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Abstract 

Distributed Hash Tables (DHTs) provide a means to 
build a completely decentralized, large-scale 
persistent storage service from the individual 
storage capacities contributed by each node of the 
peer-to-peer overlay. However, persistence can only 
be achieved if nodes are highly available, that is, if 
they stay most of the time connected to the overlay. 

In this paper we present an incentives-based 
mechanism to increase the availability of DHT 
nodes, thereby providing better data persistence for 
DHT users. High availability increases a node’s 
reputation, which translates into access to more 
DHT resources and a better Quality-of-Service. The 
mechanism required for tracking a node’s 
reputation is completely decentralized, and is based 
on certificates reporting a node’s availability which 
are generated and signed by the node’s neighbors. 
An audit mechanism deters collusive neighbors 
from generating fake certificates to take advantage 
of the system. 

1. Introduction 

Distributed Hash Tables, or DHTs [4,6,9], are 
distributed storage services built on top of 
structured peer-to-peer overlays [2,1,10]. The use of 
structured networks is desirable as the cost of data 
lookup remains very low (i.e., data can be found in 
only a few hops) even when the network grows to a 
very large scale. Thus, a large-scale DHT can 
potentially give users access to a large amount of 
aggregate storage capacity. 

However, the peer-to-peer systems designer 
must deal with issues not found in traditional 
systems, such as complete decentralization, 
freeloaders, and network churn (i.e., nodes 

connecting and disconnecting from the overlay). 
Churn in peer-to-peer networks is mainly due to the 
fact that users have total control on theirs 
computers, and thus may not see any benefit in 
keeping its peer-to-peer client running all the time. 
This is very common in existing peer-to-peer file 
sharing networks, as many users connect to the 
overlay to download a particular file, and 
disconnect soon after the download has finished. 

Although intermittent connections are not 
particularly harmful in file sharing networks, this 
kind of unstable user behavior is undesirable on 
DHTs. Contrary to file sharing systems, DHTs are 
designed to guarantee data persistence. This is 
achieved by replicating data blocks on 
geographically dispersed nodes, which minimizes 
the probability of correlated failures, and by 
regenerating replicas as soon as they leave the 
network so that the replication factor is kept 
constant. This reduces the risk of data becoming 
unavailable if all replicas leave the network, but it 
also means that as nodes join and leave the network 
the DHT maintenance algorithm needs to transfer a 
large number of replicas from one node to another, 
consuming a lot of bandwidth. 

Furthermore, DHTs clients lack any flexibility 
to choose where their data is stored in the overlay. 
For instance, a file’s location may be determined by 
the result of the hash of its contents. Although this 
constraint on data location is what makes data 
lookup efficient, it also means that data may be 
stored on nodes which do not “behave well,” such 
as nodes which are often disconnected from the 
network. Replicas stored on such nodes may often 
be unavailable, possibly leading to data loss if all 
replicas have left the network. Ideally, a robust 
DHT should be made up of nodes which stay 
connected to the overlay most of the time, i.e., 
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which have high availability. If most DHT nodes 
show high availability then the system can provide 
an acceptable level of data persistence regardless of 
where replicas are stored. 

It is worth pointing out that the problem of data 
persistence is not only due to clients being unable to 
choose where their data is stored. Even if the 
system allowed users to only store data on “well-
behaved” nodes, disconnections should be kept to a 
minimum. The reason for this is that as nodes store 
larger amounts of data (e.g., several Gigabytes), 
regenerating all the necessary replicas on another 
node after a node disconnects from the network will 
take a long time. As Rodrigues et al. [11] have 
shown, even modest node departure rates can 
prevent the DHT maintenance algorithm from 
regenerating all replicas quickly enough (due to the 
low upstream bandwidth of ADLS connections), 
which eventually leads to data loss. Therefore, even 
well-behaved nodes should always avoid 
disconnections whenever possible. 

