Lightweight Emulation to Study Peer-to-Peer Systems *

Lucas Nussbaum and Olivier Richard

Laboratoire Informatique et Distribution - IMAG
ENSIMAG - Antenne de Montbonnot - ZIRST
51 avenue Jean Kuntzmann, 38330 Montbonnot Saint-Martin, France
{Lucas.Nussbaum,Olivier.Richard } @imag.fr

Abstract

The current methods used to test and study peer-to-
peer systems (namely modeling, simulation, or execu-
tion on real testbeds) often show limits regarding scala-
bility, realism and accuracy. This paper describes and
evaluates P2PLab, our framework to study peer-to-peer
systems by combining emulation (use of the real stud-
ied application within a configured synthetic environ-
ment) and virtualization. P2PLab is scalable (it uses a
distributed network model) and has good virtualization
characteristics (many virtual nodes can be executed on
the same physical node by using process-level virtual-
ization). Ezperiments with the BitTorrent file-sharing
system complete this paper and demonstrate the useful-
ness of this platform.

1. Introduction

Peer-to-peer systems have become more and more
popular over the last few years, and this popularity of-
ten required changes that made them more and more
complex. Due to this ever increasing complexity, the
development and the study of peer-to-peer systems
have become more difficult : we need ways to ensure
that a peer-to-peer application will work properly on
thousands of nodes, or ways to understand applications
running on thousands of nodes.

Distributed applications are traditionally studied
using mathematical modeling, simulation, and execu-
tion on a real system. Simulation consists in using a
model of the application’s code in a synthetic environ-
ment. This method is widely used, and gives valuable

*This work has been done within the ID laboratory jointly
supported by CNRS, INPG, INRIA, and UJF. Computer re-
sources are provided by the Grid5000 platform (further informa-
tion at http://www.grid5000.fr/).

1-4244-0054-6/06/$20.00 ©2006 IEEE

results easily. However, it is often difficult to simulate
efficiently a large number of nodes using a complex
model : a trade-off between the realism of the model
and the number of nodes always has to be made.

On the other side, one can run the real application
to study on a real-world experimentation platform like
PlanetLab [5]. But the environment is then difficult
to control and modify (since it depends heavily on the
real system itself), and results are often difficult to re-
produce (since the environmental conditions may vary
a lot between experiments). This kind of real-world
experiments is needed when developing a peer-to-peer
system, but it doesn’t satisfy all needs.

Between those two approaches, this paper explores
an intermediate solution using emulation and virtual-
ization, and shows that such an approach can provide
interesting results when used to study peer-to-peer sys-
tems.

Emulation and Virtualization have to be distin-
guished :

Emulation consists in providing a modified environ-
ment to the studied application, to match the con-
ditions of the experiment. Determining which re-
sources to emulate (and with which precision) has
to be considered as a trade-off between realism
and cost (a precise emulation of conditions can be
very CPU-intensive). For example, when studying
peer-to-peer systems, network emulation is impor-
tant, while emulation of different types of hard
disks is probably not necessary. Emulation is of-
ten costly, and its cost is often difficult to evaluate,
because it depends both on the quality of emula-
tion and on the emulation parameters : emulating
an high-latency network will be more expensive
than emulating a low-latency one.

Virtualization of resources allows to share a resource
between several instances of an application. It is

required to be able to study a large number of
co-existing nodes. In the field of distributed sys-
tems, virtualization allows to execute several in-
stances of the application or the operating system
on the same physical machine, thus increasing the
number of nodes available for the experiment. Of
course, since the resources of the physical machine
are shared between instances, the fairness of this
share is an important issue. Like the precision of
emulation, the quality of the fairness is a trade-off.

2. Related Works

A lot of work occurred recently in the virtualization
area, with different approaches. Linux Vserver [12] is
a patch for the Linux kernel adding contexts and man-
aging interactions between them, allowing several en-
vironments to share the same kernel with a very low
overhead. User Mode Linux [7] is a port of the Linux
kernel to a Linux process. And Xen [1] uses paravirtu-
alization to give the ability to run simultaneously sev-
eral operating systems. Those operating systems have
to be modified to run over the Xen microkernel, which
is in charge of sharing resources and providing virtual
devices.

