
A Scalable Algorithm to Monitor Chord-based
P2P Systems at Runtime

Andreas Binzenhöfer1, Gerald Kunzmann2, and Robert Henjes1

1University of Würzburg 2Technische Universitaet Muenchen
Institute of Computer Science Institute of Communication Networks

Am Hubland, 97074 Würzburg, Germany 80290 Munich, Germany
{binzenhoefer, henjes}@informatik.uni-wuerzburg.de gerald.kunzmann@tum.de

Abstract

Peer-to-peer (p2p) systems are a highly decentral-
ized, fault tolerant, and cost effective alternative to the
classic client-server architecture. Yet companies hes-
itate to use p2p algorithms to build new applications.
Due to the decentralized nature of such a p2p system the
carrier does not know anything about the current size,
performance, and stability of its application. In this
paper we present an entirely distributed and scalable al-
gorithm to monitor a running p2p network. The snap-
shot of the system enables a telecommunication carrier
to gather information about the current performance
parameters of the running system as well as to react to
discovered errors.

1 Introduction

In recent years peer-to-peer (p2p) algorithms have
been widely used throughout the Internet. So far, the
success of p2p paradigms was mainly driven by file
sharing applications. Despite their reputation, how-
ever, p2p mechanisms also offer the solution to many
problems faced by telecommunication carriers today
[8]. Compared to the classic client-server architecture
they are decentralized, fault tolerant, and cost effective
alternatives. Those systems are highly scalable, do not
suffer from a single point of failure, and require less ad-
ministration overhead than existing solutions. In fact
there are more and more successful p2p based appli-
cations like Skype [12], a distributed VoIP solution,
Oceanstore [4], a global persistent data store, and even
p2p based network management [10].

One of the main reasons why telecommunication
carriers are still hesitant to build p2p applications is
the lack of control a provider has over the running sys-
tem. At first, the system appears as a black box to its

operator. The carrier does not know anything about
the current size, performance, and stability of its ap-
plication. The decentralized nature of such a system
makes it hard to find a scalable way to gather infor-
mation about the running system at a central unit.
Operators, however, do not want to lose control over
their systems. They want to know what their systems
look like right now and where problems occur at the
moment. The first problems already occur when test-
ing and debugging a distributed application. Finding
implementation errors in a highly distributed system
is a very complex and time consuming process [9]. A
provider also needs to know whether his newly deployed
application can truly handle the task it was designed
for.

The latest generation of p2p algorithms is based on
distributed hash tables (DHTs). The algorithm that
currently attracts the most attention is Chord, which
uses a ring topology to realize the underlying DHT
[11]. In general, DHTs are theoretically understood in
depth and proved to be a scalable and robust basis for
distributed applications [7]. However, the problem of
monitoring such a system from a central position is far
from being solved. In this paper we therefore present a
novel and scalable approach to create a snapshot of a
running Chord based application. Using our algorithm
a provider can either monitor the entire system or just
survey a specific part of the system he is currently in-
terested in. This way, he is able to react to errors more
quickly and can verify if the taken countermeasures are
successful. On the basis of the gathered information it
is, e.g., possible to take appropriate action to relief a
hotspot or to pinpoint the cause of a loss of the over-
lay ring structure. The overhead involved in creating
the snapshot is evenly distributed to the participat-
ing peers so that each peer only has to contribute a

1-4244-0054-6/06/$20.00 ©2006 IEEE

negligible amount of bandwidth. Most important, the
snapshot algorithm is very easy to use for a provider.
It only takes one parameter to adjust the trade off be-
tween the duration of the snapshot and the bandwidth
needed at the central unit, which collects the measure-
ments.

The remainder of this paper is structured as follows.
Section 2 gives a brief overview of Chord with a fo-
cus on aspects relevant to this paper. The snapshot
algorithm as well as some areas of application are de-
scribed in Section 3. The functionality of the algorithm
is verified by simulation in Section 4. Section 5 finally
concludes this paper.

2 Chord Basics

This section gives a brief overview of Chord with a
focus on aspects relevant to this paper. A more detailed
description can be found in [11].

peer z

peer y

Figure 1. A simple
search.

peer z
f
1

f
2

f
3

f
4

peer y

Figure 2. Search
using the fingers.

