
A Case for Exploit-Robust and Attack-Aware Protocol RFCs

Venkat Pothamsetty1 and Prabhaker Mateti2

1Cisco Systems 2Wright State University

Critical Infrastructure Assurance Group Dept. of Computer Science and Engineering

Austin, TX 78727, USA Dayton, OH 45435, USA

vpothams@cisco.com pmateti@wright.edu

Abstract

A large number of vulnerabilities occur because pro-
tocol implementations failed to anticipate illegal pack-
ets. rfcs typically define what constitute “right” pack-
ets relevant to the protocol and they specify what the
response should be for such packets. They are often
ambiguous and remain silent on what the protocol im-
plementation should do for packets which deviate from
the specification.

Implementers must and, by and large, do faithfully
implement an rfc. However, implementers usually
take any silence in a specification as “design freedom”.
Even though the protocol implementers are network
specialists, they often are not knowledgeable in net-
work security and cryptography issues, past exploits
and common attack techniques that can impact the se-
curity of a protocol module, and consequently, the whole
system.

This paper systematically discusses vulnerabilities
that can be attributed to protocol designs, inadequacies
of rfcs, and omissions of the protocol implementers.
Using specific examples, we point out how ambiguities
in protocol rfcs have lead to security vulnerabilities.
We correlate various types of security vulnerabilities
with the way the rfcs are written. We make a case for
such exploit-robust and attack-aware rfcs, and recom-
mend the features for a better rfc, called erfc (En-
hanced rfc). We offer advice to rfc writers, imple-
menters and rfc approval bodies. The most effective
solution to reducing network security incidents is to fix
the rfcs in such a way that the implementers are forced
to write an exploit-robust implementation, irrespective
of their security knowledge and expertise.

1 Introduction

Attack techniques are becoming more sophisticated
in exploiting ambiguous protocols and their fragile im-
plementations (see [3], and [8]). Protocol rfcs continue
to be written in an ambiguous manner, ignorant of the
security and attack technique trends, and correspond-
ing implementations continue to be vulnerable. By do-
ing so, the rfcs routinely commit the “Seven Sins of
the Specifier” [5].

1.1 Security Robustness

Security robustness is generally well-understood,
but has not been well articulated. Here is what it
means to us. (These issues are considered in greater
detail and precision in [4].) (i) No matter what the
packets are, a protocol engine must not crash or hang.
(ii) Serve only legitimate packets. (iii) Do not send an
invalid response to a valid request from a legitimate
client and user combination. (iv) Do not send a valid
response to a bogus request. (v) Do not delay, beyond
computing power and network traffic limitations, send-
ing a response unless it is never to be sent.

1.2 Specifiers’/Implementers’ Problem?

Industry has few options to counter the problem of
non-robust implementations. Static analysis tools [6]
cannot effectively catch vulnerabilities arising due to
inherent protocol design problems, nor do they point
out vulnerabilities arising due to common attack tech-
niques. Security education of network software engi-
neers is an effective solution, but the solution is as good
as the implementer is.

1-4244-0054-6/06/$20.00 ©2006 IEEE

The most effective solution is to fix the rfcs. The
specifications should be written in such a way that if
the implementer follows the specification (he will by
contract), the resulting implementation will automati-
cally be robust, withstand common attack techniques
and will have incorporated security measures.

Furthermore, it is much easier to educate relatively
fewer number of specifiers than an uncountable and
scattered implementers. We acknowledge that some of
the attacks are dependent on platform specific resource
limitations, which the specifier has no control over.
However, in such cases, we recommend that the spec-
ifier explicitly acknowledge the issue, and recommend
implementation considerations to the implementer.

1.3 Security Considerations in RFCs

An rfc
1 must (now) have a security considerations

section2 for it to be accepted. The security consider-
ations section is a good start; however, it suffers from
the following.