Regarding network emulation (by far the most im-
portant resource to control while studying peer-to-peer
systems), there are both low-level tools which work at
the packet level to emulate different network connec-
tions (varying bandwidth and latency) and higher level
tools which allow to build a complex synthetic network
topology.

The low level tools include Dummynet [14], which
runs on FreeBSD and is the most popular network em-
ulator, NISTNet [4] (which runs on Linux 2.4), and
Linux 2.6’s Traffic Control (TC) and iproute2 tools [15]
(using NetEm [9]). Those tools schedule inbound
and/or outbound packets to control bandwidth and de-
lay, and emulate network problems such as packet loss.

Higher level tools use the former low-level tools to
emulate complex topologies. NetBed [17] combines real
nodes using RTC or DSL lines, nodes using Dummynet,
and simulated nodes (using Network Simulator Em-
ulation Layer) to provide experimental environments.
Modelnet [16] uses cluster nodes split in two groups :
the application under study runs on edge nodes while
the Modelnet core nodes use Dummynet to emulate a
network topology. Modelnet uses a distillation phase
to make a trade-off between accuracy and scalability
to be able to emulate the network on a small number
of nodes.

The current virtualization tools target high realism
and have a relatively poor virtualization ratio (number

of virtual nodes / number of physical nodes). One of
the problems is that they virtualize a full operating
system (kernel, libraries, application). This is often
not needed for peer-to-peer applications, since they are
relatively well self-contained.

Another issue is network emulation : current tools
target a realistic emulation of the core network (con-
gestion, routing, etc inside the core links). Most peer-
to-peer applications are used on the edge nodes of the
Internet, often on home computer with DSL connec-
tions. Therefore, even if some aspects of the Internet
core are important (e.g latency, for experiments involv-
ing locality), the emphasis can be put on the emulation
of the link between the edge nodes and their Internet
Service Provider. This link is the bottleneck in most
(if not all) cases.

3. P2PLab
3.1. Overview

P2PLab is our emulation tool for studying peer-to-
peer systems. It targets high efficiency (large number
of virtual nodes can be studied on a low number of
physical nodes), and scalability (experiments can be
done with thousands of nodes).

P2PLab virtualizes at the process level, not at the
system level, to provide better scalability. It runs on
FreeBSD, since it uses Dummynet for network emu-
lation. A decentralized approach is used to emulate
network topologies, allowing better scalability.

First, we will verify that FreeBSD is a suitable plat-
form for P2PLab by checking that its scheduler is
scalable and provides a good level of fairness. Then,
P2PLab’s virtualization system will be described.

In a second part, the network emulation model of
P2PLab will be presented.

3.2. Virtualization

While most virtualization systems virtualize on the
operating system level, it is not mandatory here since
the goal is to study peer-to-peer systems. It was there-
fore decided to virtualize the process’ network identity
by binding each process to its own IP address.

The FreeBSD operating system was chosen for
P2PLab because of the availability of Dummynet [14],
FreeBSD’s network traffic shaper. But it was still nec-
essary to test whether FreeBSD was a suitable platform
to run a very large number of processes without com-
promising our experiment’s results. FreeBSD has two
schedulers : the classic 4BSD scheduler, and the more
modern ULE scheduler (which is similar to Linux 2.6’s

scheduler). It was decided to evaluate both. The eval-
uation took place on nodes of the GridExplorer system,
part of the French grid research project Grid5000 [3].
The nodes are Dual-Opteron 2Ghz with 2 Gb of RAM
and gigabit ethernet.

1600 T T T
Calc. time (4BSD) ——+—

1400 |

1200

Calc. time (ULE) ~——x—--

\
\
X1
\

\
N
\\

1000 - 2 .
800

600 - T i

completion time (s)
X

400

200 <

0 1 1 1 1 1
0 500 1000 1500 2000 2500

nb of instances

3000

Figure 1. Total calculation for several in-
stances of the same process. Swap is not
used.

