by the client process for the module
identified by m id. The smod start session() needs
a pointer to a structure that identifies all the modules

Figure 1. The SecModule Initialization Se-
quence

Assuming that the credentials check out, in step (2), the
kernel forcibly forks the child process, creates a small, se-
cret heap/stack segment for the handle, and executes the
function smod std handle(), using the secret stack.
This secret stack is not available to the client. Refer to fig-
ure 2.

On step (3), the handle starts the first phase of the hand-
shake by executing the smod session info() system

call, which informs the kernel that the handle is ready to
go. This system call also forcibly unmaps the entire data,
heap, and stack segment of the handle process and forces
it to share the memory pages from the same address range
from the client process (Refer to figure 2). This system call
may load in additional code segments as needed to fulfill
the requirements of the module.

Figure 2. Address Space Layout

On step (4), the client process concludes the handshake
by calling smod handle info() which completes the
internal synchronization data structures that the client and
handle must use to communicate with each other. Then the
client process’s crt0 completes by executing the main rou-
tine for the client, called smod client main().

Inside smod client main(), in step(5), the client
makes a call to malloc() which is in reality a relay to
SMOD client malloc(). In step(6) The client stub
routine invokes the kernel’s smod call() to start the ac-
tual call.

Some time later, in step (7), the handle receives the call,
and relays the message to the real malloc() routine held
inside it. Step (8) concludes by returning to the client.

Figure 2 gives a diagram of the address space of both the
handle and the client processes. After the handshake com-
pletes as described above, the client process and the handle
process is sharing the same pages for the address ranges
that start just below the traditional OpenBSD data segment,
to just above the end of the traditional OpenBSD stack seg-
ment bottom. All other portions are not shared. Specifi-

cally, the region marked “Secret Stack/Heap” is only avail-
able to the handle process’s smod std handle(). The
top half of that secret space is used as the stack space by
smod std handle(), to avoid colliding with the shared
stack between the client and handle.

Now we describe in detail the calling sequence, in so far
as the shared stack space is concerned.

Figure 3. Stack Manipulations

In Figure 3, step (1) shows the state of the
stack inside the client’s assembly stub routine (e.g.
SMOD client malloc(), before the kernel level call
to sys smod call(). Step (2) shows the state of the
client’s stack inside sys smod call(). Notice that
the assembly stub routine pushed in the unique identi-
fier pair moduleID,funcID used to point to the func-
tion (and the module which contains it) that is being in-
voked. The top 2 elements from step (1) needed to be
duplicated so that the kernel has the correct view of the
relevant arguments. Technically, the kernel only requires
client FP 1. However, using only that exposes the ker-
nel to unnecessary architectural dependencies. Step (3)
shows the same stack from the view point of the handle, in-
side the smod stub receive(), which is executed by
the handle to accept the invocation. Note that the handle
has popped off all of the unnecessary elements on the stack
above arg1. At step (3), the handle then relays to the ac-
tual library routine named by moduleID,funcID. The
called function has access to the entire stack and data of
the client process, as per normal (non SecModule) function
call semantics. After the called function returns, in step (4),
smod stub receive() then replaces the exact same ar-

guments that the client stub routine had seen, so that it can
properly return to the original calling location.

It is important to note that the handle process actually
executes smod stub receive() using the secret alter-
nate stack that was set up when the handle process initial-
ized, shown in figure 2. Therefore, the execution of the
handle-side stub routine can not disrupt the shared stack
and data between the handle and client. In other words,
smod stub receive() sets the stack to the shared
stack before relaying the call to the actual library routine.

4.1 Modifications Required in the Kernel

The implementation of SecModule can be broken up into
three parts. First involves the sharing of the data and heap.
The second involves the proper synchronization between
the client and handle. The third portion deals with mak-
ing sure that the executable code held in the module is not
made available to the client inadvertently.