A single security considerations section does not ef-
fectively address attacks that could happen at various
stages during the protocol. For example, attacks (such
as message insertion, and flooding), security techniques
(such as authentication) and security measures (such as
error recovery) depend on the state that the protocol
is in. We believe that the threats could be effectively
addressed in relevant sections all through the rfc, and
not just at the end.

Most rfcs do not (thoroughly) follow rfc3552
guidelines. Consider the following selected examples.
(i) rfc39283 does not methodically consider all at-
tack scenarios. It merely considers flooding attack
and ignores the rest. (ii) rfc39374 claims, without
justifying, that the rfc brings no additional threats.
(iii) rfc39525 identifies a potential denial of service
(DoS) but does not analyze how the protocol counters
that threat.

1.4 Ambiguity of Technical Prose

rfcs are written up as technical reports in English.
This is prone to ambiguities and misinterpretation. It

1All rfcs are available at www.rfc-editor.org.
2
rfc3552: Guidelines for Writing rfc Text on Security Con-

siderations (2003)
3Lightweight Directory Access Protocol (LDAP)
4A Uniform Resource Name (URN) Namespace for the Inter-

national Press Telecommunications Council (IPTC), Oct 2004,
Informational

5Real-time Transport Protocol (RTP) Payload Format for in-
ternet Low Bit Rate Codec (iLBC) Speech, Dec 2004, Experi-
mental

is a well-known but perhaps unacknowledged fact that
different network protocol stacks would not be inter-
operable had it not been for the wide accessibility of
source code that implemented the early and ”infras-
tructure” protocols such as TCP. Even today, one can
safely predict that, if an implementation team is given
only the rfcs and denied all access to source code of
any implementations, the result would not be inter-
operable.

1.5 Historic Design and Intent of RFCs

A part of the ambiguity arises because of the words
the rfcs chose as building blocks of the rfc - “Must”,
“Should” and “May” (see rfc2119). Historically, the
design intent of the rfcs has been to interpret the pack-
ets leniently, and words like “may” are deliberately in-
tended to allow protocol implementations to be lenient
in the interpretation.

However, for a protocol implementation to be secure,
it must be strict in interpretation. Many a vulnerabil-
ity (e.g., buffer overflows) today are due to sloppy im-
plementations which do not validate the packets before
parsing them. We argue that the problem however is
that the implementers do not have a robust specifica-
tion against which they can validate their implementa-
tion.

2 Inadequate RFCs

This section discusses various “sins” of rfcs such
as being silent and/or ambiguous and how they con-
tributed to security vulnerabilities.

2.1 Header and Data Values

Quite a few rfcs are ambiguous or silent about the
range, type and size of valid header values. Though
some of these valid values are derivable, the not-so-
direct specification of header values result in an imple-
mentation not checking for the type and values inside
the packet headers before parsing.

2.1.1 Valid Values of Fields

A classic example is how rfcs specify the length field of
a header. E.g., ISAKMP rfc2408 has this on page 24:
“Length (4 octets) - Length of total message (header +
payloads) in octets”. However it leaves many questions
(whose answers need to be deduced) such as: Can the
payload be of zero bytes? What is the minimum size
of payload? What is the maximum possible length of
the payload? In the absence of such specification, the

implementer will try to take the value as-it-is and try
to interpret the rest of the packet as per the supplied
value, leading to a multitude of vulnerabilities. E.g.,
implementation of ISAKMP daemon in OpenBSD had
vulnerabilities because the length of the received packet
is not validated against valid and possible data values6.

Had the specification been written (e.g., by specify-
ing the min and max values of length) so that the im-
plementer is forced to ascertain the value before pars-
ing, we believe that the vulnerability could have been
avoided. Scores of vulnerabilities7 of this type make us
advocate that the specification should explicitly and di-
rectly mention the range of valid header values that the
implementation should check before parsing the values.