The first experiment was to evaluate the scheduler’s
ability to run multiple processes by running a large
number of concurrent non-memory-intensive processes
(each process, when started alone, needed about half
a second of CPU time to complete). Figure 1 shows
that total calculation time scales linearly with both the
4BSD and the ULE scheduler. However, the overhead
is higher with the ULE scheduler.

Then, the same experiment was done with memory-
intensive processes. Figure 2 shows clearly that results
shouldn’t be trusted as soon as swap is used (the figure
only shows results with the 4BSD scheduler. Results
with the ULE scheduler were similar).

Fairness between processes is also important. To
measure it, concurrent instances of a CPU-intensive
process were started every second, and the real run
time of each instance was measured. Figure 3 shows
that there are serious fairness problems in the ULE
scheduler (some processes seem to run alone on the
second CPU !). Fairness of the 4BSD and Linux 2.6
schedulers were better but not perfect. This kind of
process schedulers try to maximize throughput and in-
teractivity, and fairness is not a priority. Some differ-
ent settings were tried for the timer interrupt frequency
(HZ) and the quantum (time allocated to a process be-
fore switching to another one), but it didn’t improve
the results significantly.

2000 — . T . T .
Calc. time (4BSD) +——+—
1800
1600
@ 1400 |-
£ 1200
& 1000 |-
@
|a 800 |
S
8 600 [
400
200 -
0 ’ 1 1 1 1 1
0 10 20 30 40 50 60 70 80
nb of instances
Figure 2. Total calculation for several in-
stances of the same process. With more than
25 instances, swap is used.
1200 T T T T T T T T
ULE Scheduler +
o . 4BSD Scheduler x
1000 P+ s T + + Linyx26 *x |
4++ +++#+*++++H+++ ++#+++ tb; Eh W +#ﬁ+++++++ ##Jr
A + -
o 800 H sk ++ ++ -
€ x RS IRIHL SR ,
g X&X%XXXW%W X +
K] 600 | % KooK aKey K bk M ORBREK S
3 R ok
2 * P
) ¥ ¥]
400 £
*
200 | .
3
0 1+ 1L+ 1 4 41 4 1+ [
0O 10 20 30 40 50 60 70 80 90 100

process number

Figure 3. Completion times of concurrent in-
stances of the same program, started with a
1 second interval.

After those first experiments, the 4BSD scheduler
was chosen for P2PLab.

As said earlier, virtualization is made at the level
of the process’ network identity : instances on the
same physical system share all resources (filesystem,
memory etc.) as normal processes do. However, each
process has its own IP address on the network. The
main IP address of each physical system is kept for
administration purposes. The IP addresses of the vir-
tual nodes are configured as interface aliases as shown
in figure 4 (most UNIX systems, including Linux and

FreeBSD, allow each network interface to be assigned
several IP addresses through an aliasing system). Eval-
uation showed that interface aliases produced no over-
head compared to the normal assignment of an IP ad-
dress to an interface.

To avoid namespace conflicts, the adresses of the
virtual nodes were chosen in different subnet. Fig-
ure 4 shows an example configuration using the
192.168.38/24 network for administration and the
10.0.0.0/8 network for virtual nodes.

Node 1 Node 2
192.168.38.1 192.168.38.2
10.0.0.1 (alias) 10.0.0.51 (alias)
10.0.0.2 (alias) = 10.0.0.52 (alias) 2
10.0.0.3 (alias) 9 10.0.0.53 (alias) 4

10.0.0.50 (alias) 10.0.0.100 (alias)

Node 3

192.168.38.3
10.0.0.101 (alias)
10.0.0.102 (alias) =
10.0.0.103 (alias) 9

SWITCH

10.0.0.150 (alias)

()

Figure 4. On each physical node, IP ad-
dresses for virtual nodes are configured as
interface aliases.

To bind an application to a particular IP address, we
chose to intercept some network system calls. Several
options are available : modifying the application under
study, linking the application with a specific library,
using ptrace() to intercept system calls, modifying
the kernel, or modifying the C library.