In this paper we present an incentives-based 
mechanism to increase node availability in DHTs, 
which leads to better data persistence. Each DHT 
node is monitored so that the system can track its 
up-time and availability. Nodes with higher 
availability are given a higher reputation, and can 
benefit from a higher storage quota and a higher 
Quality-of-service (e.g., higher download 
bandwidths). Our mechanism is fully decentralized, 
and requires only a small amount of message 
exchanges to track and verify node reputations. 

The rest of this paper is structured as follows. 
Section 2 recalls some basic characteristics of 
structured networks. Section 3 presents our 
incentives-based design. Section 4 lists related 
work, and Section 5 concludes the paper. 

2. Structured networks 

This section recalls some basic concepts of 
structured peer-to-peer networks and DHTs. The 
terms in italics are of especially relevant as they 
will be used later throughout the paper.  

Structured peer-to-peer networks, such as 
Pastry [1], Chord [10], and CAN [9], are highly-
scalable overlays networks which employ some 
kind of key-based routing algorithm [2]. These 
routing algorithms map every unique node 

identifier, or nodeid, to a point in a logical address 
space (e.g., a ring in Pastry and Chord, or a d-torus 
in CAN). Nodes which are adjacent in the logical 
address space are called neighbors, although this 
does not mean that they are actually geographically 
close. In fact, since nodeids are usually randomly 
assigned, nodes which are neighbors in the logical 
address space will most probably be geographically 
dispersed. 

Messages are associated with a routing key

which maps to the same address space as nodeids. 
The routing algorithm routes the message through 
the overlay towards the node whose nodeid is 
closest to the key in the logical space. For instance, 
a Pastry message is routed to the overlay node 
whose nodeid is numerically closest to the message 
key1.

Overlay nodes usually maintain a list of its 
neighbors, as well as the addresses of more distant 
nodes. For instance, in Pastry each node maintains a 
structure called the leafset, which contains the 
addresses of the L/2 closest neighbors in the 
clockwise direction of the ring, and the L/2 closest 
neighbors counter-clockwise. Each node monitors 
its leafset neighbors, removing nodes which have 
disconnected from the overlay and adding new 
neighbor nodes as they join the ring.

Distributed Hash Tables provide an abstraction 
for a highly-scalable distribute storage service 
accessible through a simple put-get interface similar 
to that of traditional hash tables. Inserted objects, or 
blocks, are replicated and persistently stored in 
several nodes. For instance, in the PAST DHT 
block replicas are stored in the k nodes which are 
numerically closest to the block’s key. We then say 
that the DHT uses a replication factor of k. Since 
PAST is built on top of Pastry, determining the 
location of a block’s replicas is achieved by 
retrieving the leafset of the node which is 
numerically closest to the block’s key, and selecting 
the k nodes which are closest to the key. 

In the following section we present our 
incentives-based design. For the sake of 
concreteness, we have based our design on the 
Pastry/PAST DHT. We will therefore speak of 
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values, which are considered adjacent in the ring 
geometry.  



using Pastry’s leafsets to determine a node’s 
neighbors, and we will refer as neighbors to the 
nodes which are numerically closest to a given 
node. However, the main features of our design are 
not specific to Pastry/PAST, and can be easily 
applied to other DHTs designs such as DHash or 
CAN. 

3. Design 

In order to achieve high node availability we 
establish two basic principles: first, nodes should 
only be allowed to join the DHT after they have 
shown to be stable, i.e., to be highly available, and 
second, once a node has joined the DHT, its 
availability should determine a node’s reputation, 
which in turn grants the node better access to the 
DHT. 