The main purpose of p2p networks is to store data
in a decentralized overlay network. Participating peers
will then be able to retrieve this data using some sort
of search algorithm. The Chord algorithm solves this
problem by arranging the participating peers on a ring
topology. The position idz of a peer z on this over-
lay ring is determined by an m-bit identifier using a
hash function such as SHA-1 or MD5. In a Chord ring
each peer knows at least the id of its immediate suc-
cessor in a clockwise direction on the ring. This way,
a peer looking up another peer or a resource is able
to pass the query around the circle using its successor
pointers. Figure 1 illustrates a simple search of peer z
for another peer y using only the immediate successor.
The search has to be forwarded half-way around the
ring. Obviously, the average search would require n

2
overlay hops, where n is the current size of the Chord
ring. To speed up searches a peer z in a Chord ring
also maintains pointers to other peers, which are used
as shortcuts through the ring. Those pointers are called
fingers, whereby the i-th finger in a peer’s finger table

contains the identity of the first peer that succeeds z’s
own id by at least 2i−1 on the Chord ring. That is,
peer z with hash value idz has its fingers pointing to
the first peers that succeed idz + 2i−1 for i = 1 to m,
where 2m is the size of the identifier space.

Figure 2 shows the fingers f1 to f4 for the same peer
z of the last figure. Using this finger pointers, a search
does only take two overlay hops. For the first hop peer
z uses its finger f4. Peer y can then directly be reached
using the successor of f4 as indicated by the little ar-
row. This way, a search only requires 1

2 log2(n) overlay
hops on average. A detailed mathematical analysis of
the search delay in Chord rings can be found in [3].
The snapshot algorithm presented in Section 3 makes
use of the finger tables of the peers.

3 The Snapshot Algorithm

In this section we introduce a scalable and distrib-
uted algorithm to create a snapshot of a running Chord
system. The algorithm is based on a very simple two
step approach. In step one, the overlay is recursively
divided into subparts of a predefined size. In step two,
the desired measurement is done for each of these sub-
parts and sent back to a central collecting point (CP).
In the following, we describe both steps in detail.

3.1 Step 1: Divide Overlay into Subparts

The algorithm to divide a specific region of the over-
lay into subparts is called snapshot(Rs, Re, Smin, CP).
This function is called at an arbitrary peer p with idp.
The peer then tries to divide the region from Rs = idp

to Re into contiguous subparts using its fingers. The
exact procedure is illustrated in Figure 3. In this exam-
ple peer p has four fingers f1 to f4. It sends a request
to the finger closest to Re within [Rs;Re]. Finger f4 is
neglected since it does not fall into the region between
Rs and Re. This makes finger f3 the closest finger to
Re in our example. If this finger does not respond to
the request as illustrated by the bolt, it is removed
from the peer’s finger list and the peer tries to contact
the next closest finger f2. If this finger acknowledges
the request, peer p recursively tries to divide the region
from Rs = idp to R̂e = idf2 − 1 into contiguous sub-
parts. Finger f2 partitions the region from R̂s = idf2

to Re accordingly.
As soon as a peer does not know any more fingers in

the region between the current Rs and the current Re,
the recursion is stopped. The peer changes into step
two of the algorithm and starts a measurement of this
specific region. In this context, the parameter Smin can
be used to determine the minimum size of the regions,
which will be measured in step two. Taking Smin into

f
1

f
2

f
3

s pR id=

eR

minsR S+

f
4

ˆ
sR=

Figure 3. Visualization of the algorithm

account, a peer will already start the measurement if it
does not know any more fingers in the region from the
current Rs +Smin to the current Re. In this case finger
f1 would be disregarded, as illustrated by the dotted
line in Figure 3, since it points into the minimum mea-
surement region. The parameter Smin is designed to
adjust the trade off between the duration of the snap-
shot and the bandwidth needed at the collecting point.
The larger the regions in step two, the longer the mea-
surement will take. The smaller the regions, the more
results are sent back to the CP.