2.1.2 Valid Types

rfcs are typically ambiguous and/or silent about the
valid type of header or data values of a protocol packet.
In cases where the value of a header or data must have
only specific types of values (strings in the case of email
address, e.g.), we argue that rfcs should explicitly
specify the type and bind the implementer to check
the validity of the type of values before parsing.

MIME protocol: Many vulnerabilities exist in
MIME protocol (rfcs 2045-2049) because different
vendors interpreted rfcs comments on interpreting
characters in different ways.8 The corresponding vul-
nerabilities become more dangerous when the charac-
ters have special meanings, such as the back-slash and
null characters in web applications.9 10

2.1.3 Valid Sizes

rfcs do not typically specify the valid size of the ac-
companying payload. Many vulnerabilities arise be-
cause the implementations try to parse the entire pay-
load supplied.

Telnet Options: Within every BSD derived telnet

daemon under UNIX, the telnet options are processed
by the telrcv function. This function parses the op-
tions according to the telnet protocol and its internal
state. During this parsing the results which should be
sent back to the client are stored within the netobuf

buffer. This is done without any bounds checking, since
it is assumed that the reply data is smaller than the

6xforce.iss.net/xforce/xfdb/15518
7CAN-2005-0340, CAN-2005-0482, CAN-2004-1002, CAN-

2004-0899. These and others can be viewed at www.cve.mitre.

org/cve/.
8www.niscc.gov.uk/niscc/docs/al-20040913-00537.html
9www.webappsec.org/projects/threat/classes/path\

_traversal.shtml
10nessus.org/plugins/index.php?view=single\&id=12124

buffer size (which is BUFSIZ bytes, usually).11 The cor-
responding buffer overflow has lead to multiple vulner-
abilities.12 Had the Telnet rfc854 specified explicit
limits on the size of the options13, we believe that this
vulnerability could have been avoided.

SSL: There are a few vulnerabilities in SSL because
SSL did not put a limit on the data portion (client
certificates14, e.g.)

2.1.4 Actions for Illegal Packets

rfcs do not exhaustively specify the actions (or series
of actions) that the implementation needs to take in
case any of the values of the headers inside the packets
it resides are not compliant with the protocol. The ac-
tions may be (a) drop the packet, (b) close the connec-
tion, (c) send an error packet or (d) any combinations
of these actions. In the absence of such conditions, the
implementer will be free to interpret such packets. In
many cases the implementer will continue to interpret,
store the information, and pass on the packet to other
modules causing vulnerabilities.

TCP: rfc793 and others in defining the functional
specification for TCP do define how systems should re-
spond to legitimate packets, but they don’t explain how
systems should handle illegal combinations of flags.
Consequently, different operating systems respond dif-
ferently to illegal flag combinations. Attackers now ex-
ploit this to finger print the operating system.15

SNMP: Many of the vulnerabilities indicated by
the test cases released by www.ee.oulu.fi/research/

ouspg/ for SNMP protocol are because the correspond-
ing implementation did not have code to handle header
values that are inconsistent with the protocol specifi-
cation.16

2.2 Pre And Post Conditions

The rfcs are typically ambiguous/silent/non-
exhaustive about the conditions that need to be ful-
filled before entering a protocol state and after leaving
a protocol state. Many vulnerabilities exist because
of not-so-strict pre and post conditions in rfcs. The
following are but two examples:

Unauthorized Access: If the implementation does

11www.monkey.org/openbsd/archive/misc/0107/msg01332.

html
12www.cert.org/advisories/CA-2001-21.html
13http://www.iana.org/assignments/telnet-options
14archives.neohapsis.com/archives/bugtraq/2002-02/

0313.html
15www.securityfocus.com/infocus/1200/\%3E
16www.cert.org/advisories/CA-2002-03.html

not reset all the variables of a session, it might be pos-
sible for the next user to gain unauthorized access to
the prior variables (related to the previous user). 17

Resource Lockup: If the implementation does not
release the resources (such as memory) used by a previ-
ous state, it might lead to resource exhaustion issues,
such as NNTP service in Windows contains memory
leak.18

