
Simulating and Optimizing A Peer-to-Peer Computing Framework

Jean-Baptiste Ernst-Desmulier1, Julien Bourgeois1, Minh Thanh Ngo1,
François Spies1, and Jérome Verbeke2

1Laboratoire d’Informatique de Franche-Comté 2Lawrence Livermore National Laboratory
University of Franche-Comte Livermore, CA 94550 USA
1, Cours Leprince-Ringuet verbeke2@llnl.gov

25200 Montbéliard FRANCE
{ernst, bourgeoi, ngo, spies}@lifc.univ-fcomte.fr

Abstract

The aim of P2P computing is to build virtual com-
puting systems dedicated to large-scale computational
problems. JXTA1 proposes an underlying infrastruc-
ture on which JNGI2, one of the first P2P decentral-
ized computing frameworks is built. In order to test
this framework, we have built a tool named P2PPerf,
which allows us to study the behavior of JNGI and to
optimize it according to our simulation results.

1. Introduction

Designing, testing and tuning P2P computing
frameworks are three difficult tasks and there are many
reasons for this.

First of all, gathering a sufficient number of com-
puters to test or to tune a P2P computing framework
is a highly time-consuming task. Besides, even if some
very useful projects like PlanetLab [15] do exist, it is
very difficult to obtain a sufficient number of nodes to
really study the system. For example, there are more
than 2500 working nodes connected to Seti@home [2]
per day as stated on their homepage.

Then, the aim of existing projects [3, 13] is to of-
fer a testbed to developers but not a specific testbed
for P2P applications. Therefore, they cannot be used
to test the robustness of a P2P computing framework
when nodes appear or disappear because the nodes of
a testbed are already connected to a network. These

1JXTA for JuXTApose
2JNGI for Jerome, Neelakanth, Greg and Ilya : first names of

the creators

environments do not exactly meet the goal of really
testing P2P computing frameworks.

Finally, while the project is being developed, a de-
veloper wants to have rapid results to correct its de-
sign. The time spent to obtain the performance re-
sults is a mandatory parameter. The time required to
run a complete example could be too long. The sim-
ulation must give performance results faster than the
real execution. NS2 [1] has the reputation to be slow
to give results when simulating a large-scale P2P net-
work. This article will show that it can be used with
very good performance results if the collected data is
well chosen. Moreover, NS2 is a widely-used simulator
so there is no need for the user to install a new simu-
lator and our modules can easily be added to the NS2
base installation.

In the following section 2, we present the JNGI P2P
computing framework which has been used for test-
ing our P2PPerf framework. Section 3 discusses our
model of P2P computing framework, which comprises
two main modules, the network and the computational
ones. Section 4 presents the tests we have conducted
and section 5 concludes the article and describes the
future work to be done.

2. JNGI Presentation

JNGI [18] is a peer-to-peer distributed computing
framework written in Java, based on the JXTA [17]
virtual network, which enables large and embarrass-
ingly parallel applications to be executed on numerous
computing peers. While the idea of achieving paral-
lelization through performing many independent tasks
is not new [2, 13], JNGI extends this approach to ad-

1-4244-0054-6/06/$20.00 ©2006 IEEE

dress other aspects that include (1) dynamism, where
nodes are added and removed during the lifetime of
the jobs; (2) redundancy, so that the dynamic nature
of the grid does not affect the results; (3) organization
of computational resources into groups, so that inter-
node communication does not occur in a one-to-all or
all-to-all mode, thereby limiting the scalability of the
system; and (4) heterogeneity, where a wide variety of
computational platforms can take part in the computa-
tion. Heterogeneity (point 4) is achieved through the
ability of Java bytecode to run on various platforms.
The framework uses the JXTA open peer-to-peer com-
munication protocols, which entails the dynamic aspect
(point 1) of the grid through peer discovery, in addition
to the scalability aspect (point 3) through the use of
propagate pipes within groups.