The first principle implies that a client who 
wants to join the DHT to use the storage capacity of 
other nodes should first prove that he is stable 
enough for other DHT clients to trust him to store 
their data. In other words, only highly available 
nodes are allowed into the DHT. This means that 
new nodes, which by definition do not have any 
reputation, cannot immediately join the DHT. 
Instead, a new node must first earn a minimum 
level of reputation by contacting some nodes in the 
DHT and showing them that it can stay on-line for a 
certain amount of time (e.g., 24 hours). During this 
test period, it must also fetch and store the block 
replicas it will responsible for after joining the 
DHT. Once the test period is over, the node is 
allowed to join the DHT, i.e., to contribute its 
resources to the DHT by storing blocks from other 
DHT nodes, and in return it is allowed to use some 
of the DHT’s available storage capacity. 

However, a client that has just become a DHT 
node has, again by definition, a very low reputation 
(the other nodes have only known him for a short 
time). According to our second principle this will 
limit the storage resources and QoS that it can get 
from the DHT. As the node’s total up-time and 
availability increases, so will its reputation, 
granting him access to more storage resources and a 
better QoS. It is therefore in a node’s best interest to 
stay connected to the overlay as much and as long 
as possible. 

We assume strong node identities, which 
prevents a node from rejoining the network under a 

new identity after having been discovered to cheat 
or being blacklisted. One way to do this is to have a 
trusted authority sign certificates binding a nodeid 
to a public key and an IP address. The certificate 
authority only intervenes once to generate the 
nodeid certificate, and is no longer contacted 
afterwards. 

3.1. Restricted joins 

New nodes must show that they can be highly 
available before joining the DHT. In this section we 
describe a join procedure whose goal is to prevent 
nodes with low availability from entering the DHT. 

The join procedure basically consists of two 
phases. During the first phase the joining node must 
show that is can be stay connected to the network 
for some period of time Tphase1. Then, during the 
second phase it fetches and stores all the block 
replicas held by its future ring neighbors. During 
this phase the node must also prove that it is 
actually storing those blocks. The node may finally 
join the DHT after Tphase1+Tphase2 of continuous up-
time, and if it proves to store the blocks 
downloaded from its neighbors. These two phases 
let a node earn a minimum reputation as to its 
availability and willingness to store data from other 
nodes. 

We will now describe the two phases in more 
detail. Let us call node A the new node who wants 
to join the DHT. Node A starts by determining the 
m nodes whose nodeids are numerically closest to 
its own nodeid. This can be done by asking any 
node to route a message using A’s nodeid as the 
routing key. Since the message will be delivered to 
the node B whose nodeid is numerically closest to 
A, fetching B’s leafset (i.e., the list of nodeids 
adjacent to B in the ring) allows A to determine the 
m nodes closest to it in the ring. We will call this set 
of nodes the monitoring set M, and a typical value 
of m may be 10. 

Node A then starts sending heartbeats to every 
node in the monitoring set M to prove it remains 
connected to the network and is running the peer-
to-peer client. This means that nodes in M are 
responsible for monitoring A’s liveness. During this 
phase node A is not allowed to store any data in the 
DHT yet, but it may ask the nodes in the monitoring 
set to act as proxies for get() operations (i.e., to read 
blocks from the DHT). After a time period Tphase1 of 



continuous up-time, node A enters phase two, and 
should now start fetching and storing the data 
blocks it will be responsible for once it has joined 
the DHT. We assume that the replication factor k is 
smaller than m, so that all the block replicas that 
node A needs can be found in M. 

During phase two, each node in the monitoring 
set keeps a log of the blocks that A has fetched 
from it. In order to verify that A has not deleted 
these blocks, each node in M periodically sends a 
challenge to A on a random block (picked among 
those which A has already fetched). A challenge is 
a query on the hash of the block contents and a 
random value. Node A can only return the correct 
keyed hash value of the block if it is still storing it. 
The monitoring node will also inform all other 
replicas of the block before sending the challenge, 
so that A cannot fetch the block after receiving the 
challenge request without the other nodes detecting 
this. 

