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Abstract

The hierarchical hypercube network is suitable for
massively parallel systems. An appealing property of
this network is the low number of connections per pro-
cessor, which can facilitate the VLSI design and fab-
rication of the system. Other alluring features include
symmetry and logarithmic diameter, which imply easy
and fast algorithms for communication. In this paper, a
maximal number of node-disjoint paths are constructed
between every two distinct nodes of the hierarchical hy-
percube network. Their maximal length is not greater
than max{2m+1 + 2m + 1, 2m+1 + m + 4}, where 2m+1

is the diameter.

1. Introduction

Advances in hardware technology, especially the
VLSI circuit technology, have made it possible to build
a large-scale multiprocessor system that contains thou-
sands or even tens of thousands of processors. For ex-
ample, the Connection Machine [6] contains as many
as 216 processors. One crucial step on designing such
a multiprocessor system is to determine the topology
of the interconnection network (network for short), be-
cause the system performance is significantly affected
by the network topology. In recent decades, a num-
ber of networks have been proposed in the literature
[1, 4, 5, 7, 8, 10, 12, 13]. A network is conveniently
represented by a graph (or digraph) whose vertices rep-
resent the nodes (i.e., processors) of the network and
whose edges represent the communication links of the
network. Throughout this paper, we use network and
graph, node and vertex, and edge and link interchange-
ably.

Let G = (V,E) be a connected graph, where V and
E represent the vertex set and edge set of G, respec-
tively. The degree of a vertex in G is the number of
edges incident with it. If all vertices have the same
degree d, then G is called regular or d-regular. The dis-
tance between two vertices u and v, denoted by d(u, v),
is the length of the shortest path between u and v. The
diameter of G is the maximal distance between any two
vertices. The vertex (edge) connectivity of G is the min-
imal number of vertices (edges) in G whose removal can
cause G disconnected or trivial.

An n-dimensional hypercube, denoted by Qn, is one
of the most popular networks. There are 2n nodes con-
tained in Qn; each is uniquely represented by a binary
sequence bn−1bn−2...b0 of length n. Two nodes in Qn

are adjacent if and only if they differ at exactly one
bit position. An edge of Qn is said of dimension k
(0 ≤ k ≤ n− 1) if its two end vertices differ at bk. The
hypercube suffers from a practical limitation when it is
used as the topology of a multiprocessor system. As n
increases, it becomes more difficult to design and fab-
ricate the nodes of Qn because of the large fanout.

To remove the limitation, the cube-connected cycles
(CCC) network [10] was designed as a substitute for
the hypercube. The node degree of CCC is restricted
to three. However, this restriction degrades the perfor-
mance of CCC at the same time. For example, CCC
has a larger diameter than the hypercube. Taking both
the practical limitation and the performance into ac-
count, the hierarchical hypercube (HHC) network [9]
was proposed as a compromise between the hypercube
and CCC. HHC, which has a two-level structure, takes
hypercubes as basic modules and connects them in a
hypercube manner. HHC has a logarithmic diameter,
which is the same as the hypercube. Since the topology
of HHC is closely related to the topology of the hyper-
cube, HHC inherits some favorable properties from the
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hypercube.
Suppose that A and B are two distinct nodes of a

graph G. An (A,B)-container in G is a set of internally
node-disjoint paths (disjoint paths for short) between
A and B. According to Menger’s theorem [2], there are
κ disjoint paths between A and B, where κ is the node
connectivity of G. The width (length) of a container
is the number (maximal length) of paths it contains.
In this paper, a container with maximal width (i.e.,
κ) is constructed between two arbitrary nodes of HHC.
The container has length not greater than max{2m+1+
2m+1, 2m+1 +m+4}, where 2m+1 is the diameter. In
the next section, the structure of HHC is first reviewed.
Then the container is constructed in Section 3. Finally,
this paper concludes with some remarks in Section 4.

2. HHC Networks

Recall that CCC can be obtained by replacing each
node of Qk with a cycle of k nodes so that these k
nodes are connected to the k neighbors of the original
node in Qk. Actually, HHC is a modification of CCC
in which the k-node cycle is replaced with a hypercube.
Assume k = 2m. HHC can be constructed as follows:
start with Q2m and replace each node of Q2m with
Qm. Refer to Figure 1, where an example with m = 2
is shown. Since there are 22m × 2m = 22m+m nodes in
HHC, each node of HHC can be uniquely represented
by a binary sequence bn−1bn−2...b0, where n = 2m +m.
For convenience, bn−1bn−2...b0 is expressed as a two-
tuple (S, P ), where S = bn−1bn−2...bm tells which Qm

the node is located in and P = bm−1bm−2...b0 gives the
address of the node in the located Qm.