In P2PLab, we chose to modify the FreeBSD C
library, which provided a good compromise between
complexity and efficiency. We modified the bind(),
connect () and listen() library calls using a naive
approach :

e When bind() is called, the my_addr parameter
is modified to restrict the bind to the IP address
specified by the BINDIP environment variable.

e When connect () or listen() are called, bind ()
is called before to restrict connect () or listen()
to the IP address in BINDIP. If another bind ()
was made before, this one will fail, but we ignore
the error in this case.

This approach doubles the number of system calls
for connect () and listen() and only works for TCP
connections. A similar approach is possible for UDP.

Tests showed that this libc modification was work-
ing as expected with programs in Perl, Python, Ruby,
TCL, C, Java (with Sun’s JDK). The only case where
this approach failed to work was statically compiled C
programs.

Then, we evaluated the overhead of this approach
during the establishment of TCP connections. The
test program was connecting to a local server and
disconnecting as soon as the connection was estab-
lished. We measured that the duration of a connec-
tion/disconnection cycle was 10.224s without the mod-
ification, to compare to 10.79us with the modification :
the cost of this approach is very low, even in the worst
case.

3.3. Network Emulation

Current network topology emulators like Model-
Net [16] target a realistic emulation of the core network.
But most peer-to-peer applications run on nodes on the
edge of the Internet : while the traffic in the core of
the Internet can influence the peer-to-peer system be-
haviour (congestion between providers can increase la-
tency, for example), the main bottleneck for end nodes
is often the link between the user and its Internet ser-
vice provider (ISP). Therefore, it is possible to model
the Internet by reproducing what the end node really
sees, excluding what is less important from the end
node point of view.

P2PLab’s emulation model allows to control :

e bandwidth, latency and packet loss rate on the
network link between the end node and its ISP ;

e latency between group of nodes, allowing to study
problems involving locality.

Figure 5 shows an example topology which we suc-
cessfully emulated using P2PLab. Figure 6 presents
some ping results between nodes of this topology (there
was no other traffic between the virtual nodes when the
pings were made). Let’s use the measurement between
10.1.3.207 and 10.2.2.117 as an example. The latency
of 853 ms can be decomposed in :

e 20 ms of delay when the packet goes out of
10.1.3.207 (delay configured for the 10.1.3.0/24
network group) ;

e 400 ms between the 10.1.0.0/16 network group and
the 10.2.0.0/16 network group ;

e 5 ms when the packet arrives at 10.2.2.117 (delay
configured for the 10.2.0.0/16 network group) ;

e 425 ms when the packet goes back from 10.2.2.117
to 10.1.3.207, decomposed as above ;

e 3 ms of overhead.

10.2.0.0/16
latency : 5ms
bandwidth : 10 Mbps

1000 nodes

400y

10.1.0.0/16

100ms

10.1.2.0/24
latency : 40ms
bandwidth :
512 kbps/128kbps
250 nodes

10.1.1.0/24
latency : 100ms
bandwidth :
56kbps/33.6kbps
250 nodes

10.1.3.0/24
latency : 20ms
bandwidth :
8 Mbps/1Mbps
250 nodes

10.3.0.0/16
latency : 10ms

bandwidth : 1 Mbps
600ms

1000 nodes

Figure 5. Emulated topology

Source Destination | Latency * 2
10.1.1.137 | 10.1.1.228 462ms
10.1.1.205 | 10.1.3.204 476ms
10.1.1.84 10.3.0.66 1.46s
10.1.2.219 10.1.3.38 329ms
10.1.2.100 10.3.1.69 1.31s
10.1.3.207 | 10.2.2.113 853ms
10.2.0.51 10.2.3.48 23ms
10.3.3.181 | 10.3.0.133 43ms

Figure 6. Example results of pings between
nodes of the topology from figure 5.

Network emulation is achieved in a decentralized
way : each physical node is in charge of the network

emulation for its virtual nodes. On each node, emu-
lation is done with Dummynet [14], the FreeBSD traf-
fic shaper integrated into FreeBSD’s firewall (IPFW).
Both incoming and outgoing packets are delayed by
Dummynet. Several firewall rules are needed for each
virtual node. For example, the physical node hosting
10.2.3.207 in the topology described in figure 5 will
need :

e One rule for incoming packets for each virtual node
hosted on this node ;

e One rule for outgoing packets for each virtual node
hosted on this node ;

e One rule for each link between network groups, to
delay packets going from network groups hosted
on this system to other network groups.