2.1. Structure

As shown in figure 1, two kinds of peers are present
in each peer group: worker peers executing tasks, and
task dispatcher peers scheduling and farming out tasks
to the worker peers. The tasks to be performed as
well as the completed ones are kept in a database on
the task dispatcher peers called Task Repository. Re-
dundancy (point 2) is addressed by replicating these
databases onto several task dispatcher peers. To ac-
count for the volatile character of these peers, which
could quit the network at any time, worker peers can
dynamically migrate to become task dispatcher peers,
and vice versa. To some extent, the virtual grid trans-
parently moves over the physical network as peers
drop/join JNGI. As the number of peers in the grid
increases, inefficiency can arise due to overwhelming
communication overheads within a peer group. For
this reason, several groups exist within the framework,
as shown in figure 2.

Monitor peers supervise the workloads within these
groups, and are responsible for splitting them into
subgroups if task dispatcher peers become overloaded.
They are also responsible for directing peers, which re-
cently joined the proper peer group.

3. The P2PPerf framework

The aim of our tool called P2Pperf is to propose
generic architecture to evaluate the performance of a
P2P computing framework. Thanks to P2PPerf, it will
be easier to study and to evaluate the behavior of the
P2P application in a simulated context without access-
ing existing P2P architecture. Moreover, it will be pos-
sible to simulate the same scenario as many times as
necessary to generate exactly the same circumstances

Figure 1. Communication between workers
and redundant task dispatcher within a peer
group.

Figure 2. Peer groups hierarchy in JNGI
framework.

in order to identify any types of bug or erroneous be-
havior and to evaluate performance in a specific sit-
uation. By studying such P2P application during a
simulated stage, it will be easier and faster to extend
performance in order to demonstrate the scalability of
the program and the convergence of the execution time,
even if specific events such as peer dropping and peer
joining occur during the execution.

As can be seen in figure 3, the first input of P2PPerf
is the source code in Java of the application executed
on the P2P framework. P2PPerf also needs a target
computer which will calibrate the performance of the
workers. These inputs are sent to the CompPerf mod-
ule, which micro-benchmarks [16] the target computer
and evaluates the time taken by the sequential parts

Performance results

MergePerf

NS2

network model

P2P

program model

P2P

Recoder

Brite

P2PPerf

CompPerf NetPerf
Source code

Target computer

Figure 3. Design of the P2PPerf system.

of the program. The file generated by CompPerf is
merged with the topology file generated by Brite [14]
and then sent to the NetPerf module. NetPerf uses NS2
as a discrete-event simulation engine and just adds the
modules that correspond to the P2P computing frame-
work. The following sections will describe the Comp-
Perf JNGI modules and NetPerf JNGI modules.

3.1. CompPerf JNGI modules

The aim of this module is to evaluate the time taken
by the sequential parts of a program. It is based on our
experience in performance prediction [6]. To do this,
we use a static analysis because it decreases the slow-
down of the performance prediction and it generates
a parametric representation of the performance model.
With this approach, no more modelization process is
needed to create a new model: only the parameters
would be adapted. To evaluate the sequential parts,
it is necessary to know the structure of the program.
Then, a two-part analysis of the program is necessary.
The first part counts the basic instructions i.e. solves
the unknown parameters of the program and the sec-
ond one deduces the execution times of these instruc-
tions. These steps are explained below.

3.1.1 Description of a JNGI application

A typical JNGI application is a class that extends the
Runnable class and the Serializable class. It is com-
posed of three important parts: the first part is the
constructor of the class. In the constructor, there are
six important steps: splitting the job into tasks, initial-
izing the RemoteThread object, starting the job, wait-
ing until the job is completed to retrieve the results,
removing the job from the code repository and finally
stopping the RemoteThread. The second and most im-
portant part is the run() function, which is the core of
the computation. This function contains the code exe-
cuted by a worker peer to complete its associated task.
The last part is the postprocess() function, which repre-
sents the postprocess mechanism used to aggregate the

different results sent by the workers to obtain the result
of the job. Note that in this version, the post-process
mechanism is executed on the peer which submits the
job to the framework. It is needed to evaluate the ex-
ecution and communication times of these three parts.
To do this, a static analysis of the JNGI application
should be done.