Let P (l) = bm−1...bl+1b̄lbl−1...b0 (Sm+l =
bn−1...bm+l+1b̄m+lbm+l−1...bm) denote the binary se-
quence obtained by complementing bl (bm+l) of P (S).
HHC can be defined in terms of graph as follows.

Definition 2.1 The node set of HHC is {(S, P )| for
all S = bn−1bn−2...bm and P = bm−1bm−2...b0}, where
n = 2m + m and m ≥ 1. Node adjacency of HHC is
defined as follows: (S, P ) is adjacent to (1) (S, P (l))
for all 0 ≤ l ≤ m − 1 and (2) (S(m+dec(P )), P ), where
dec(P ) is the decimal value of P .

Edges defined by (1) are referred to as internal edges,
and those defined by (2) are referred to as external
edges. Internal edges are within Qm and each of exter-
nal edges connects two Qm’s. Since each node of HHC
has the same degree m + 1, HHC is (m + 1)-regular.
Moreover, HHC is symmetric and has a diameter of
2m+1 (see [9]). In subsequent discussion, whenever a
node A of HHC is mentioned, we use AS and AP to
represent the S part and P part of A, respectively.

3. Containers

Suppose that A and B are two distinct nodes of
HHC. In this section, a maximal number (i.e., m + 1)
of disjoint paths from A to B are constructed. Since
HHC is symmetric, we assume A = (02m

, 0m) without
losing generality, where 02m

(0m) represents 2m (m)
consecutive 0’s. These paths contain internal edges
and external edges alternately. Those internal edges
between two external edges are within the same Qm.
Since each path is desired to be as short as possible,
each subpath within Qm is maintained shortest. It is
easy to obtain a shortest path between any two nodes
of Qm. So, if the subpaths within Qm’s are ignored,
then a path in HHC can be simply represented by a
sequence of external edges, called an external edge se-
quence (EES).

For example, A = (0000, 00) ∗→ (0000, 11) →
(1000, 11) ∗→ (1000, 10) → (1100, 10) ∗→ (1100, 01) →
(1110, 01) = B expresses a path from A = (0000, 00)
to B = (1110, 01), where ∗→ denotes a shortest path
within Q2. The path contains three external edges
which can be denoted by their P parts, i.e., 11, 10
and 01 in sequence. Hence the path can be simply rep-
resented by an EES (11, 10, 01). Any path from A to
B contains at least |BS | external edges, where |BS | is
the number of bits 1 in BS . An EES is shortest if it
contains |BS | external edges. In order to reduce the
path length, a particular shortest EES, denoted by π,
is obtained from BS , as described below.

First, collect the indices i of BS =
b2m+m−1b2m+m−2...bm with bi = 1. Second, de-
crease each i by m, and so 0 ≤ i ≤ 2m − 1. Third,
construct π by arranging all indices i (expressed in
binary form) into a subsequence of an m-bit Gray
code [3]. The latter consists of 2m codewords in
which every two adjacent codewords differ at exactly
one bit position. For example, when m = 3 and
BS = 10101111, the set of indices obtained after the
second step is {0, 1, 2, 3, 5, 7}. Since a 3-bit Gray code
can be (000, 001, 011, 010, 110, 111, 101, 100), we have
π = (000, 001, 011, 010, 111, 101) finally. We assume in
the rest of this section that an m-bit Gray code begins
with 0m.

Suppose that t is an m-bit binary sequence con-
tained in π. Define πt to be the shortest EES that
is obtained by cyclically shifting π toward the left
until the resulting EES begins with t. For exam-
ple, if π = (000, 001, 011, 010, 111, 101), then π001 =
(001, 011, 010, 111, 101,
000) and π111 = (111, 101, 000, 001, 011, 010). There
are paths that contain more than |BS | external edges.
EESs that represent such paths are not shortest. For
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Figure 1. Construction of HHC from Q22 .

example, A = (0000, 00) ∗→ (0000, 11) → (1000, 11) ∗→
(1000, 00) → (1001, 00) ∗→ (1001, 11) → (0001, 11) = B
contains 3 > 1 = |BS | external edges, and so its corre-
sponding EES, i.e., (11, 00, 11), is not shortest. It will
be clear later that EESs can greatly help the construc-
tion of disjoint paths.

Now we begin to describe the construction method.
First, we consider a special situation in which A and
B are located within the same Qm, i.e., AS = BS .
According to Saad and Schultz’s construction method
[12], m disjoint paths from A to B can be obtained
within the Qm. Moreover, these m disjoint paths
have maximal length not greater than m + 1. One
more disjoint path is constructed according to the EES
(0m, BP , 0m, BP ). In the rest of this section, we assume
AS �= BS .