7.5
Witr;out Dummylnet —
7 With Dummynet, empty ruleset ---x-- 7
6.5 L With Dummynet and rules :------ B
— 6 4
[2)
E s55f _
(o)
8 51 % g
c
s 45 4
Q.
[} - 4
g ¢ .
T 385} o 4
3 k- : -
¥
25 % =
2 1 1 1 1
0 200 400 600 800 1000

number of nodes

Figure 7. Overhead caused by Dummynet in
a token ring

The overhead caused by Dummynet was evaluated
by building a token ring on a single machine. The net-
work of each virtual machine is emulated, causing two
Dummynet rules to be added per virtual node. Figure 7
shows that the overhead caused by selecting the Dum-
mynet rule to apply is important, because FreeBSD’s
IPFW examines firewall rules linearly. However, for a
relatively low number of virtual nodes, the overhead is
still reasonable (3.5 ms for 200 virtual nodes per phys-
ical node) compared to the latency of the networks we
are going to emulate.

4. Study of BitTorrent with P2PLab

In this section, we confront our emulation platform
with BitTorrent, showing that P2PLab is a suitable ex-

perimentation platform to study complex peer-to-peer
system.

4.1. Introduction

BitTorrent [6] is a popular peer-to-peer file distri-
bution system. It provides very good performance by
ensuring that downloaders cooperate by sharing parts
they have already downloaded through a complex re-
ciprocation system. It has already been largely evalu-
ated through analysis of large scale utilization [11, 10],
analytical modeling [13] or simulation [2].

However, those works have never been compared to
large scale studies on real world systems, or to studies
using emulation. BitTorrent is an engineering work,
not a research prototype, and several parts of its code
are very complex. The large number of constants used
as parameters of all the important algorithms makes it
very hard to model accurately.

A BitTorrent 4.0.4 client was used for all experi-
ments. It was slightly modified to allow data collection
(a timestamp was added to the default output). The
experiments took place on the GridExplorer system,
already described in section 3.2 on page 2.

4.2. P2PLab Folding Ratio

P2PLab targets an high virtualization ratio : it
should be possible to run many virtual nodes on the
same physical system, thus allowing to do experiments
with a very large number of nodes. But the concurrent
execution of several instances of the application must
not affect the results.

The first experiment compares the download of a 16
MB file by 160 clients. The file size is not important
in BitTorrent, since the file is always divided in pieces
of 256 KB. The file is provided by 4 seeders. All nodes
(both downloaders and seeders) have a network connec-
tion with a download rate of 2 mbps, an upload rate of
128 kbps, and a latency of 30 ms, reproducing the con-
ditions of a DSL connection. The clients are started
with a 10 s interval. When the clients have finished
the download of the file, they stay online and become
seeders, continuing to upload data to the downloaders.

The 160 clients are deployed successively on 160
physical nodes, 16 physical nodes (10 virtual nodes per
physical node), 8, 4 and 2 physical nodes.

Figure 8 shows the evolution of the download of all
160 clients when they are deployed on 160 physical
nodes. One can see that with those parameters, all
the cases of a BitTorrent download are represented :

e First (short) part of the download when only ini-
tial seeders are able to upload data ;

100

80

60

40

20

percentage done on each client

0 500 1000 1500 2000
time (s)

Figure 8. Evolution of the download of the
160 clients.

e Second part when all downloaders start contribut-
ing to each other ;

e Third part when the first downloaders become
seeders and help other peers finishing their down-
load faster.

Therefore, those parameters are a realistic workload
to test P2PLab’s virtualization capabilities.

a 3000 T " T - T T
s 1 client per physical node
- 10 clients per physical node -------
€ 2500 F 20 clients per physical node -------- i
2 40 clients per physical node -
; 80 clients per physical node -----
o)
S 2000 - B
()]
=
[0]
3 1500 - .
©
5
5 1000 - B
€
>
g 500 F .
5
<
§ 0 1 1 1 1
0 500 1000 1500 2000

time (s)

Figure 9. P2PLab folding ratio : total amount
of data when downloading of a 16 MB file with
160 clients.