In order for phase two to complete, node A 
must have fetched all block replicas from M. The 
reason for this is that once node A has joined the 
DHT, it will become responsible for storing all the 
blocks whose ids are close to A (this is how DHTs 
locate data). Therefore, it makes sense that the node 
should already store all the necessary data when it 
joins the ring. The duration of the phase two 
therefore depends on the time it takes the node to 
transfer all block replicas from its future ring 
neighbors. 

As an example, we assume a DHT in which 
each node stores 10 GB of other clients’ blocks, the 
replication factor is 3 (i.e., three copies of each 
block exist at any given time), and the available 
upload bandwidth per node is 256 Kbits/s (we 
assume a higher download bandwidth of 1 Mbits/s, 
which corresponds to standard ADSL links). The 
time needed to transfer all replicas to a new node is 
S / BW, where S is the total size to be transferred 
(10 GB), and BW the aggregate download 
bandwidth (in our case, 3 * 256 Kbits/s, since 
blocks can be downloaded in parallel from 3 
different nodes). This yields a transfer time of 
approximately 30 hours, which is not very high 
given the assumption that our nodes must be highly 
available (i.e., stay connected 24 hours a day, 7 
days a week). Furthermore, 30 hours is a nice value 

since it proves that the node can be stay connected 
for more than 24 hours. 

When phase two is over, node A may finally 
join the DHT. However, in order for DHT nodes to 
accept its join request, it must prove it behaved well 
during the two phases. It does so by contacting all 
nodes in M, and requesting a “join authorization” 
certificate from each one of them. Each certificate, 
which is timestamped and signed, states three 
things: 1) that the certificate issuer has verified A’s 
liveness since the beginning of phase one (the 
elapsed time is also specified), 2) that A has fetched 
all blocks from it, and 3) that all block challenges 
were correct. Join authorization certificates have an 
expiration date and should only be valid for a few 
minutes (the time needed to complete the join), thus 
preventing a node from disconnecting and then 
joining the network again using an old certificate. 

Once node A has collected the certificates from 
M, it attaches them to the final DHT join request, 
and sends the request into the network. From this 
moment the join procedure is the same as the 
standard DHT join procedure, the only difference 
being that the certificates must be valid for nodes to 
accept the join request (see Section 3.4 for a 
description of how certificates are verified). 

A Byzantine node in the monitoring set could 
prevent a “well-behaved” node from joining the 
DHT by refusing to issue a correct certificate. If we 
assume that there may be up to f nodes which refuse 
to issue a certificate, then node A contacts all m

nodes and waits for m-f nodes to respond. Setting m
= 3f+1 ensures that a majority of responses will be 
correct among the m-f responses. Therefore, node A 
must present at least f+1 valid certificates to be 
allowed to join the DHT. For instance, if m=10, 
then valid certificates from at least 4 different 
monitoring nodes must be presented. 

3.2. Tracking reputation 

Once a node has joined the DHT, the system starts 
tracking its availability and determines a reputation 
value accordingly. Our mechanism basically 
consists in increasing a node’s reputation when it is 
connected to the overlay, and degrading it when it 
is off-line. 

More specifically, a node’s reputation value R

is increased every time interval Tup of continuous 
up-time, up to a maximum value Rmax. Conversely, 



when a node disconnects from the network its 
reputation value is decreased every time interval 
tdown(d, n), which is a function of the node’s 
downtime d (i.e., the elapsed time since it has gone 
off-line), and the number n of leafset neighbors 
which are also off-line at the same time. Intuitively, 
tdown(d, n) should decrease as d increases, meaning 
that a node’s reputation should degrade faster and 
faster as it spends more time off-line. Similarly, 
tdown(d, n) should also be smaller as n increases in 
order to discourage nodes from disconnecting when 
some of their neighbors are already off-line, a 
situation in which fewer replicas are available and 
some may be in the process of being regenerated. 