To achieve the first goal, we can follow two equally good
approaches. First is to rely on the existing UVM inter-
face to mark the address space between the data and the
stack as shared, then fork(). The second approach is
to forcibly unmap the pages in one process and to then
forcibly map the pages from the other process onto the
first. We chose the latter approach, and added several
new function for the UVM[6] virtual memory system in
OpenBSD to achieve this. The first function we added was
uvmspace force share() which uses existing UVM
internal interface to first unmap all vm map entrys in the
share region of the handle process, then to duplicate the ac-
tions of uvmspace fork() by duplicating (and sharing)
the entries from the client’s process for the address range.

We must also ensure that the relevant pages remain
“shared” even as the client process’s heap/stack grows and
shrinks. For this, we needed to modify the low level
uvm fault() routine, such that on a “unavailable map-
ping” error, uvm fault() examines the faulting address
with respect to the other process, to see whether it has a
valid mapping for that address. If so, then uvm fault()
maps that entry onto the faulting address as a share. We also
modified sys obreak() to request additional heap space
as shared, if the request came for one of the process in a
SecModule pair. We also modified uvm map() to create
a shared mapping for the cases of the modified call from
sys obreak().

The second goal of keeping the client and handle syn-
chronized is much easier to achieve, as OpenBSD already
comes with the proper kernel resources in the form of SYSV
MSG interface. The msgsnd() and msgrcv() func-
tions already contain efficient blocking and awakening that
we desire for synchronization. So for the second goal, no
changes were needed for testing purposes.

The third objective, of ensuring that the client process
does not have direct access to the actual text of the func-
tions held in a SecModule can be done in either one of
two orthogonal approaches. The first approach is simply
to encrypt the library using a secret key not revealed to the
client process, using a a sufficiently powerful system like
the the Advanced Encryption Standard[7]. We only encrypt
regions in the library’s text that do not correspond to reloca-
tion or linking data. That is, we do not touch any locations
in the library that will need to be modified by the linking
process. That way, the encrypted version of the library is
still linkable using existing tools, but the unencrypted form
will be available only to the handle process, after the kernel
decrypts the relevant memory locations in the handle’s text
portion.

The second approach, which works well for dynamic li-
braries, is to simply have the kernel unmap the images of
the shared library from the client’s address space, as well as
deny the ability of the client to load in plain text versions of
the SecModule later on. As long as we can trust the fact that
shared objects can only be directly accessed by the operat-
ing system, it is a perfectly valid way to maintain control
over access to the libraries and remain carefree with regards
to encryption.

There is nothing preventing both approaches being used,
or using encryption to protect dynamically loaded libraries
in a similar fashion.

4.2 Generating Stubs and Using Them

The SecModule system requires that a set of stubs be
used to access the original symbols in the library. Our ap-
proach was to start off with the output of objdump -t
/usr/lib/libc.a | grep ’ F ’ and to slowly
add in the ones we missed as we ran across them. The out-
put of objdump was useful because they were guaranteed
to be functions in the library. For the rest, we used the macro
definitions already in the headers, as needed.

Most functions in the libraries targeted for SecModule
conversion resolved to calling autogenerated assembly stub
function. Because of the stack manipulation operations re-
quired by the stub, it can not be written in C, but must be
duplicated for each library function that needs a a client side
stub. This is done as part of the SecModule toolchain for
processing libraries.

Using the SecModule libC is nearly identical to the tra-
ditional case, save that we must specify a custom linking
procedure to make sure that the special crt0 is linked in,
and that the objects that hold the name and version of the
needed SecModules, as well as the credentials that allow
access to it are linked in. From the source code perspec-
tive, it is also nearly identical to the traditional case. The
only change is that each source file (C, or C++) must have

a single additional #include statement after all system
#include statements, but before the user code, so that the
SecModule client-side access functions which override the
system header files get properly mixed in. Executing the
SecModule enabled client must be preceded by the OS ker-
nel’s recognition of the SecModule about to be requested.

4.3 Special Functions

Certain function calls in the C library required special
handling when they were converted over to the SecModule
framework.

For execve() and variants, the action taken at the ker-
nel level is to first detach the requesting client process from
the SecModule system, kill the associated handle process,
and then to run sys execve() system call as per normal.
If the resulting executable is a SecModule registered exe-
cutable, its crt0 will correctly execute the required set of
system calls to set up a new SecModule session.