3.1.2 Static analysis

It is necessary to define the terms that describe a static
identification properly. The static identification of un-
knowns defines a method where identification is per-
formed without executing the source code, just by pars-
ing it. Unknowns in a program are the number of it-
erations in loops and the branch rate of conditionnal
instructions. Thus, the complete static identification of
a program means that the identification of unknowns is
performed in a static way, just like the execution time
approximation.

The tool chosen to traverse the application source
code, to construct and to analyze the syntax-tree is
RECODER [5]. RECODER provides a parsing tool
and other services to analyze or modify Java programs.
It is written in Java. The source code of the three parts
of a JNGI application is parsed and a syntax-tree is
built.

3.1.3 Solving the unknowns

The static identification of unknowns implies facing
two problems. The first one is the approximation of
conditional expressions found in structures such as the
if...else structure or the switch...case structure. The
second one consists in knowing how to count the num-
ber of iterations of loops.

Conditional expressions The approximation of
conditional expressions in a static way in all the config-
urations is a problem. It is difficult to solve this prob-
lem without resorting to the program designer’s knowl-
edge. Some conditions on scalar variables can be solved
automatically. However, in most cases, the conditions
are not easily computable. The solution adopted is
to turn to the designer. Thus, the conditions should
be preceded by the reservated function named Comp-
Perf Proba(x) to be evaluated more precisely. The ad-
dition of the CompPerf Proba(x) function is the only
example of the user’s intervention.

Loops and nested loops The nested loops are an
essential aspect of an application because they often
represent most of the computing time. A loop is a for -
type or a while-type structure. To simplify the syntax

of the following examples, only the management of the
for loops will be described, but the while loops are in-
cluded in the same way in our model because it is easy
to transform a while loop into a for loop. The static
identification of the number of iterations can be ap-
plied to three categories of nested loops: nested loops
with independent numerical bounds, nested loops with
independent and constant scalar bounds and interde-
pendent nested loops with constant scalar bounds.

As long as the bounds are independent, the static
identification of the nested loop iteration number
comes down to solve every loop separately.

When one or several bounds of the loop are defined
by a constant variable or when the increment is a con-
stant variable, the number of iterations is expressed lit-
erally. When the bounds of a loop depend on another
loop, they are called interdependent nested loops. In
this case, finding the number of iterations is to solve
a system of inequations and to count the integer so-
lutions. This system of inequations defines a convex
polytope [12] in a n dimension space where n is the
number of nested loops.

The method used to determine the integer points
that are inside the polytope is based on Ehrhart poly-
nomials [9]. This method and the resolution algorithm
were developed at the ICPS by Philippe Clauss and
Vincent Loechner [7].

It is important to notice that in some case, it is im-
possible to resolve the unknowns in a static way due
to the complexity of the problem. In these cases, the
solution is to trace the execution of the program on
a target computer and to analyse the trace file gener-
ated. This trace module is still in development. It has
to be noticed that trace file is only used to solve the
unknowns. Trace files does not contain execution time
informations.

3.1.4 Execution times

After solving the unknowns, the second step is to de-
duce the execution times. There are two methods to
calculate the execution time of a program. The first
technique consists in benchmarking the execution time
of the program. The drawback is that the program
has to be completely executed. The second approach
is to analyze the basic instructions of a program and to
measure their execution times. The advantage of this
method is that it separates the analysis step from the
simulation step. The set of instructions of an applica-
tion is detailed below.

Basic instructions The choice of a pertinent set of
instructions is very important to the simulation. The

set of instructions of CompPerf is composed of 313
instructions divided into three classes: operations on
data types, control structure and mathematical func-
tions.

All these instructions describe a large set of appli-
cations. Note that all these instructions are basic Java
standard instructions. The micro-benchmarking tech-
nique is used to identify the instruction execution time.

Micro-benchmarking The aim of the micro-
benchmarking technique is to measure very short time
events on a computer. All the instructions in the in-
struction set are micro-benchmarked on a reference
computer. But, in a large-scale peer-to-peer network,
peers are strongly heterogeneous and this heterogene-
ity should be taken into account when receiving the
execution times. To build a realistic peer model, adap-
tive coefficients are used to modify the execution times.
Two kinds of modifications are allowed:

• Speed modification. This modification is done by
multiplying every instruction time by a coefficient
to increase the global speed of the computer.