Each live node must send heartbeats to M, the 
monitoring set of nodes responsible for maintaining 
its reputation. Every Tup intervals (e.g., one hour), a 
node A asks each node in M to increase its 
reputation value R and to issue a signed certificate 
containing the following fields: the new value of R
for node A, its uptime, a timestamp, and an 
expiration date. Since a node will usually request a 
new certificate every Tup, certificates should only be 
valid for Tup.. As before, in order to avoid Byzantine 
nodes refusing to issue A’s certificates, collecting 
f+1 valid certificates (with m=3f+1) is sufficient2.
However, this also means that node A must always 
present at least f+1 valid certificates to prove its 
reputation. 

Finally, we must avoid the situation in which 
all nodes in M collude and issue certificates with a 
false reputation value, i.e., one which is higher than 
it should be. We prevent this by using a random 
certificate audit mechanism, which will be 
discussed in Section 3.4. 

3.3. Node disconnections 

When a node A disconnects from the overlay, its 
neighbors do not immediately remove it from their 
leafsets. Instead, they flag node A as being 
temporarily off-line, hoping it will come back on-
line soon. Even though its block replicas are 
unavailable, the maintenance algorithm does not 

                                               
2 As time passes the values of R calculated by different 
nodes in M may drift. To solve this, when a node detects 
that the drift has exceeded a given threshold, it requests 
that all nodes in M perform a Byzantine fault-tolerant 
agreement on the value of R to be used henceforth. 

start regenerating them on another node. However, 
A’s disconnection will be detected by the nodes in 
M, which will start decreasing A’s reputation value 
R.

At this point two things can happen. One, node 
A quickly returns to the network (e.g., after a peer-
to-peer client crash and restart, a reboot, or a 
network outage), albeit with a degraded reputation. 
Its neighbors will detect its presence (through the 
heartbeats) and modify its leafsets to change A’s 
status back to on-line.

Two, node A stays off-line until its reputation 
value R drops to zero. In this case it is considered to 
have definitively left the DHT. Nodes in M then 
broadcast a message to its ring neighbors so that 
A’s entry is removed from all the leafsets. Since the 
block replicas that A was storing are considered 
lost, the maintenance algorithm starts regenerating 
them on another node. 

After a node’s reputation has dropped to zero, it 
can still be allowed to rejoin the DHT (after all it 
may still have most of the data blocks the system 
will ask it to store). However, the node must go 
through the complete two-phase join procedure 
again, as it must rebuild its reputation before being 
trusted again. Since in this case the second phase 
may be very short (the node already has most of the 
blocks), an additional third phase should be inserted 
as a penalty for having being previously kicked out 
of the system. Nevertheless, if repeating this 
process several times is considered a bad behavior, 
the system could backlist the node, preventing him 
from joining again. 

3.4. Verifying reputation certificates 

Several measures must be taken to make sure 
reputation certificates are valid. First of all, the 
signature must be authentic, which can be verified 
using the issuer’s public key. However, a node must 
also be prevented from presenting certificates from 
fake nodes, i.e., issued by nodes other than those in 
the monitoring set. For this, verifying a certificate’s 
validness also implies checking that the issuer is 
actually one of the m closest nodes to A in the ring. 
This can be done by looking up the node which is 
closest to A’s nodeid and fetching its leafset. 

However, A’s monitoring set may change as 
new nodes join the network and others leave 
permanently. If a certificate issuer leaves the 



monitoring set, then the certificate will not be 
considered valid. We assume that the rate of node 
arrivals and departures is much lower than that of 
certificate regeneration (one hour). Since only f+1 
valid certificates are sufficient for A to prove its 
reputation, we can assume that at least f+1
certificate issuers will still be in M between 
certificate regenerations. 