For fork() and variants, the ideal action is to duplicate
the child process twice, and force the first child to be the
handle for the second. This task is made complex by the fact
that it is tricky to achieve a chained set of system calls on
behalf of the child process after a fork(). Thus some of the
heavy lifting for fork is implemented as a handle-side code
that sits outside of the kernel. Multiple clients should not
share the handle, because a many-to-one mapping of clients
to a single handle introduces a performance bottleneck.

Obviously, getpid() and related calls must return the
PIDs related to the client, not the handle! Similarly, sig-
nals, and scheduling routines like wait() and their vari-
ants must be modified such that they effect the client, not
the handle.

This list of functions held in libC needing special han-
dling may not be exhaustive. There are nearly 1500 global
text symbols in the OpenBSD libC. Auditing them for cor-
rect behavior within the SecModule framework will take
some time, even for the most enthusiastic programmer. The
rule of thumb seem to be that if they involve scheduling,
signals or processes, then they will likely need additional
work in order for correct operation. It needs pointing out
that without the sharing of data/heap/stack, adding in ac-
cess controls for access to existing libraries such as libC
becomes much more difficult.

4.4 More Security Considerations

When considering encryption[8], it is important to note
that the secret keys that wrap the individual functions in m
are never revealed to p. Once the SecModules are regis-
tered, the secret keys for each encrypted segment in m exist
only in kernel space. As always, extreme care must be taken

when choosing the pseudo-random keys for the symmetric
cipher that actually protect the bulk of m.

In our test case, there are two principals, the SecModule
implementor and the client. The creation and registration of
the SecModule is handled by the same principal. However,
in more realistic scenarios, The SecModule m exists in a
truly multiuser environment, and there is a third principal,
which is the system s that hosts m. In cases like this, s must
be a trusted party and the secret keys that protect m are en-
crypted using s’s public key, and is shipped as part of m. In
both cases, the operating system which hosts m has to be
a trusted party. If this is not the case, then a security pre-
requisite is not met, and SecModule’s guarantees become
invalid.

Handling multi-threaded client programs is a special
challenge when auditing their behavior. As others point
out[13, 14, 11], its is possible for multi-threaded clients
to first give innocuous arguments, evade the permissions
check, and then modify the arguments on the stack.

Preventing this attack in a user-land process is more dif-
ficult, but it can be done in several different ways. First,
we can simply unmap the entire data and stack region of
the client (including all threads) during the kernel level ex-
ecution of sys smod call(). A second approach is to
also forcibly remove the client (and all threads related to
the client) from the ready queue. The second approach has
the benefit of having lesser overhead for the kernel. How-
ever, neither approach is very desirable in terms of client
efficiency. Other approaches like partially mapping a stack
segment read only are fragile and not necessarily more se-
cure than the two brute force approaches. For the time be-
ing, we do not consider this issue.

4.5 Performance Characteristics

For our test case, we measured the cost of the indirect
dispatch from the user process p, to the handle process h and
back again. We compare against an identical no-op function
implemented as a locally running RPC[12] service, as well
as the native (non-SecModule) getpid() kernel call as a
point of reference. Our test machine is described in figure
7 in appendix A. The measurements are detailed in figure
8. Our initial measurements demonstrate that invoking an
unpacked SecModule function is slower than a simple ker-
nel call (compare the difference between native getpid()
and getpid() over SecModule), but is no more expen-
sive to invoke than a locally served RPC call. Matter of
fact, due to the tight coupling between the handle and the
client, invoking a SecModule function is roughly 10 times
faster than the identical function being executed via RPC.
The function tested for both RPC and SecModule returns
the argument value incremented by one.