• Characteristic modification. It is possible to mod-
ify one or several characteristics of the peer model
by applying an adaptive coefficient to the execu-
tion time of one or more specified instructions, to
increase the speed of the floating point unit or of
the memory access.

Table 1 presents the results of defining an adap-
tive coefficient of speed variation. A mixed benchmark
composed of various instructions is executed on four
Athlon XP (1700+ to 2000+) with 512 MB memory
running Linux Debian with the same version of Java
Runtime Environnement. In this test, only the CPU
frequency varies. The fourth line of the table presents
the ratio between frequency and execution time. The
absolute value of the last line presents the speed co-
efficient due to the linear aspect of the ratio. Other
specific tests have been executed in order to determine
other adaptive coefficients.

These modifications allow the execution times to be
as close as possible to real peer-to-peer architecture.
Note that the static expression that describes the exe-
cution time of an application could be relatively com-
plex and difficult to understand. A simplification mod-
ule is used to simplify most of the expressions. This
module is JEP which is a Java API for parsing and eval-
uating mathematical expressions. With this library, it
is possible to enter an arbitrary formula as a string,
and instantly simplify it and evaluate it. We use this
library to gather up equivalent expressions and simplify
computation time equations.

computer 1700+ 1800+ 1900+ 2000+
frequency 1466 1533 1600 1666

bench (ms) 7832.69 7199.56 6560.45 5951.47
ratio 3572.31 4100.28 4696.39 5342.90

coefficient - -9,449 -9,448 -9,452

Table 1. Determining the CPU speed adaptive
coefficient.

3.2. NetPerf JNGI modules

The aim of these modules is to simulate the exe-
cution of a JNGI application. These modules use an
OTCl file generated by the MergePerf module using
the result file of the CompPerf Module merge with a
BRITE topology. Simulations involving JNGI applica-
tions cannot be run using the standard NS2 package,
NetPerf JNGI modules have to be included in NS2.
One of the major difficulties in creating a new applica-
tion in NS2 is to define the way that the user’s data is
transmitted on application-level. NS2 provides a struc-
ture to pass data among applications and to pass data
from application to transport agents as shown in fig-
ure 4.

3.2.1 Designing and implementing the JNGI
modules

The JNGI modules are implemented as child classes
of ”Application”. The matching OTcl hierarchy name
is ”Application/JNGI”. The task dispatcher, worker
and job submitter behavior of the application is im-
plemented respectively in the JNGITaskDisp, JNGI-
worker and JNGIJsub classes. These classes are imple-
mented as child classes of ”Application/JNGI”. The
major additions and modifications are explained be-
low.

User data transmissions over TCP are emulated in
the same way as TcpApp. The sender uses a buffer
for application data, then the bytes received by the
receiver are counted. When the receiver has got all the
bytes of the current data transmission, it receives the
data directly from the sender. Overhead time is added
to the TCP communication time according to [4] to
reflect the JXTA pipe communication slowdown.

The worker model The worker uses a timer so that
the next REGISTER message transmission is sched-
uled for the task dispatcher to ask for a new task. If
there is no task at the task dispatcher, the worker will
receive a SLEEP message; it has to wait a few seconds

send_data
(ADU) (ADU)

process_data

Agent Wrapper
<TcpApp>

send_data
(AppData* data) (int Size, AppData* data)

process_data

JNGI data flowApplication−level data flow

Application

send (bytes) recv (bytes) send (bytes) recv (bytes)

Agent (TCP,TCPFull) TCP/FullTCP

Agent Wrapper

Application/JNGI

packets packets

Figure 4. Structure of a JNGI agent.

before sending a new REGISTER message. Once tasks
are available at the task dispatcher level, another timer
is used by the JNGI worker to simulate the time that
a JNGI worker needs to perform a distributed task.
When this timer expires, a RESULT message is sent
to the task dispatcher which has distributed the task.
The worker will ask a new task to perform. A new
worker has to send a GETROLE message to the task
dispatcher to join the group.