We must also prevent collusive nodes in M 
from generating false certificates, i.e., with a higher 
reputation value than the node should have. This is 
achieved by having all DHT nodes randomly audit 
the monitoring set of other nodes. This works as 
follows: a random node B periodically picks some 
random key and asks the nodes closest to that key 
in the ring to return special signed versions of their 
leafsets. Each entry of these leafsets also contains 
the uptime for each node. Node B repeats this 
several times, for instance, every 30 minutes for a 
few hours, to temporarily monitor that portion of 
the ring. Then, node B fetches all the reputation 
certificates of the nodes in that portion of the ring, 
and verifies that the up-times values are consistent 
with the leafsets it fetched before. 

If a certificate states that a node A has been up 
for 24 hours, while it did not show in the leafsets of 
the previous hours, then the monitoring set of node 
A is lying. Node B also checks that the returned 
leafsets are not fake (i.e., containing nodes which 
are off-line) by pinging every node in the leafset to 
verify its liveness. 

Once a monitoring set’s leafsets and 
certificates, which are both signed, have been 
shown to be inconsistent, the accused nodes will 
have lost their credibility and their certificates will 
have little value for other nodes in the system. The 
penalty may range from clients deleting the blocks 
they store on the lying nodes’ behalf (as they are no 
longer trusted), up to being permanently backlisted 
and left out of the system. 

3.5. Benefits of a higher reputation 

One of the goals of our reputation mechanism is to 
grant nodes with higher reputation better quality 
access to the system’s resources. In this section we 
present two mechanisms for rewarding users 
according to their reputation. 

Druschel et al. [12] have proposed an 
incentives-based mechanism by which users are 

allowed to consume only as many resources as they 
provide to the system. Their mechanism consists in 
having each node publish a signed usage record

containing: the total storage capacity contributed to 
the system, the local list of data blocks stored on 
behalf of other nodes, and the remote list of blocks 
stored by other nodes on its behalf. 

In order to verify that a node does not consume 
more storage capacity than it contributes, the 
system employs an audit mechanism in which 
nodes pick other nodes at random and check that 
local and remote lists are balanced. A node that 
deflates its remote list (to pretend to consume fewer 
resources than it actually does) exposes itself to 
being discovered and losing its data, since a node’s 
remote list is the only guarantee that the remote 
nodes will keep storing the data on its behalf. 
Conversely, a node that is discovered to have 
inflated its local list (pretending to store more data 
on behalf of other nodes than it actually does) has 
practically signed a public confession of its lies 
(since usage records are signed and public). It has 
therefore lost its reputation and risks deletion of the 
blocks the other nodes store on its behalf, as well as 
being blacklisted. 

This mechanism can be extended to take our 
reputation scheme into account. For instance, the 
amount of DHT storage space that a node is 
allowed to consume could be dependent on its 
reputation. A new node contributing 10 GB of 
storage but having a reputation value R of Rmax/10,
i.e., 10% the maximum reputation value, could be 
allowed to consume only 1 GB of DHT space (10% 
of its contributed capacity). As its total up-time 
increases, it will be granted an amount of DHT 
storage space proportional to its R value. 

This can easily be achieved by including the 
certificates that state the node’s R value in its usage 

record. Therefore, when nodes randomly audit 
other nodes’ usage records they take R into account 
to see if the audited node is respecting its quota. 
Certificate verification would add some overhead, 
as verifying certificates implies checking that they 
are issued by the actual monitoring set. However, 
this is only carried out during auditing. Nodes 
processing put() requests from other nodes could 
accept to store the block right away, and defer 
certificate verification for a later time. If the 
certificate is later found to be fake, then the node 



that had accepted the put() request can delete the 
blocks inserted by the lying node. 

Disconnections may significantly lower a 
node’s reputation value. Therefore, if a node 
disconnects and quickly rejoins the network an 
audit may show that it is storing more data than its 
new R value allows it to. Nodes should therefore be 
given a grace period to restore their reputation 
before their data is deleted. This can be done by 
examining the certificate’s uptime and R value. A 
relatively high R value and low uptime will indicate 
a recent disconnection. Conversely, both low 
uptime and R values indicate either a long 
disconnection or a relatively new node, both cases 
in which the grace period may not be granted. 