A detailed technical description of the procedure is
given in Algorithm 1. Note, that a snapshot of the
entire system can be created calling snapshot(idp, idp−
1, Smin, CP) at peer p with id = idp. Peer p will

Algorithm 1
The snapshot algorithm (first call Rs = idp)

snapshot(Rs, Re, Smin, CP)
send acknowledgment to the sender of the request
idfm = max({idf |idf ∈ fingerlist ∧ idf < Re})
while idfm > Rs + Smin do

send snapshot(idfm, Re, Smin, CP) request to
peer idfm

if acknowledgment from idfm then
call snapshot(idp, idfm − 1, Smin, CP) at local
peer
return {exit the function}

else
remove idfm from fingerlist
idfm = max({idf |idf ∈ fingerlist ∧ idf < Re})

end if
end while
Ŝ = Re−Rs�

Re−Rs
Smin

� {explanation see step two}
result = 0
call countingtoken(idp, Re, Smin, CP , result) at lo-
cal peer

contact the closest finger to Re until it does not know
any more fingers in between Rs + Smin and Re. If so,
it changes into step two and starts a measurement of
this region calling countingtoken(idp, Re, Smin, CP ,
result) at the local peer. A detailed description of this
function is given in the next subsection.

3.2 Step 2: Measure a Specific Subpart

The basic idea behind the measurement of a specific
subpart from Rs to Re is very simple. The first peer
creates a token, adds its local statistics and passes the
token to its immediate successor. The successor adds
its statistics and recursively passes the token to its im-
mediate successor and so on. The first peer with an
id > Re sends the token back to the collecting point,
whose IP is given in the parameter CP.

counting token

sR eR

minS

minŜ

result

minS

minŜ minŜ

check
point

check
point

check
point

check
point

result

final

result

result result final

result

Figure 4. Results sent after each checkpoint

Ideally, each of the regions measured in step two
would be of size Smin as specified by the user. The
problem, however, is that the region from Rs to Re

is slightly larger than Smin according to step one of
the algorithm. In fact, if the responsible peer did not
know enough fingers, the region might even be signifi-
cantly larger than Smin. The solution to this problem
is to introduce checkpoints with a distance of Smin in
the corresponding region. Results are sent to the CP
every time the token passes a checkpoint instead of
sending only one answer at the end of the region. This
is illustrated in the upper part of Figure 4. The count-
ing token is started at Rs. The first peer behind each
checkpoint sends a result back to the CP as illustrated
by the red arrows pointing upwards. The final result
is still sent by the first peer with id > Re.

A drawback of this solution is that the checkpoints
might not be equally distributed in the region. In par-
ticular, the last two checkpoints might be very close to
each other as shown in the figure. We therefore recal-
culate the positions of the checkpoints according to the
following equation:

Ŝmin =
Re − Rs⌈

Re−Rs

Smin

⌉

The new checkpoints can be seen in the lower part of
Figure 4. Again, the first peer behind each checkpoint
sends a result back to the CP as illustrated by the
dotted arrows pointing downwards. As before the last
result is sent by the first peer with id > Re. Note,
that the number of checkpoints remains the same, while
their positions are moved in such a way, that the results
are now sent at equal distance.

As can be seen at the end of Algorithm 1, the re-
calculation of Smin is already done in the first step,
just before the counting token is started. A detailed
description of the counting token mechanism is given
in Algorithm 2. If a peer p receives a counting token
it makes sure that its identifier is still within the mea-
sured region, i.e. Rs ≤ idp ≤ Re . If not, it sends a
result back to the CP and stops the token. Otherwise
it adds its local measurement to the token and tries to
pass the token to its immediate successor. Addition-
ally, if it is the first peer behind one of the checkpoints,
it sends an intermediate result back to the CP and re-
sets the token.

As mentioned above the parameter Smin roughly de-
termines the minimum size of the regions measured in
step two. If Sid is the total size of the identifier space,
there will be:

Nc ≥ Sid

Smin

counting tokens arriving at the CP . A more detailed
analysis of the snapshot algorithm is given in [1].

3.3 Collect Statistics
So far we concentrated on the technical aspects of

a snapshot and did not give any details about what to
monitor at the individual peers. Generally speaking,
there are two different kinds of statistics, which can be
collected using the counting tokens. Either a simple
mean value or a more detailed histogram. In the first
case the counting token memorizes two variables, Va for
the accumulated value and Vn for the number of values.
Each peer receiving the counting token adds its mea-
sured value to Va and increases Vn by one. The sample
mean can then be calculated at the CP as

�
Va�
Vn

. In the
second case of the histogram, the counting token main-
tains a specific number of bins and their corresponding
limits. Each peer simply increases the bin matching its
measured value by one. If the measured value is out-
side the limits of the bins it simply increases the first
or the last bin respectively.