Since HHC is (m + 1)-regular, each edge incident
with A or B is included in some disjoint path. Suppose
π = (c0, c1, ..., cr−1). One or two disjoint paths, which
contain the two external edges that are incident with A
or B, are constructed below, depending on four cases.

Case 1. AP ∈ π and BP ∈ π. We have c0 = 0m.
Assume cz = BP , where 0 ≤ z ≤ r − 1. Two (or one if
z = r − 1) disjoint paths are constructed according to
πc0 and πc(z+1) mod r .

Case 2. AP /∈ π and BP ∈ π. Suppose that τ =
(0m, c0, c1, ..., cr−1) is a subsequence of an m-bit Gray
code. Two disjoint paths are constructed according to
(τ, 0m) and πc(z+1) mod r , where cz = BP is assumed.

Case 3. AP ∈ π and BP /∈ π. We have c0 = 0m. Sup-

pose that θ = (c0, ..., cu−1, BP , cu, ..., cr−1) is a subse-
quence of an m-bit Gray code, where 0 ≤ u ≤ r. One
disjoint path is constructed according to (θBP , BP ),
where θBP is obtained by cyclically shifting θ toward
the left until the resulting EES begins with BP . An-
other disjoint path is constructed according to πc0 .

Case 4. AP /∈ π and BP /∈ π. One disjoint path is
constructed according to (τ, 0m), where τ was defined
in Case 2. If BP �= 0m, another disjoint path is con-
structed according to (θBP , BP ), where θBP was de-
fined in Case 3.

Next, the other m−1 disjoint paths are constructed,
as described below. For simplicity, AP /∈ π and BP ∈ π
(i.e., Case 2) are assumed; the discussion for the other
cases is similar. If r ≥ m, they are constructed accord-
ing to the first m−1 unused EESs of πc0 , πc1 , ..., πcr−1 .
If r < m, then r − 1 disjoint paths are constructed ac-
cording to the unused EESs of πc0 , πc1 , ..., πcr−1 . The
remaining m − r disjoint paths are constructed by the
aid of Rabin’s work [11], as explained below.

Arbitrarily select m − r neighboring nodes of A
within the same Qm so that they were not included in
π. Without losing generality, assume that A

(0)
P , A

(1)
P ,

..., A
(m−r−1)
P are selected. For 0 ≤ l ≤ m − r − 1,

suppose that ρl = (c0, ..., cwl−1, A
(l)
P , cwl

, ..., cr−1) is a
subsequence of an m-bit Gray code, where 0 ≤ wl ≤ r.
The remaining m − r disjoint paths are constructed

according to (ρA
(l)
P

l , A
(l)
P )’s, where ρ

A
(l)
P

l is the EES ob-
tained by cyclically shifting ρl toward the left until
the resulting EES begins with A

(l)
P . It was shown



in [11] that there are m disjoint paths from A (B)
to A

(0)
P , A

(1)
P , ..., A

(m−r−1)
P , c0, c1, ..., cr−1, respectively,

whose maximal length is not greater than m + 1.
There are m + 1 paths constructed above. They are

disjoint because they traversed distinct Qm’s, exclusive
of the first Qm and the last Qm where A and B reside,
respectively. Their lengths are computed as follows.
The paths obtained by πc0 , πc1 , ..., πcr−1 have lengths
not greater than r+(m+1)+(2m−2)+(m+1), where
r is the number of external edges traversed and m + 1
is an upper bound on the numbers of internal edges
traversed in the first and last Qm’s. Since AP = 0m is
not contained in π, the total number of internal edges
traversed in the other Qm’s is not greater than 2m − 2.

The path obtained by (τ, 0m) has length not greater
than (r +2)+2m +(m+1), as explained below. There
are r + 2 external edges traversed. No internal edges
were traversed in the first Qm and not more than m+1
internal edges were traversed in the last Qm. At most
2m internal edges were traversed in the other Qm’s.

Similarly, the path obtained by (ρA
(l)
P

l , A
(l)
P ) has length

not greater than (r + 2) + 1 + 2m + (m + 1). At most
2m internal edges were traversed in all Qm’s but the
first Qm and the last Qm. To sum up, the m+1 paths
above have maximal length equal to max{2m + 2m +
r, 2m + m + r + 4}.