We summarize the recommendations of [7]. (a) For
secure state transitions, we must specify all the pre-
conditions for every state. (i) Trust pre-conditions
that needs to be met, such as authentication and au-
thorization conditions that need to be met before en-
tering a state. (ii) Resource pre-conditions that needs
to be met, such as amount of memory that must be
available before entering a state. (b) The specification
needs to specify all the post-conditions of each state.
(iii) At state hand-over, all resources allocated to the
connection should be reclaimed. (iv) At state hand-
over, all changes that are made to the system should be
reset/undone. (c) Miscellaneous conditions such as the
following also must be stated. (v) The connections at
later stages should not be affected by the connections at
preliminary stages. (vi) The connections should have
timeouts and a secure exit strategy, including either
handing over the connection to the previous state or
terminating the connection. (vii) A connection at an
earlier state should not be able to preempt a connection
at a later state without the proper credentials.

2.3 Timeouts

Timeouts, the time that the implementation has to
wait (usually for an event such as packet arrival) in a
particular protocol state, play a very significant role
in influencing the security of a protocol. rfcs are fre-
quently ambiguous and/or silent about the timeouts.
rfcs either ignore timeouts or specify too long a time-
out. IKE rfc2409, for example, does not specify time-
outs for connections in various modes, including “Main
Mode” and “Quick Mode”.

The following examples of vulnerabilities make a
case for rfcs to explicitly state reasonable timeouts
for each state.

Denial of Service: If a client does not reset a ses-
sion (e.g., the client connects to a session and be idle),
it might effectively cause Denial of Service on other
legitimate users. Windows Telnet daemon had such
vulnerability.19

17www.securityfocus.com/bid/9807/discuss
18www.securiteam.com/windowsntfocus/5EP0B1F55O.html
19www.securityfocus.com/bid/2018

Resource Exhaustion: Since a protocol state is es-
sentially a memory dump of state variables, too large
timeouts can cause memory consumption on routing/
fire-walling devices. Several fire-walling devices were
vulnerable because of the above described scenario.20

2.4 Number of Headers and Header Fields

Many protocols have a provision for sending varying
number of headers (typically to advertise the protocol’s
capabilities, so that the other end of the protocol can
choose the appropriate one).

rfcs typically do not specify limitations on the num-
ber of such inner headers an implementation should
entertain. Because of this silence, the implementation
often continues to parse headers leading to vulnerabil-
ities. Some examples are listed below:

RADIUS: Each RADIUS (rfc2865) packet can be
up to 4096 bytes. It allows packing more than 2000 RA-
DIUS attributes into a single packet. Some RADIUS
server implementations allocate maximum possible at-
tribute length for each attribute, that is, for each at-
tribute up to 256 bytes of memory will be allocated.
It is thus possible to lock about 512K of memory and
waste CPU time with a single 4K packet resulting in
an easy denial of service attack.

ISAKMP: An ISAKMP (rfc2408) packet with a
malformed delete payload having a large number of
SPIs will cause ISAKMPD to read out of bounds and
crash.21 We believe the vulnerability would have been
avoided if the ISAKMP rfc mandated limits over the
acceptable number of SPIs.

3 Knowledge of Security Issues

It is not mandatory that rfc writers propose an
exhaustive set of security mechanisms for a newly
proposed protocol. The following sections make the
case that various security mechanisms must be thor-
oughly investigated and proposed along with the pro-
tocol specification. Note that some of the following
sections reinforce the security considerations guideline
rfc3552 through examples of past vulnerabilities.

3.1 Confidentiality and Integrity

The non-cryptographic rfcs (as opposed to
cryptography-based rfcs like IPSec) typically do not
specify any mechanisms for protecting protocol com-
munication.