There are numerous things that can be measured us-
ing the above mentioned methods. Table 1 summarizes
some exemplary statistics and the kind of information,
which can be gained by them. The most obvious appli-
cation is to count the number of hops for each counting

Algorithm 2
The countingtoken algorithm (first call Rs = idp)

countingtoken(Rs, Re, Smin, CP , result)
send acknowledgment to the sender of the request
if Rs ≤ idp ≤ Re then

if idp > Rs + Smin then
send result to CP
result = 0
Rs = Rs + Smin

end if
add local measurement to result
ids = id of direct successor
while 1 do

send countingtoken(Rs, Re, Smin, CP , result)
request to direct successor ids

if acknowledgment then
break

else
remove ids from successor list
ids = id of new direct successor

end if
end while

else
send result to CP

end if

token. On the one hand, this is a direct measure for
the size of the overlay network. On the other hand,
it also shows the distribution of the identifiers in the
identifier space. If the hash function does not work as
expected, this distribution will be skewed and the num-
ber of hops per token will vary significantly. To gain
information about the performance of the Chord algo-
rithm, the mean search delay or a histogram for the
search time distribution can be calculated and com-
pared to expected values. Furthermore, Chord’s sta-
bility can only be guaranteed as long as the successor
and predecessor pointers of the individual peers match
each other correspondingly. Since each peer should re-
ceive the counting token from its direct predecessor,
this invariant can be checked counting the percentage
of hops, where the sender of the counting token did not
match the predecessor of the receiving peer. Addition-
ally, the number of timeouts per token can be used to
measure the current churn rate in the overlay network.
The more churn there is, the more timeouts are going
to occur due to outdated successor pointers. Similarly,
the number of resources stored at each peer is a sign
of the fairness of the Chord algorithm. The number
of searches answered at each peer can likewise be used
to get an idea of the search behavior of the end users.
Finally, a peer can keep track of the number of miss-
ing resources to verify the integrity of the stored data.

Table 1. Possible statistics gathered during snapshot
Statistic Information gained

Number of hops per token Size of the network, Distribution of the identifiers
Mean search delay Performance of the algorithm

Sender ?== predecessor Overlay stability
Number of timeouts per token Churn rate
Number of resources per peer Fairness of the algorithm
Number of searches answered User behavior
Bandwidth used per time unit Maintenance overhead

Missing resources Data integrity

This can, e.g., be done counting the number of search
request, which could not be answered by the peer.

All of the above statistics can be collected periodi-
cally to survey the time dependent status of the overlay.
Note, that it is also possible to monitor only a specific
part of the overlay network. This can, e.g., be helpful
if there are problems in a certain region of the over-
lay network and the operator needs to verify that his
countermeasures are successful.

4 Results

A detailed mathematical analysis of the snapshot
algorithm in times of no churn can be found in our
technical report [1]. Due to the lack of space, we con-
centrate on simulation results covering more realistic
scenarios including churn. In our experience the perfor-
mance of the Chord algorithm depends on the way the
algorithm is implemented. This is especially true for
the correctness of the overlay neighbors, i.e. the suc-
cessors and the fingers of a peer. This section is there-
fore rather intended to make qualitative than quan-
titative statements. The results were obtained using
our ANSI-C simulator, which incorporates a detailed
yet slightly modified Chord implementation [6, 5]. If
not stated otherwise an overlay hop is modeled using
an exponentially distributed random variable with a
mean of 80ms. The results considering churn are gen-
erated using peers, which stay online and offline for an
exponentially distributed period of time with a mean
as indicated in the description of the figures.