Figure 9 shows that the experiment took place with-
out any overhead, even with 80 virtual nodes on each

physical node : results are nearly identical. The po-
tential sources of overhead were investigated, and it
was determined that the first limiting factor was the
network speed : with other (slightly faster) emulated
network settings, the platform’s gigabit network was
saturated by the downloads.

Other overhead sources were considered : during the
experiment, we monitored the system load, the mem-
ory usage, and the disk I/O on every physical node.
None of them was a problem during our experiments.

4.3. P2PLab Scalability

P2PLab targets high scalability : it should be pos-
sible to run experiments with a large number of nodes.
We tried to study the download of a 16 MB file by 5754
clients, under the same network conditions as in the
first experiment. The 5760 virtual nodes (5754 clients,
4 seeders, one tracker) are hosted on 180 physical nodes
(32 virtual nodes per physical node). The clients are
started every 0.25 s so the entire experiment took less
than one hour.

100

80

60

40

20

percentage done on each client

0 7 i A I I
0 500 1000 1500 2000 2500
time (s)

Figure 10. Evolution of the download of a 16
MB file between 5754 clients on a few se-
lected clients.

The experiment succeeded, and figure 10 shows the
evolution of the download on 115 selected clients (ev-
ery 50 clients, so clients numbered 0, 50, 100, 150, ...,
5750)%. One can see that most clients finish their down-
loads nearly at the same time, at the end of the ex-
periment. This is confirmed by figure 11, which shows
the number of clients having completed their download
over time.

L An high resolution colored graph with all the clients is avail-
able on http://www-id.imag.fr/ nussbaum/perso.html/p2plab_bt.png

6000

T T
number of clients

5000
4000
3000
2000

1000 -

clients having completed the download

0 Il Il Il Il
0 500 1000 1500 2000 2500

time (s)

Figure 11. Number of clients having com-
pleted their download.

5. Future Work

Our decentralized network model doesn’t consider
the problem of congestion in the core links (between
internet service providers). Its role in the performance
of peer-to-peer systems need to be determined through
experiments on PlanetLab [5] or DSL-Lab [8]. Then,
we will be able to modify our network model to include
it.

Another issue left open is the handling of shared
resources. We have shown that one of the most impor-
tant, CPU time, wasn’t shared equally between pro-
cesses. While the use of off-the-shelf software for emu-
lation makes it difficult to provide fair-sharing, it would
be interesting to improve the situation, or at least to
provide it for some resources. Developing a more de-
terministic process scheduler would already allow solve
the problem of the scheduler’s fairness.

The use of FreeBSD for P2PLab wasn’t easy : the
dominant operating system on Grid5000 [3] (the ex-
perimentation platform we used) is Linux, and using
FreeBSD instead required quite a lot of changes. Af-
ter evaluating (and maybe improving) the comparable
tools on Linux, we will consider a switch to Linux as
the basis for P2PLab.

Another problem with FreeBSD is the way its fire-
wall evaluates rules : as shown in section 3.3, the rules
are evaluated linearly, which is clearly not optimal in
the case of P2PLab, where we want to choose only one
rule inside a large number of them. Implementing an
hash-based mechanism for rules lookup would be much
more efficient.

The experiments made with P2PLab on BitTorrent

are using sensible but unrealistic parameters. Coupling
P2PLab with a realistic input generator would allow to
easily generate realistic environments and behaviours.

Finally, we need to validate P2PLab against other
peer-to-peer systems, to verify that it allows to answer
a wide range of questions on a wide range of systems.

6. Summary and Conclusion

With the increase of the resources available on a sin-
gle computer, virtualization and emulation have both
been the target of a lot of research in the last years. Be-
yond their usual use case, they can be efficiently com-
bined to build useful experimentation platforms, and
are a promising tool to study peer-to-peer systems :
they allow to use the real application on a large num-
ber of nodes in a configurable environment allowing
reproduction of experiments.