20www.kb.cert.org/vuls/id/539363
21CAN-2004-0221

The H323 protocol suite and SIP (rfc3261 Ses-
sion Initiation Protocol) protocols did not think deeply
about cryptographic issues (encrypting the signal and
media traffic) when the rfcs are written. As a result,
it took quite a while for the industry to figure out what
the right encryption mechanisms are for Voice-Over-IP
traffic.

3.2 Authentication

The network infrastructure community has seen
many vulnerabilities in the initial versions of routing
protocols because of lack of authentication and had to
include authentication mechanisms in later versions of
the protocols. The following are some examples:

RIP v1: RIP v1 (rfc1058) was vulnerable to spoof-
ing.22 RIP version 2 (rfc1723 and rfc2082) includes
plain text and MD5 authentication mechanisms.

OSPF and BGP: These had to do go through the
same phases, they needed to be extended to include au-
thentication mechanisms. Later OSPF (rfc2328) and
BGP (rfc2385) rfcs have authentication mechanisms,
but it is unclear how many installations actually use
these authentication mechanisms for the protocol does
not mandate the use of those authentication mecha-
nisms.

Original SIP: rfc3261 employed HTTP authentica-
tion mechanism for request messages but not for reg-
istration messages. Therefore, registration message is
spoofable. The rfc is being currently revised to in-
clude digest mechanisms.

Many of the newer protocol specification writers are
considering authentication mechanisms. iSCSI [2] is
an example of such rfcs. However, given the above
history it is prudent to mandate rfcs to address the
security mechanisms in the first draft itself.

3.3 Authorization

rfcs do not typically analyze the authorization is-
sues that will crop up when a protocol has been imple-
mented and the corresponding application is deployed
in large scale.

E.g., H323 protocol suite and SIP recommend open-
ing up random ports for transferring media, and it has
become hard for firewalls to employ fix-ups (so that
only authorized persons have access to that traffic) and
secure the corresponding traffic.

22CVE-1999-0111

4 Attack Techniques

Designs of (future) protocols must take into account
attack techniques. Judging from the rfcs, protocol
specifiers are unaware of attack techniques and there-
fore cannot specify mechanisms against them.

4.1 Flooding

Flooding related vulnerabilities arise because the
implementations failed to anticipate an abnormally
high number of valid packets within a short duration.
rfcs typically do not specify the actions that the im-
plementation need to be taken when it receives a flood
of packets as part of a protocol communication.

We have seen the many implications of this silence.
The vulnerabilities related to SYN floods and ARP
floods are because the specification failed to anticipate
such packets. Irrespective of these classic attack pat-
terns, we have seen rfcs continuing to be silent on this
aspect. E.g., IKE rfc2409 failed to anticipate a flood
of initial (Main Mode) packets, and the implementa-
tions continue to be vulnerable[1].

4.2 Out of Sequence

The TCP rfc793 did not specify re-assembly time-
outs of out-of-sequence numbers, and IP rfc791 did
not specify fragmented datagrams, which lead the im-
plementers follow different waiting schema for packet
re-assembly. Multiple memory exhaustion vulnerabili-
ties23 can be attributed to such implementations.

Such a pattern of specification continues to exist.
E.g., ISAKMP rfc2408 did not specify the sequence
of payloads and BSD ISAKMPD suffered.24

4.3 Sniffing

It is no longer reasonable to think that packet con-
tents are not sniffed. Encrypted packets add compu-
tational burden of decyphering not only to the receiv-
ing hosts but also to the sniffer (who may not possess
the relevant keys and hence must resort to brute-force).
Note that there is enormous pressure on making receiv-
ing hosts (especially on embedded devices such as IP
phones and wireless access points) inexpensive, imply-
ing that their computational powers are meager. De-
pending on the nature of the protocol, the trade-off
between leaving the packet unencrypted (fast process-
ing of unencrypted packet contents together with loss

23attrition.org/security/advisory/idefense/

idefense-04-03-02.freebsd
24openbsd.groupbsd.org/errata31.html\#isakmpd

of confidentiality) versus encrypted packets must be
evaluated.