The snapshot algorithm takes only one single input
argument Nr =

⌈
Sid

Smin

⌉
. This parameter influences the

duration of the snapshot as well as the number of re-
sults arriving at the central collecting point. Figure 5
shows the distribution of the arrival times of the re-
sults in an overlay of 40000 peers using Nr = 1000
and Nr = 100 areas in times of no churn. Obviously,
the more areas the overlay is divided into, the faster
the snapshot is completed. While the snapshot us-
ing 1000 areas was finished after about ten seconds,

the snapshot with 100 areas took about one minute.
In exchange the latter snapshot produces significantly
smaller bandwidth spikes at the CP. The two elevations
of the second histogram correspond to the intermedi-
ate results (first elevation) and the final results at the
end of the measured subpart (second elevation). Note
that the final results arrive about twice as late as the
intermediate results.

0 1 2 3 4 5 6
x 10

4

0

50

100

150

200

Time in ms

N
um

be
r

of
 r

es
ul

ts
 p

er
 5

00
m

s

1000 Areas

100 Areas

Figure 5. Arrival times of the results

The first step of the algorithm uses the fingers to di-
vide the ring into subparts. Since the distance between
a peer and its fingers is always slightly larger than a
power of two it is usually not possible to divide the ring
exactly into the desired number of areas. In fact it is
very likely, that a peer stops the recursion and starts
its measurement once it contacted its xth finger, where
2x−1 < Smin = Sid

Nr
≤ 2x. That is, the recursion stops

at finger x with idfx
, whereas the distance between the

peer and this specific finger might almost be twice as
large as the desired Smin. It is therefore advisable to
choose Nr as a power of two itself in order to ensure
that idfx

is only slightly larger than idp + Smin. Fig-
ure 6 shows the different arrival times of the results for
Nr = 512 and Nr = 500 in an overlay of 20000 peers
without churn. The skewed shape of the histogram in
the foreground results from the fact that 500 is slightly
smaller than a power of two, which in turn makes Smin

slightly larger than a power of two. In this case it is
likely that the peer has a finger just before the end of
the minimum measurement region idp + Smin. Thus,
finger x sits at a distance of about twice Smin from the
peer. The resulting counting token will therefore travel
a distance of about twice Smin as well.

0 2000 4000 6000 8000 10000 12000
0

10

20

30

40

50

60

70

80

Time in ms

N
um

be
r

of
 r

es
ul

ts
 p

er
 2

50
m

s

512 Areas

500 Areas

Figure 6. Arrival times of the results for 20000
peers without churn.

A more detailed analysis of the influence of Nr can
be found in Figure 7, which shows the number of results
received at the CP in dependence of Nr. As shown in
[1], Nc, the number of counting tokens sent to the CP ,
is limited by 2 · Nr > Nc ≥ Nr. The straight lines
in the figure show the corresponding limits. The solid
and dotted curves represent the results obtained for
20000 and 10000 peers respectively. It can be seen,
that the number of results sent to the CP is within the
calculated limits and independent of the overlay size.
The curves roughly resemble the shape of a staircase,
whereas the steps are located at powers of two. There
are two main reasons for this behavior. First of all,
the average counting token sends two results back to
the CP , one intermediate result and the final result at
the end of the measurement region. Hence, the smaller
the region covered by the average counting token, the
more results arrive at the CP . As explained above the
closer Nr gets to a power of two, the smaller the region
covered by the average counting token. This accounts
for the first part of the rise of the number of results
received at the CP . The reason, that the curve still
rises for a short time once Nr becomes slightly larger
than a power of two has a different cause. Due to
the fact that the actual finger positions slightly differ
from the theoretical finger positions, it is possible that
idp + Smin > Re in the last step of the recursion. In
this case the corresponding counting token does not
send an intermediate result, since the first checkpoint
is behind the end of the measured region. As long as

100 200 300 400 500 600
0

200

400

600

800

1000

1200

Number of areas

N
um

be
r

of
 r

es
ul

ts

y=x

y=2⋅x

20000 peers

10000 peers

Figure 7. Number of results received at the
CP in dependence of Nr

Smin is still large enough for this to happen, the curve
will slightly rise.