5 Conclusions

We have shown an easy-to-use software framework
which allows retrofitting of existing libraries, as well as de-
velop new ones into a secured, session-managed environ-
ment. Our framework can be used to address the three issues
raised earlier in section 1. We achieved our goals through
selective sharing of memory pages between the handle and
the client, such that the functions being executed by the han-
dle on behalf of the client gets to access the entire data,
heap, and stack space of the client process. We have a pro-
totype implementation consisting of the kernel mods, a Sec-
Module conversion of libC, and related userland registra-
tion tools. We will provide source code upon email request.

As discussed above in section 4.5, our performance num-
bers are quite good, with a factor of 10 increase over RPC.
We believe that its possible to gain even greater perfor-
mance gains by reducing redundant error checks and cross-
address copies in kernel-to-kernel calls used for our proto-
col.

Thus, the performance numbers above (modulo any fu-
ture improvements) serves as a good estimate of the lower
bound for traditional “always allowed” access policy within
SecModule. If we need to evaluate more complex policy
statements, we can expect a corresponding slowdown in
proportion to the complexity of the required access control
check.

Our initial design included the use of KeyNote[3] poli-
cies as our definition language, but we have concluded
that the integration of KeyNote policy engine with Sys-
trace’s own policy definition system requires some addi-
tional thought. Therefore, for this work, we avoid dis-
cussing the definition of nontrivial policies. Instead we con-
centrate on highlighting a framework in which such rules
can eventually be specified and effected, given suffcient ad-
vances in policy definition and enforcement technologies.

References

[1] The Intel IA-32 Software Architecture Manual. Intel, 2001.
[2] S. M. Bellovin. An End State? In Communications of the

ACM, volume 44. ACM, March 2001.
[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.

RFC2704: The KeyNote Trust-Management System Ver-
sion 2, 1999.

[4] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The Role of Trust Management in Distributed System Secu-
rity, chapter Secure Internet Programming: Security Issues
for Mobile and Distributed Objects. Springer-Verlag, 1999.

[5] B. Callaghan, B. Pawlowski, and P. Staubach. RFC1813:
NFS Version 3 Protocol Specification, 1995.

[6] C. D. Cranor. DESIGN AND IMPLEMENTATION OF THE
UVM VIRTUAL MEMORY SYSTEM. PhD thesis, Sever In-
stitute, Washington University, August 1998.

[7] J. Daemen and V. Rijmen. The design of Rijndael : AES–the
Advanced Encryption Standard. Springer, 2002.

[8] W. Diffie. The first ten years of public-key cryptography. In
Proceedings of the IEEE, volume 76, pages 560–577, May
1988.

[9] B. W. Kernighan and R. Pike. The UNIX Programming En-
vironment. Prentice Hall, March 1984.

[10] B. W. Kernighan and D. M. Ritchie. The C Programming
Language. Prentice Hall, 1988.

[11] N. Provos. Improving Host Security with System Call Poli-
cies. In 12th USENIX Security Symposium, pages 257–272,
2003.

[12] R. Srinivasan. RFC1831: RPC: Remote Procedure Call Pro-
tocol Specification Version 2, 1995.

[13] D. Wagner and D. Dean. Intrusion detection via static analy-
sis. In Proceedings of the IEEE Symposium on Security and
Privacy, May 2001.

[14] D. Wagner and P. Soto. Mimicry attacks on host-based intru-
sion detection systems. In Proceedings of the 9th ACM Con-
ference on Computer and Communication Security, Novem-
ber 2002.

A Figures

301 STD { int sys_smod_find(const char *name, int version); }
;; sys_smod_session_info() is ONLY for the handle process,
;; that is, the handle process started by sys_smod_start_session()
303 STD { int sys_smod_session_info(void * sinfo); }
;; sys_smod_handle_info() is ONLY for the client process
;; that is, the client process started by sys_smod_start_session()
304 STD { int sys_smod_handle_info(void *hinfo); }
;; allows multiple versions
305 STD { int sys_smod_add(void *smodinfo) ; }
;;
306 STD { int sys_smod_remove(int m_id, void *credential, \

int credential_size); }
;; Requires assembly hooks to properly pass in the frame pointer,
;; and the return address to the kernel.
307 STD { int sys_smod_call(void *framep, \

void *rtnaddr, unsigned m_id, int funcID) ; }
320 STD { int sys_smod_start_session(struct \

smod_session_descriptor *descp); }

Figure 4. Necessary Additions to the
OpenBSD Kernel for Implementing Sec-
Module

// Declare first arg to be an int, just to get
// it to compile with varargs.
typedef int (*SMOD_funcp)(int, ...);