4.4 Spoofing

Nearly all of the protocols designed in the past (say,
prior to 1990) are such that selective fields of a sniffed
packet can be replaced and inserted into the network
stream by a third party, without being detected.25

4.5 Replay

rfcs do not, in general, specify what implementers
should do when they get a copy of an earlier session.
SSH earlier specifications (as opposed to rfc4251-6)
did not think about replay of packets, which made the
earlier implementations vulnerable to password crack-
ing.26 The original RADIUS is also vulnerable to re-
play attacks.27

4.6 Dictionary attacks

Dictionary attacks have compromised security of
protocols (e.g., Kerberos,28 and WEP29) in the past.
We argue that the rfcs need to specify a reasonable
length for passwords as well.

4.7 Hijacking

TCP connection hijacking has long been known.
When the packets are unencrypted, the attacker can
make immediate productive use of the connection be-
yond just DoS. Encryption simply postpones this into
a replay after a dictionary attack breaks it.

4.8 Man in the Middle

MiTM is similar to hijacking. Two parties, say A
and B, believe they have verified each other, but M the
attacker in the middle, has convinced A that he is B,
and has convinced B that he is A. Communication be-
tween A and B passes through M, who typically records
and alters it.

5 Ambiguous Terms

rfcs have used many ambiguous terms (e.g.,
“silently discard”, “tightly packed”, “left to right”,

25CVE-1999-0111; see also Section 3.2
26www.kb.cert.org/vuls/id/565052
27www.untruth.org/~josh/security/radius/radius-auth.

html,section3.4
28www.securiteam.com/tools/6V0070A6AS.html
29www.airscanner.com/pubs/wep.pdf

“undistinguished octets”, “reserved”, “experimental”,
“is-caused-by”, “not required to honor”), but a few
such as “universally unique numbers” and “unpre-
dictable random numbers” deserve special attention.

5.1 Universally Unique Numbers

A number of protocols require that certain numbers
(e.g., request authenticators in radius rfc2865, MAC
addresses in Ethernet, IP addresses in IP) they use
should be (i) universally unique numbers and/or (ii)
temporally unique. The terms are generally described
loosely, and often imply that these two terms are equiv-
alent. But, they are not. It turns out that it is not too
difficult to rigorously define the terms [4] using discrete
mathematics and logic. The essence of the difference is
that (ii) refers to uniqueness in the context of what has
transpired so far, whereas (i) is time independent, i.e.,
unique from “big bang” of the distant past to “apoca-
lypse” of the unknown future.

The difficulty with respect to (i) and (ii) is in ar-
riving at a practical implementation that hopes to do
justice to the two obligations: (a) the “sender” should
generate such a number, and (b) the “receiver” should
be algorithmically able to verify that the received num-
ber is one such. Depending on whether we chose inter-
pretation (i) or (ii), the difficulties are different.

Traditionally, the problems of (i) are “solved”
by using number granting authorities and associated
query/answer protocols. Because these solutions are
inadequate various spoofing attacks became possible.

Regarding (ii), note that this kind of uniqueness
is obviously in the context of a group of “connected”
senders and receivers. Hosts A and B are “connected”
not in the sense of TCP-connected, but in the sense
that they did exchange a message of the protocol, or
transitively there was a third party C with which they
did. The problems of (ii) are solvable (if we put aside
the resource requirements) as follows. Every sender
and receiver has access to a global historical record of
what has transpired. Using such records, (a) and (b)
can be implemented. But, the resource requirements –
in particular, space to store the history, and the dis-
tributed computing mechanisms to keep it up-to-date
across all hosts – are immense even when the group of
connected hosts is small.

5.2 Unpredictably Random Numbers

“Unpredictable” is arguably a mathematically un-
definable concept. Note that to be able to speak of
values in a probabilistic manner makes it predictable.

We presume that the intended meaning is that for a
third party, having observed a sequence of certain val-
ues of a field being exchanged between two parties, it is
computationally infeasible to compute what the future
values of exchange will be.