Finally, the quality-of-service experienced by a 
node may also be made dependant on its reputation. 
For instance, if a node A has a high reputation 
value, it could attach its reputation certificates when 
sending a get() request node B in order to request a 
higher transfer bandwidth, or to have its request 
processed with a higher priority. Since verifying a 
certificate takes some time (the certificate’s issuers 
must be contacted), node B could handle the request 
immediately, and verify A’s certificate in the 
background. As before, if the certificates are found 
to be false, then A risks being blacklisted. 

Since attaching f+1 certificates to every get()
request can produce a large overhead, node A may 
just attach a reputation value which it will sign with 
his own key, implying that he also possesses the 
corresponding certificates. When verifying A’s 
reputation, node B will ask it to provide these 
certificates for verification. Again, if node A has 
lied about the R value, then its signed request 
(containing the R value) can be used against it. 

3.6. External clients 

Some users may be unwilling or unable to remain 
connected to the DHT for a long time. For instance, 
a user may access the DHT infrequently to read a 
file published by someone else, while other users 
may not have a permanent connection to the 
Internet (e.g., those using notebooks). These users 
should access the DHT using one of the stable DHT 
nodes as a proxy. Joining the DHT makes no sense 
since their low availability makes them unsuitable 
to store other nodes’ data. 

In order to avoid freeloaders, DHT nodes may 
be configured to act as proxies only for the clients 
they know, e.g., computers within the same LAN or 
the same organization. In this case they may relay 
both put() and get() operations from those well-
known clients. Other more “altruistic” DHT nodes 
may accept to relay get() operations from unknown 
clients (e.g., anonymous users), but deny put() calls 
unless the client’s identity and access rights can be 
established. Finally, some DHT nodes may choose 
not to act as proxies at all (e.g., home computers). 

4. Related work 

Incentives in peer-to-peer systems have been the 
subject of several publications in the last few years, 
and some mechanisms have actually been deployed 
on existing systems. 

Shneidman et al. [15] explain the case for 
considering rationalities and incentives in a peer-to-
peer system design, and describe the concept of 
Mechanism Design. 

Golle et al. [14] present a game theoretic model 
and analyze equilibria for a file sharing system 
(Napster). 

The widely deployed BitTorrent file 
distribution system [13] seeks pareto efficiency by 
making a user’s download rate proportional to its 
upload rate. 

Druschel et al. [12] have suggested two 
mechanisms to ensure fair sharing of peer-to-peer 
node resources, namely storage capacity and 
bandwidth. Their system is completely 
decentralized and relies on auditing to prevent 
nodes from taking advantage of the system. Nodes 
are rewarded according to their contributed storage 
capacity and bandwidth. Node availability is not 
addressed in their system. 

5. Conclusion and future work 

We have presented an incentives-based mechanism 
to increase node availability in a DHT, which 
minimizes the negative effects of churn and 
improves data persistence. A new join procedure 
prevents nodes with low availability from joining 
the DHT, thereby reducing the probability of DHT 
data being unavailable or lost. 

A reputation scheme based on a node’s 
availability grants better access to the DHT 



resources to more reliable nodes. The mechanisms 
used to maintain and verify a node’s reputation are 
completely decentralized, and are based on digital 
reputation certificates issued by a node’s neighbor. 
A random audit mechanism prevents nodes from 
colluding to take advantage of the system by 
issuing fake certificates,  i.e., with a reputation 
higher than it should be. 

Future work will include implementing and 
evaluating the new join protocol, as well as the 
certificate generation, verification, and audit 
mechanisms. We are planning to integrate them into 
the Pastry/PAST implementations included in 
FreePastry 1.4.2, and to test the system using the 
Pastis prototype [5], our DHT-based peer-to-peer 
file system, as the DHT application. 
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