// Called by the client to request access
// to the function identified by funcID
// Relays to sys_smod_call() ...
extern int
smod_stub_call(int funcID, ...);

// Called by the handle to actually execute the function
// pointed to by funcp on the shared stack
extern int
smod_stub_receive(void*shmsegp, SMOD_funcp funcp);

Figure 5. The C Declarations of Assembly
Stubs

// New functions ..
// in uvm_map.c:
/* Where the original uvm_map() went to ... */
int
uvm_map_internal(vm_map_t map,vaddr_t *startp,

vsize_t size, struct uvm_object *uobj,
voff_t uoffset, vsize_t align,
uvm_flag_t flags);

/* Try to map the same anon in the same place in both processes */
int
uvm_map_shared_internal(vm_map_t map1, vm_map_t map2,vaddr_t *startp, vsize_t size,

struct uvm_object *uobj, voff_t uoffset,
vsize_t align, uvm_flag_t flags);

// The job of this function is to force the sharing of a portion of the VM
// between two processes.
// It achieves this by unmapping all pages between just a sliver above the
// traditional code space, reaching to the bottom of the stack space, and the
// relying on uvm_fault() to allow the sharing of the pages in between them.
int
uvmspace_force_share(struct proc *p1,

struct proc *p2, vaddr_t start, vaddr_t end);
// called by above.
int
uvm_force_share(vm_map_t map1, vm_map_t map2, vaddr_t start, vaddr_t end);

// Modified functions
// uvm_fault.c
int
uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,

vm_prot_t access_type);

// uvm_map.c
int
uvm_map(vm_map_t map, vaddr_t *startp, vsize_t size, struct uvm_object *uobj,

voff_t uoffset, vsize_t align, uvm_flag_t flags);
// In uvm_unix.c
int
sys_obreak(struct proc *p,void *v, register_t *retval);

Figure 6. Changes to the UVM Virtual Memory
System

OpenBSD 3.6 (sys) #69: Tue Jan 25 03:52:35 EST 2005
cpu0: Intel Pentium III ("GenuineIntel" 686-class, 512KB L2 cache) 599 MHz
cpu0: FPU,V86,DE,PSE,TSC,MSR,PAE,MCE,CX8,SEP,MTRR,PGE,MCA,CMOV,PAT,PSE36,MMX,FXSR,SSE
real mem = 536440832 (523868K)
pcib0 at pci0 dev 7 function 0 "Intel 82371AB PIIX4 ISA" rev 0x02
pciide0 at pci0 dev 7 function 1 "Intel 82371AB IDE" rev 0x01: DMA, channel 0

wired to compatibility, channel 1 wired to compatibility
wd0 at pciide0 channel 0 drive 0: <IBM-DPTA-372730>
wd0: 16-sector PIO, LBA, 26105MB, 53464320 sectors
wd0(pciide0:0:0): using PIO mode 4, Ultra-DMA mode 2
cd0 at scsibus0 targ 0 lun 0: <SAMSUNG, CD-ROM SC-140B, d005>

CLOCK_TICK_PER_SECOND is 100

Figure 7. Abbreviated Test System Informa-
tion

Number of Calls/Trial Total Number of Trials
GETPID 1,000,000 10
SMOD(SMOD-getpid) 1,000,000 10
SMOD(testincr) 1,000,000 10
RPC(testincr) 100,000 10

Test Function microsec/CALL stdev(microsec)
getpid() 0.658000 0.00918937
SMOD(SMOD-getpid) 6.532000 0.29850740
SMOD(test-incr) 6.407000 0.07513691
RPC(test-incr) 63.230000 0.13482911

Figure 8. Performance Comparisons

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