The phrase ”computationally infeasible” is used fre-
quently in cryptography but is rarely defined. The gen-
eral consensus on its meaning is as follows. If the time
complexity of an algorithm A is a function that grows
faster than any polynomial, we consider A to be com-
putationally infeasible. A similar meaning with respect
to memory (and other) resources required is included
in the meaning of the phrase. On a practical level, we
should understand the phrase to stand for any compu-
tation that requires either extremely long time or ex-
tremely high resource requirements even on the fastest
(parallel, cluster, etc.) computer systems. Extremely
long here is in the class of several (zillion?) years.

Note that the “unpredictable” property regarding a
certain number in a field usually has further dependen-
cies on other field values that are known, e.g., in the
radius protocol, the shared secret, the server id, and
the client id that share this secret.

6 Advice to rfc Writers

Knowing how an implementer should/would under-
stand an rfc is important to the authors of rfcs.
We argue that rfcs should provide “advice” to im-
plementers as well.

Be Aware of Silence: A protocol rfc deals with
three main elements: (i) the structure of a packet, (ii)
the sequences of packets, and (iii) the states of the pro-
tocol engine. The “standard” interpretation of silence
is not the same for all three elements. In (i) and (ii),
silence implies invalid: That is, any packet that does
not satisfy the described requirements must be consid-
ered invalid. In (iii), silence implies design freedom.
Where you wish to give design freedom, do so explic-
itly. Make an explicit sentence to the effect that any
situation not covered by the rfc is an illegal one, and
an rfc-compliant implementation must detect these
situations and be robust. If you wish to be silent on a
certain item, say so explicitly.

Be Aware of Ambiguity: If non-determinism is
desired, say so explicitly. By “non-determinism” we
mean the following. That there are multiple, but un-
ambiguously described, actions that are acceptable. A
single choice must be made among the alternatives.
Any choice so made among these need not be consis-
tent either.

Be Aware of Infinite Sequences: Protocol se-
quences can be infinitely long, but every implemen-
tation can only store a finite amount of it. Do not
describe properties based on infinite sequences. “Un-
predictable”, “unique” are some examples of this.

Timeouts: Specify minimum and maximum time de-
lays between certain bookmarks of the packet sequence
if not between consecutive packets. Obviously, as the
technology changes, so will these timeouts.

7 Advice to rfc Approval Bodies

The rfc approval process is rigorous. But, this pro-
cess still does not give enough importance to security
issues.

Independent Implementations: Do not approve
rfcs unless at least two independent implementations
that “agree” exist. Consider, e.g., the standards of
publication of results in biological sciences where an
experiment can take years or decades and blind studies
are required.

Completeness of Packets: An approved rfc must
rigorously define valid packets. All packets that do
not satisfy this definition must be considered invalid
packets. An approved rfc must separately state what
the actions are in response to (i) valid and (ii) invalid
packets.

A “good” rfc will further divide the invalid packets
into (a) invalid but harmless packets, (b) invalid and
resource-exhausting packets, (c) invalid and causes-
hangs packets, and (d) invalid and causes-halts packets.

Completeness of States: An approved rfc must
rigorously define (i) what constitutes a state of the pro-
tocol engine, (ii) the valid states, and (iii) all the rest
of the states as invalid states. An engine must never
reach a valid state consuming invalid packets. An en-
gine must never reach an invalid state consuming valid
packets. Once an invalid state is entered, the engine
remains in the invalid state, transitioning into a valid
state only via explicitly described packets in the rfc.

Timeouts: An approved rfc must define timeouts for
every state (both valid and invalid). A timeout causes
a state transition. Such transitions must be explicitly
described.

8 Advice to Implementers

Even if an rfc is not written following the advice
above, implementers should follow the best practices
as suggested below.

Ascertain Packet Validity: Packet validity must
be ascertained, before any action is taken. Any gain
in computational efficiency obtained by ignoring this
advice is doomed.