The task dispatcher model Initially, the task dis-
patcher is in the Wait state; it passively waits for the
messages from the workers in its group or from the job
submitter. The job name, the number of tasks dis-
tributed and the number of finished tasks of each task
dispatcher nodes are stocked in a temporary file. The
task dispatcher does not keep track of which workers
are performing which tasks or which job submitters are
submitting which jobs.

The job submitter model The job submitter does
not only send the job to the task dispatcher, but also
the number of individual tasks to be distributed to the
workers’ group. A SUBMITCODE message is sent to
the task dispatcher for this purpose. Once the task
dispatcher has received all the jobs, the job submitter
sends a SUBMITJOBID message periodically to know
if the job is finished. Once a job is completed, the
results are sent back to the job submitter, and a RE-
MOVEJOBID message is sent by the latter in order to
remove the job from the task dispatcher’s stock.

4. Case study

P2PPerf can be used either to help tune a P2P com-
puting framework or develop new features in a P2P

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 100 1000

E
xe

cu
tio

n
T

im
e

(s
)

Number of workers connected to 1 task dispatcher

Figure 5. Prime number execution with vary-
ing task dispatcher number.

computing framework. The following tests represent
these three possibilities.

Our tests have been conducted with a standard ap-
plication included in the JNGI package. This appli-
cation finds all the prime numbers in a given interval
by the well-known method of the Eratosthen’s Sieve.
The task dispatcher gives each worker asking for a job
a number to test. The first worker that asks for a job
receives the first number of the interval, the second
worker the second number, etc.

4.1. Tuning and testing JNGI

4.1.1 Ratio between worker and task dis-
patcher

The JNGI task dispatchers are special peers that are
responsible for peers scheduling and farming out tasks
to the worker peers. Task dispatchers are a possible
bottleneck in JNGI. Indeed, if a task dispatcher has
too many peers to manage, worker peers will wait for
him and will remain idle instead of working.

The prime number application has been used with
the following parameters. The searching interval is
[2× 107, 2.002× 107]. The average computing time for
calculating a prime number included in this interval is
10 seconds, running on a Pentium 4 2.8 GHz.

The network topology was generated by Brite with
10000 nodes. A peer can only be a leaf while the other
nodes represent the network components of internet.
2000 peers join the JNGI architecture either as task
dispatchers or as workers. The number of task dis-
patchers increase from 1 to 1000. Therefore, at the be-
ginning of the simulation, one task dispatcher manages
1999 workers whereas at the end, one task dispatcher
manages only one worker.

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 80000 40000 20000 4000 2000

E
xe

cu
tio

n
T

im
e

(s
)

Interval Size

Very Bad Choice
Bad Choice

Optimal

Figure 6. Task dispatcher bottleneck.

Figure 5 presents the results of the simulations. The
curve shows that the optimal ratio between the number
of task dispatchers and the number of workers is around
one task dispatcher per 50 workers. It can be seen
that if this ratio is not respected, the performance of
JNGI is greatly altered. Indeed, for a ratio of 1/39, the
execution is 71% longer because the task dispatchers
are overloaded.

4.1.2 Choosing the right task dispatcher

The second experiment determine the importance of
electing a new task dispatcher in the JNGI framework
(see 2.1). In figure 6, the impact of choosing a worker
with poor network characteristics as a task dispatcher
is shown. For this experiment, the brite topology is
the same as in the first simulation with a fixed ratio
of 50 workers for each of the 50 task dispatchers. The
searching interval varies from [4.5× 107, 4.50002× 107]
to [4.5×107, 4.5008×107]. The average computing time
for calculating a prime number included in this inter-
val is 25 seconds, running on a Pentium 4 2.8 GHz.
The plain curve shows the execution time of the op-
timal solution i.e. choosing a worker with high band-
width and low latency to become a task dispatcher.
The dotted dashed curve shows the execution time of
the same experiment using a task dispatcher with 50%
less bandwidth and 50% more latency than the opti-
mal task dispatcher. The second dashed curve (with
a triangle) shows the execution time using a task dis-
patcher linked to the network with a 56Kb modem.
It is important to notice that if the task dispatcher is
not well chosen, the performance of the framework de-
creases by about 46% in the first case and about 130%
in the second case. So, it is very important to choose
task dispatchers peers carefully.