The distribution of the arrival times of the results is
also influenced by the current size of the network. The
larger the network is, the more peers are within one
region. However, the more peers are within one region,
the more hops each counting token has to make, before
it can send its results back to the CP. Figure 8 shows
the token arrival time distribution for three different
overlay sizes of 10000, 20000, and 40000 peers respec-
tively. There was no churn in this scenario and Nr

was set to 512 areas. As expected, the larger the over-
lay network, the longer the snapshot is going to take.
However, the curves are not only shifted to the right,
but also differ in shape. This can again be explained
by the increasing number of hops per counting token.
As mentioned above, the average counting token sends

0 2000 4000 6000 8000 10000
0

20

40

60

80

100

120

Time in ms

N
um

be
r

of
 r

es
ul

ts
 p

er
 2

00
m

s

10000 peers

20000 peers

40000 peers

Figure 8. Arrival times of the results at the CP

two results back to the CP, whereas the checkpoints
are equally spaced. Thus, the final result takes twice as
many hops as the intermediate result. In a network of

10000 peers there are approximately 20 peers in each of
the 512 regions. The intermediate results are therefore
sent after about 10 hops, the final results after about 20
hops respectively. The two corresponding elevations in
the histogram overlap in such a way, that they build a
single elevation. In a network of 40000 peers, however,
there are approximately 78 peers in each of the 512 re-
gions. The intermediate results are therefore sent after
about 39 hops, the final results after about 78 hops re-
spectively. The difference between these two numbers
is large enough to account for the two elevations of the
histogram in the foreground of Figure 8. Note, that all
curves are shifted to the right as compared to the mere
hop count since it takes some time for the signaling
step until the counting tokens can be started. In prac-
tice the current size of the overlay can be estimated to
be able to choose an appropriate value for Nr [2].

The arrival time of the results at the CP is also
affected by the online/offline behavior of the individ-
ual peers. To study the influence of churn we consider
80000 peers with an exponentially distributed online
and offline time, each with a mean of 60 minutes. This
way, there are 40000 peers online on average, which
makes it possible to compare the results to those ob-
tained using 40000 peers without churn. Figure 9 shows
the corresponding histograms. As a result of churn in

0 0.5 1 1.5 2 2.5
x 10

4

0

10

20

30

40

50

60

Time in ms

N
um

be
r

of
 r

es
ul

ts
 p

er
 2

00
m

s

No Churn

Churn 60/60

Figure 9. Influence of churn on the pattern
traffic at the CP

the system, the two elevations of the original histogram
become noticeably blurred and the snapshot is slightly
delayed. This is due to the inconsistencies in the suc-
cessor and finger lists of the peer, as well as the time-
outs, which occur during the forwarding of the counting
tokens. In return the spike in the diagram and thus the
required bandwidth at the CP becomes smaller.

It is easy to show, that the probability to lose a
token is almost negligible [1]. Therefore, a more mean-
ingful method to measure the influence of churn is to

regard the number of timeouts, which occur during a
snapshot. Furthermore, the influence of churn on the
stability of the overlay network can be studied look-
ing at the frequency at which the predecessor pointer
of a peer’s successor does not match the peer itself.
Figure 10 plots the relative frequency of timeouts and
pointer failures against the mean online/offline time of
a peer. The smaller the online/offline time of a peer,
the more churn there is in the system. The results

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

mean online/offline time [min]
pr

ob
ab

ili
ty

pointer failures

timeouts

10000 peers

20000 peers

40000 peers

Figure 10. Relative frequency of timeouts and
pointer failures.

represent the mean of several simulation runs, whereas
the error bars show the 95 percent confidence inter-
vals. The relatively small percentage of both timeouts
and failures is to some extent implementation specific.
More interesting, however, is the exponential rise of
the curves under higher churn rates. The shape of
both curves is independent of the size of the overlay
and only affected by the current churn rate. The curve
can therefore be used to map the frequency of timeouts
or failures measured in a running system to a specific
churn rate.

Until now, we only regarded the traffic pattern at the
central collecting point. From an operator’s point of
view, however, it is more important to know, whether
the snapshot itself is meaningful. To validate the ac-
curacy of the snapshot algorithm, we again simulated
an overlay network with 80000 peers, each with a mean
online/offline time of 60 minutes. Due to the proper-
ties of the hash function and the churn behavior in the
system the number of documents on a single peer can
be regarded as a random variable. The measurement
we are interested in is the corresponding probability
density function (pdf) in order to see whether the dis-
tribution of the documents among the peers is fair or
not. The pdf was measured using our snapshot algo-
rithm as explained in Section 3.3. The result of the
snapshot is compared to the actual pdf obtained us-

ing the global view of our discrete event simulator (c.f.
Figure 11). The two curves are almost indistinguish-

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

Number of documents on peer

P
D

F

Global view

Snapshot

Figure 11. Results of a snapshot compared to
the global view.

able from each other. The same is true for all the other
statistics shown in Table 1, like the current size of the
system or the average bandwidth used per time unit.
That is, the snapshot provides the operator with a very
accurate picture of the current state of its system. This
nicely demonstrates, that the results obtained by the
snapshot can be used to better understand the perfor-
mance of the running p2p system. The multiple possi-
bilities to interpret the collected data are well beyond
the scope of this paper.