This paper also contributes a simple network model
different from the models usually used in network emu-
lators to model the Internet : while those models con-
centrate on the core of the Internet and its routing
interaction, P2PLab models the Internet from the end
node’s point of view.

This work also shows that, while most virtualization
systems concentrate on providing a very accurate im-
age of resources, a simpler approach might be sufficient
in some cases. Our emulation platform only virtualizes
what is needed to make the different virtual nodes look
like real separate nodes from the outside : its network
identity. This lightweight virtualization allows to max-
imize the virtualization ratio.

Our emulation platform, P2PLab, enabled us to per-
form some experiments on the BitTorrent peer-to-peer
system. During those experiments, P2PLab proved to
be scalable, easy to use and useful.

References

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In SOSP ’08: Proceedings
of the nineteenth ACM symposium on Operating sys-
tems principles, pages 164-177, New York, NY, USA,
2003. ACM Press.

[2] A.R.Bharambe and C. Herley. Analyzing and improv-
ing BitTorrent performance. Technical Report MSR-
TR-2005-03, Microsoft Research, 2005.

[3] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jean-
not, Y. Jegou, S. Lanteri, J. Leduc, N. Melab, G. Mor-
net, R. Namyst, P. Primet, and O. Richard. Grid’5000:
a large scale, reconfigurable, controlable and moni-
torable Grid platform. In Grid’2005 Workshop, Seat-
tle, USA, November 13-14 2005. IEEE/ACM.

[4]

(5]

[6]
[7]
18]
[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

M. Carson and D. Santay. NIST Net: a Linux-based
network emulation tool. SIGCOMM Comput. Com-
mun. Rev., 33(3):111-126, 2003.

B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Pe-
terson, M. Wawrzoniak, and M. Bowman. Planet-
Lab: An Overlay Testbed for Broad-Coverage Ser-
vices. ACM SIGCOMM Computer Communication
Review, 33(3):00-00, July 2003.

B. Cohen. Incentives build robustness in BitTorrent.
http://www.bittorrent.com, 2003.

J. Dike. A user-mode port of the Linux kernel. In Pro-
ceedings of the 4th Annual Linuz Showcase and Con-
ference, Atlanta, page 63. Usenix, 2000.

DSL-Lab. http://www.Iri.fr/ rezmerit/dsllab/.

S. Hemminger. Network emulation with NetEem. In
linuz. conf.au, 2005.

M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Fel-
ber, A. Al Hamra, and L. Garces-Erice. Dissecting
BitTorrent: five months in a torrent’s lifetime. In
PAM’2004, 5th annual Passive & Active Measurement
Workshop, April 19-20, 2004, Antibes Juan-les-Pins,
France / Also Published in Lecture Notes in Computer
Science (LNCS), Volume 3015, Barakat, Chadsi; Pratt,
Ian (Eds.) 2004, XI, 800p - ISBN: 8-540-21492-5, Apr
2004.

J. A. Pouwelse, P. Garbacki, D. H. Epema, and H. J.
Sips. The Bittorrent P2P file-sharing system: Mea-
surements and analysis. In 4th International Workshop
on Peer-to-Peer Systems (IPTPS), feb 2005.

T. L. V. Project. http://www.linux-
vserver.org/Linux-VServer-Paper.

D. Qiu and R. Srikant. Modeling and performance
analysis of BitTorrent-like peer-to-peer networks. In
SIGCOMM °04: Proceedings of the 2004 conference
on Applications, technologies, architectures, and pro-
tocols for computer communications, pages 367-378,
New York, NY, USA, 2004. ACM Press.

L. Rizzo. Dummynet: a simple approach to the evalu-
ation of network protocols. ACM Computer Commu-
nication Review, 27(1):31-41, 1997.

L. A. Routing and Traffic. http://lartc.org/.

A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,
D. Kostic, J. Chase, and D. Becker. Scalability and
accuracy in a large-scale network emulator, 2002.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. SIGOPS Oper.
Syst. Rev., 36(SI):255-270, 2002.