Design Freedom and Silence: Do not interpret
silence as design freedom. Caution on the side of packet
validity (item above) and interpret silence as invalid
packets (item below).

Invalid Packet Processing: Unless the protocol ex-
plicitly describes how invalid packets should be dealt
with, an implementer must “silently drop” such pack-
ets. This means that the protocol engine remains in
the state that it was in prior to receiving the invalid
packet. Other than a small amount of computational
time, no resources are consumed. Any allocated re-
sources are released. Logging of invalid packets is ad-
vised but must consider the requirements and security
risks posed by logging.

Timeouts: Implement a timeout for practically every
state of the protocol engine, except for a tiny few states
explicitly identified as quiescent states.

Think About Worst-Case Scenarios: The imple-
menter should consider the worst case scenarios before
taking any action based on the contents of a packet.
Some examples: (i) Make sure all resources needed
will be/are available (ii) Analyze possible deadlock and
live-lock scenarios and consider the corresponding pre-
vention techniques.

9 Conclusions and Future Work

9.1 Conclusions

rfcs should be written in a way that none of the
sections are ambiguous. Invariants on header values
and sizes should be specified in the rfc so that the
implementer would not have freedom for sloppy inter-
pretation of packets.

It should be mandatory that the rfc writers take
the protocol specification through a reasonable threat
model and consider possible attack scenarios.

It should be mandatory that the rfcs propose ways
to handle common attack techniques such as spoofing,
flooding, replay, and reuse at all stages of the protocol.

It should be mandatory that the rfcs propose secu-
rity mechanisms for providing confidentiality, integrity,
authentication, authorization and non-repudiation at
all stages of the protocol.

9.2 Future Work

We are actively working on solutions to make the
rfcs more secure. Our work includes (i) Developing a
specification language for writing rfcs, with the fol-
lowing design goals: (i.a) The language would give
enough flexibility to the specification writer, to write
unambiguous rfcs. (i.b) The language should force
the implementers to validate the packets; to do all the
right things for security. (i.c) The language would be
easily understandable by the implementers. (ii) Sup-
plying methods for incorporating security techniques
into rfcs. (iii) Supplying methods for incorporating
attack technique knowledge into rfcs. (iv) Publish an
example erfc work (see, e.g., [4]) of an existing rfc,
enhancing it to include all the above mentioned func-
tionalities.

References

[1] c0redump. UDP DoS Attack on Windows 2000 IKE.
2001. http://www.securiteam.com/windowsntfocus/

6N00G0A3FO.html.
[2] J.Satran, K. Meth, C. Sapuntzakis, and M. Chadala-

paka. RFC 3720 - Internet Small Computer Systems
Interface (iSCSI). 2004. http://www.faqs.org/rfcs/

rfc3720.html.
[3] R. Kaksonen. A functional method for assessing

protocol implementation security. Technical Report
448, VTT Technical Research Centre of Finland,
2001. http://www.inf.vtt.fi/pdf/publications/

2001/P448.pdf.
[4] P. Mateti. radius Protocol Annotated in OM. Techni-

cal report, Wright State U, May 2005. 65pp., working
draft.

[5] B. Meyer. On formalism in specifications. IEEE Soft-

ware, 2(1):6–26, Jan. 1985.
[6] J. Nazario. Source code scanners for better code. 1992.

http://www.linuxjournal.com/article/5673.
[7] V. Pothamsetty and B. Akyol. A vulnerability taxon-

omy for network protocols: Corresponding engineering
best practice countermeasures. 2005. www.actapress.

com/PaperInfo.aspx?PaperID=17388.
[8] G. Vigna, W. Robertson, and D. Balzarotti. Testing

network-based intrusion detection signatures using mu-
tant exploits. In CCS ’04: Proceedings of the 11th ACM

conference on Computer and communications security,
pages 21–30, New York, NY, USA, 2004. ACM Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