The discussion (path construction and length com-
putation) above is based on Case 2. For the other cases,
the discussion is similar. The constructed m+1 disjoint
paths have maximal length equal to max{2m+2m+r+
1, 2m+m+r+4}, max{2m+2m+r+1, 2m+m+r+4}
and max{2m+2m+r, 2m+m+r+4}, if Case 1, Case 3
and Case 4 are considered, respectively. Consequently,
the m + 1 disjoint paths from A to B have maximal
length equal to max{2m +2m+r+1, 2m +m+r+4} ≤
max{2m+1+2m+1, 2m+1+m+4}. Therefore, we have
the following theorem.

Theorem 3.1 There exists a container of width m+1
between any two distinct nodes of an HHC with 22m+m

nodes whose length is not greater than max{2m+1 +
2m + 1, 2m+1 + m + 4}, where 2m+1 is the diameter.

4. Conclusion

It is practically important to construct containers
because they can be used to increase the transmission
rate and to enhance the transmission reliability. In
this paper, we have constructed a container of width
m+1 in an hierarchical hypercube network with 22m+m

nodes. The length of the container, which is greater
than the diameter (= 2m+1) by max{2m + 1,m + 4},

counts the number of internal edges and external edges
traversed.

The number of external edges traversed is r or r +2
(r = |BS |), where the number of internal edges tra-
versed depends on the EESs used. In our analysis of
container length, we made a worst-case estimation on
both numbers. We computed r = 2m and the number
of internal edges traversed with respect to an EES to
be 2m−1. Actually, dH(ci, ci+1) internal edges are tra-
versed for any two adjacent m-bit binary sequences ci

ci+1 in an EES, where dH(ci, ci+1) denotes the Ham-
ming distance between ci and ci+1. It seems that there
is a tradeoff between the value of r and the number of
internal edges with respect to an EES. For example,
when r approaches 2m very few internal edges are tra-
versed. It is an interesting problem how to reach an
optimization with this tradeoff.

In our analysis of container length, we consider
r = 2m and the number of internal edges required with
respect to an EES is 2m−1, both worst-case estimation.

Since the size of BS and the number of the first
(last) Qm are trade off. When |BS | is large enough,
it means we have more choices of EES. We use the
upper bound to estimate the size of |BS |. Moreover,
we use the upper bound in the first (last) Qm again.
For this reason, the upper bound of the container is
over estimation. The upper bound of the container
can be improved. A tighter bound is possible and we
leave it to the future work.

References

[1] S. B. Akers, B. Krishnamurthy, and D. Harel. The
star graph: an attractive alternative to the n-cube.
In Proceedings of International Conference on Parallel
Processing, 1987 (ICPP ’87), pages 393–400, 1987.

[2] J. A. Bondy and U. S. R. Murty. Graph Theory with
applications. North-Holland, New York, 1976.

[3] M. S. Chen and K. G. Shin. Processor allocation in an
n-cube multiprocessor using gray codes. IEEE Trans-
actions on Computers, 36(12):1396–1407, 1987.

[4] P. F. Corbett. Rotator graphs: an efficient
topology for point-to-point multiprocessor networks.
IEEE Transactions on Parallel Distributed Systems,
3(5):622–626, 1992.

[5] K. Ghose and K. R. Desai. Hierarchical cubic net-
works. IEEE Transactions on Parallel and Distributed
Systems, 6(4):427–435, 1995.

[6] W. D. Hillis. The Connection Machine. MIT Press,
Cambridge, MA, 1985.

[7] K. Hwang and J. Ghosh. Hypernet: A communication-
efficient architecture for constructing massively par-
allel computers. IEEE Transactions on Computers,
36(12):1450–1466, 1987.



[8] T. Leighton. Introduction to Parallel Algorithms and
Architectures: Networks and Algorithms. Morgan-
Kaufmann, San Mateo, CA, 1992.

[9] Q. M. Malluhi and M. A. Bayoumi. The hierarchical
hypercube: a new interconnection topology for mas-
sively parallel systems. IEEE Transactions on Parallel
and Distributed Systems, 5(1):17–30, 1994.

[10] F. P. Preparata and J. Vuillemin. The cube-connected
cycles: a versatile network for parallel computation.
Communications of the ACM, 24(5):300–309, 1981.

[11] M. O. Rabin. Efficient dispersal of information for
security, load balancing, and fault tolerance. Journal
of ACM, 36(2):335–348, 1989.

[12] Y. Saad and M. H. Schultz. Topological properties
of hypercubes. IEEE Transactions on Computers,
37(7):867–872, 1988.

[13] G. D. Vecchia and C. Sanges. A recursively scalable
network vlsi implementation. Future Generation Com-
puter Systems, 4(3):235–243, 1988.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