5 Conclusion

One of the main reasons why telecommunication
carriers are still hesitant to build p2p applications is
the lack of control a provider has over the running sys-
tem. In this paper we introduced an entirely distrib-
uted and scalable algorithm to monitor a Chord based
p2p network at runtime. The load generated during
the snapshot is evenly distributed among the peers of
the overlay and the algorithm itself is easy to config-
ure. It only takes one input parameter, which influ-
ences the trade off between duration of the snapshot
and bandwidth required at the central server, which
collects the results. In general it takes less than one
minute to create a snapshot of a Chord ring consisting
of 40000 peers. We performed a mathematical analy-
sis of the basic mechanisms and provided a simulative
study considering realistic user behavior.

The algorithm is resistant to dynamic in the overlay
network (churn) and provides the operator with a very
accurate picture of the current state of its system. It
offers the possibility to monitor the entire overlay net-
work or to concentrate on a specific part of the system.

The latter is especially useful if a problem occurred in
a specific part of the system and the operator wants to
assure that his countermeasures are successful.

Acknowledgements

The authors would like to thank Holger Schnabel
for the help and the insightful discussions during the
course of this work.

References

[1] A. Binzenhöfer, G. Kunzmann, and R. Henjes. A
scalable algorithm to monitor chord-based p2p sys-
tems at runtime. Technical Report 373, University of
Würzburg, November 2005.

[2] A. Binzenhöfer, D. Staehle, and R. Henjes. On the
Fly Estimation of the Peer Population in a Chord-
based P2P System. In 19th International Teletraffic
Congress (ITC19), Beijing, China, September 2005.

[3] A. Binzenhöfer and P. Tran-Gia. Delay Analysis of
a Chord-based Peer-to-Peer File-Sharing System. In
ATNAC 2004, Sydney, Australia, December 2004.

[4] U. B. C. S. Division. The oceanstore project. URL:
http://oceanstore.cs.berkeley.edu/.

[5] G. Kunzmann, A. Binzenhöfer, and R. Henjes. Analy-
sis of the Stability of the Chord protocol under high
Churn Rates. In 6th Malaysia International Confer-
ence on Communications (MICC) in conjunction with
International Conference on Networks (ICON), Kuala
Lumpur, Malaysia, November 2005.

[6] G. Kunzmann, R. Nagel, and J. Eberspächer. Increas-
ing the reliability of structured p2p networks. In 5th
International Workshop on Design of Reliable Com-
munication Networks, Island of Ischia, Italy, October
2005.

[7] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F.
Kaashoek. Comparing the performance of distrib-
uted hash tables under churn. In Proceedings of the
3rd International Workshop on Peer-to-Peer Systems
(IPTPS04), San Diego, CA, February 2004.

[8] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Na-
garaja, J. Pruyne, B. Richard, S. Rollins, and Z. Xu.
P2P Computing. Technical Report HPL-2002-57,
Hewlett Packard Lab, 2002.

[9] D. L. Oppenheimer, V. Vatkovskiy, H. Weatherspoon,
J. Lee, D. A. Patterson, and J. Kubiatowicz. Monitor-
ing, analyzing, and controlling internet-scale systems
with acme. CoRR, cs.DC/0408035, 2004.

[10] V. N. Padmanabhan, S. Ramabhadran, and J. Pad-
hye. Netprofiler: Profiling wide-area networks using
peer cooperation. In Fourth International Workshop
on Peer-to-Peer Systems (IPTPS), Ithaca, NY, USA,
February 2005.

[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In ACM
SIGCOMM 2001, San Diego, CA, August 2001.

[12] S. Technologies. Skype. URL: http://www.skype.com.