 2500

 2750

 3000

 3250

 3500

 3750

 4000

 4250

 4500

 0 10 20 30 40 50 60 70 80

E
xe

cu
tio

n
T

im
e

(s
)

Percentage of Losses (%)

Figure 7. Fault-tolerance of the framework.

4.1.3 Fault-tolerance

Figure 7 presents the results of experimentation to test
the fault-tolerance of the framework. The network
structure and the application are the same as in 4.1.1
with 40 task dispatchers. At a random time, a random
worker is removed from the framework until threshold
is reached. There are 3 parts in the graph. The first
one between 0% and 30% shows an increase of 16% in
the execution time, the second one between 30% and
50% shows an increase of 29% and the last one shows
an increase of 16% between 50% and 80%. In the 3
parts, the curves are almost linear. It can be seen that
the architecture can easily bear losses of workers, for
example in a very bad case where 80% of the workers
disconnect, the execution time is less than twice the
execution time without disconnection.

4.2. Optimizing the performance of an ap-
plication

The prime number application has performance
characteristics which depend on the size of the num-
bers included in the interval. For example, determining
a prime number is faster for a number as 10,007 than
for 20,000,000,003. The consequence is the following:
if the numbers can be calculated quickly, communica-
tion times will prevail over computation times and vice
versa.

A task dispatcher can then choose the most adapted
workers for the computation. That is to say, either
workers with good CPU characteristics, (if the num-
bers are big) or workers with good network charac-
teristics (if the numbers are small). This approach
to group nodes according to their attributes is called
similarity groups and it has been proposed in previous
works [11, 10] but we were not able to test them with
large numbers of peers.

 0

 200

 400

 600

 800

 1000

 1200

 8.104 6.104 4.104 2.104 4.103 2.103

E
xe

cu
tio

n
T

im
e

(s
)

Size of the interval

Workers randomly chosen
Workers with similarity groups

Figure 8. Prime numbers execution with or
without similarity groups.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10000 20000 30000 40000 50000 60000 70000 80000

O
ve

rh
ea

d
of

 th
e

ra
nd

om
 s

ol
ut

io
n

(%
)

Size of the interval

Figure 9. Impact of similarity groups: over-
head of the random solution.

Figure 8 presents the result of the simulations when
the 2000 workers depending on 40 task dispatchers are
chosen randomly (dashed curve) or chosen according
to their network characterisitics (plain curve). The pa-
rameters of the simulations are the same as in 4.1.2. As
the size of the interval is growing, the execution time
becomes higher. Grouping nodes according to their
network caracteristics is a good choice as can be seen on
figure 9. The difference between the random solution
and the similarity groups solution is 48% when the size
of the interval is 2000. But, this difference decreases by
4% when the size of the interval reaches 80000. Indeed,
when the size of the interval is short, communication
times prevail over computation times. When the size of
the interval reaches 80000, the similarity groups have
to be changed: workers must be grouped according to
their CPU characteristics and not anymore to their net-
work characteristics for this application. This test has
shown that the similarity groups must be dynamic.

NS2 is well adapted to all these simulations because
huge traces are not generated. The only recorded event
of the simulation is the execution time of the applica-
tion. A simulation lasts approximately from half an
hour to two hours on a Pentium 4 2.8GHz according
to the parameters whereas a real execution of the tests
lasts from 50 minutes to 3.6 hours.

5. Conclusion

Tests have shown that P2PPerf can be successfully
used to tune a P2P computing framework. The perfor-
mance of JNGI can be greatly enhanced when choos-
ing the right number of workers and choosing workers
with good network characteristics to become task dis-
patcher. The JNGI framework has proved to be fault-
tolerant and similarity groups have also proved to be
efficient even with great numbers of peers.

Some important features have to be added to
P2PPerf. First, measuring the impact of the dynam-
icity when adding new peers during a computation.
Second, including not only the cost of JXTA in the
communication times, but also in the management of
the peers. This will be done in collaboration with the
University of Darmstadt [8].

Some new features have also to be studied for JNGI.
The first step is to integrate the similarity groups in
P2PPerf completely in order to be able to validate our
approach. Besides, the tests have shown that similar-
ity groups must be dynamical in order to be efficient.
The second one is to test different strategies of direct
communications between peers when applications have
data dependency problems.

References

[1] The network simulator - NS2.
http://www.isi.edu/nsnam/ns/.

[2] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. Seti@home: an experiment in public-
resource computing. Communications of the ACM,
45(11):56–61, 2002.

[3] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisen-
berg. Ourgrid: An approach to easily assemble grids
with equitable ressource sharing. In Proc. of the 9th
Workshop of on Job Scheduling Strategies For Parallel
Processing, June 2003.

[4] G. Antoniu, P. Hatcher, M. Jan, and D. A. Noblet.
Performance evaluation of jxta communication layers.
In Workshop on Global and Peer-to-Peer Computing
(GP2PC 2005), May 2005.

[5] U. Assmann and A. Ludwig. Introducing connections
into classes with static metaprogramming. In Coor-
dination 1999, volume 1594 of LNCS. Springer, Apr
1999.

[6] J. Bourgeois and F. Spies. Performance predic-
tion of an NAS benchmark program with Chronos-
Mix environment. In 6th Int. Euro-Par Conference
(EuroPar’2000), pages 208–216, Munich, Allemagne,
Sept. 2000.

[7] P. Clauss and V. Loechner. Parametric analysis of
polyhedral iteration space. Journal of VLSI Sig-
nal Processing, Kluwer Academic Pub., 19(2):179–194,
July 1998.

[8] V. Darlagiannis, A. Mauthe, and R. Steinmetz. Over-
lay design mechanisms for heterogeneous, large scale,
dynamic p2p systems. Journal of Network and Sys-
tems Management, Special Issue on Distributed Man-
agement, 12(3):371–395, September 2004.

[9] E. Ehrhart. Polynômes arithmétiques et méthode des
polyèdres en combinatoire. International Series of Nu-
merical Mathematics, 35, 1977.

[10] J.-B. Ernst-Desmulier, J. Bourgeois, F. Spies, and
J. Verbeke. Using similarity groups to increase per-
formance of P2P computing. In 10th Int. Euro-Par
Conference (Europar’04), volume 3149 of LNCS, pages
1056–1059, Pisa, Italy, Aug. 2004. Springer.

[11] J.-B. Ernst-Desmulier, J. Bourgeois, F. Spies, and
J. Verbeke. Adding new features in a Peer-to-Peer
distributed computing framework. In 13th Euromicro
Conf. on Parallel Distributed and Network Based Pro-
cessing (PDP’05), pages 34–41, Lugano, Switzerland,
Feb. 2005. IEEE computer society press.

[12] T. Fahringer and B. Scholz. Symbolic evaluation for
parallelizing compilers. In Proc. of the 11th ACM
International Conference on Supercompting, Vienna,
Austria, July 1997.

[13] G. Fedak, C. Germain, V. Néri, and F. Cappello.
Xtremweb : A generic global computing system. In
CCGRID2001, Workshop on Global Computing on
Personal Devices. IEEE Press, May 2001.

[14] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite:
An approach to universal topology generation. In In-
ternational Workshop on Modeling, Analysis and Sim-
ulation of Computer and Telecommunications Systems
(MASCOTS), August 2001. Cincinnati, Ohio.

[15] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into
the Internet. In Proceedings of HotNets–I, Princeton,
New Jersey, October 2002.

[16] R. H. Saavedra-Barrera, A. J. Smith, and E. Miya.
Machine characterization based on an abstract high-
level language machine. IEEE Trans. Comput.,
38(12):1659–1679, December 1989.

[17] B. Traversat, A. Arora, M. Abdelaziz, M. Duigou,
C. Haywood, J. Hugly, E. Pouyoul, and B. Yeager.
Project JXTA 2.0 Super-Peer Virtual Network. Sun
Microsystems Inc., May 2003.

[18] J. Verbeke, N. Nadgir, G. Ruetsch, and I. Sharapov.
Framework for peer-to-peer distributed computing in a
heterogeneous, decentralized environment. In Proc. of
GRID 2002, Baltimore, Sun Microsystems, Inc.,Palo
Alto, CA 94303, USA, January 2002.

