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Abstract

In heterogeneous distributed systems, such as Grids, a 
resource broker is responsible of automatically selecting 

resources, and mapping application tasks to them. A 

crucial aspect of resource broker design, especially in a 
next commercial exploitation of grid systems, in which 

economy theories for resource management will be 

applied, is the support to task mapping based on the 
fulfilment of Quality of Service (QoS) constraints. The 

paper presents an economy-driven mapping heuristic, 

called time minimization, for mapping and scheduling the 
tasks assigned to the slaves of a master-slave application 

in a hierarchical and heterogeneous distributed system. 
The validity and accuracy of such heuristic are tested by 

implementing it in a resource broker of a hierarchical 

grid middleware used for running a real world 
application. 

1. Introduction 

A main challenge to efficiently execute parallel and 
distributed applications in a grid system is the effective 
management of the large amount of available 
computational, storage and communication resources in 
order to optimize the mapping on them of application 
tasks. To this end, a central subsystem of a middleware 
for grid computing is the Resource Management System

(RMS). The main goal of the RMS is to enable a 
transparent access to the pool of resources available in the 
Grid.

A fundamental component of an RMS is the resource
broker, which is mainly responsible of accepting 
execution requests from the user and assigning them to 
specific resources selected from the pool of available ones 
[1]. In addition to this task, which is accomplished 

through an Information System, the broker schedules for 
the execution the application tasks distributed on the 
selected resources, which are continuously monitored and 
managed. 

Mapping, scheduling, and execution are performed so 
that some QoS requirements provided by the requester are 
satisfied. In particular, the resource broker assigns tasks to 
resources on the basis of specified policies, called 
mapping policies, used to determine the best schedule for 
the application on the set of available resources. The 
mapping task phase, moreover, is one of the most 
important functions for a resource broker, since it has a 
direct impact on service response times and, as a 
consequence, on user satisfaction.

The deployment of grid systems in the next years will 
foster the adoption of new business models for computing 
services. Big companies and organizations will prefer to 
rent computing resources instead of buying them. In such 
a scenario, the efficiency improvement of resource 
allocation and scheduling will be possible through the 
adoption of economic models to apply among resource 
suppliers and requesters. In recent years, in this 
perspective, some economics theories have been studied 
for the implementation of resource management in a grid 
environment [2]. A market, in fact, similarly to a grid 
system, is decentralized, dynamic and deals with 
competitive resources. The basic components in a market 
are producer, consumer and commodities, corresponding 
respectively to resource owner, resource requester (user) 
and distributed resources in a grid environment. 

An economy-driven resource management system 
provides a mechanism for regulating the supply-and-
demand for resources and allocating them to applications 
based on user preferences, such as cost and time 
constraints. It also gives an incentive to resource owners 
for making resources available for computation and a 
basis to users for appropriately trading the quality of 
service guarantees they receive against cost. 
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In grid resource management systems a fine accuracy 
of mapping decisions requires, in addition to detailed 
information of the underlying distributed system, the 
knowledge and model of application features, in terms of 
computational requirements of each task, data and 
execution dependencies and communication patterns.  

This paper presents the definition of an application-
oriented and economy-driven mapping heuristic, called 
time minimization, for mapping distributed tasks on a set 
of heterogeneous and distributed resources. The proposed 
heuristic is applied to a specific class of applications 
which presents the same task dependencies, that is the 
class of applications based on the  master-slave model. 

The main reasons of such choice are: (1) the master-
slave model is very spread in scientific community and 
can be adopted to achieve a good performance 
improvement of a wide class of applications in many 
fields of science and engineering, such as weather 
prediction, astrophysics, bioinformatics, earth quake 
research, ground water pollution, multi particle physics, 
etc.; (2) applications programmed according to the 
master-slave model well fit grid systems because of well-
defined and limited communication patterns among the 
distributed computing entities.  

In fact, communication takes place only between the 
master and the slaves and in well-defined times of 
execution. For these reasons, this model is well suited to 
be used in Grids where high-latency and shared wide-area 
networks are a strong limitation for the execution of 
applications based on tightly-coupled parallelism. 

The simplest approach for performing repeatable tests 
on task mapping, overcoming resource availability 
problems, is to resort to simulation. Well known projects 
in the context of grid simulation are GridSim [3] and 
Simgrid [4]. On the other hand, the simulation approach 
can be hardly used for studying, in a repeatable and non-
intrusive way, the subtle interactions between large-scale 
shared distributed hardware, application software, and 
complex resource management policies, which are typical 
of grid environments. As a consequence, evaluation 
results produced by simulation tools to study the 
effectiveness of task mapping algorithms may be 
inaccurate.

For this reason the accuracy of the proposed heuristic 
and its usefulness in mapping and scheduling tasks of real 
world applications with time and cost constrains is 
studied using such heuristic for implementing the 
mapping phase of a resource broker of HiMM 
(Hierarchical Metacomputer Middleware) [5], a grid 
middleware which delivers basic services of computation, 
information, communication and resource management 
for parallel and distributed object-oriented applications. 
Nevertheless, the solution proposed can be easily applied 
to other grid middlewares. 

The time minimization heuristic is, moreover, tested on 

an actual test-bed executing applications written for the 
TMS (Transparent Master Slave) Framework [6], a
reflection-based framework for master-slave applications, 
able to re-use existing code for non-distributed solutions 
and to automatically parallelize and schedule the tasks 
among multiple resources, by satisfying user QoS 
constraints. 

The rest of the paper is organized as follows. Section 2 
presents related work, Section 3 describes the application 
and grid model, Section 4 describes the proposed 
mapping heuristic, Section 5 presents an evaluation of the 
proposed heuristic performed adopting some experimental 
results conducted on a real distributed environment. 
Finally Section 6 summarizes the paper and presents 
future work. 

2. Related Work 

Task mapping policies can be distinguished in system-
oriented policies, which try to optimise the overall 
resource utilization, and application-oriented policies, 
which try to optimise application execution.  

Application-oriented policies are often QoS-based,
since they permit to satisfy QoS requirements specified by 
the user. The optimal solution for such kind of policies in 
a heterogeneous and distributed environment leads to NP-
complete problems and different heuristics have been 
proposed in the literature to reach a near-optimal solution.  

Most of the grid systems use application-oriented 
mapping heuristics which try to optimise only the 
execution performance, by adopting a mapping that 
minimizes the overall execution time with respect to the 
available resources. A simple example is the greedy 
approach [7], which iteratively allocates each task to the 
resource that is likely to produce the best performance, 
without considering the rest of pending tasks. This 
approach leads usually to sub-optimal solutions, since the 
mapping decisions are based only on local task 
information.  

More complex mapping algorithms, which try to 
overcome local optimal solutions, are based on genetic 
algorithms [8], simulated annealing [9] or branch and 
bound methods [10]. Other proposals of mapping 
algorithms are Workerqueue (WQ), Workerqueue with 
Replication (WQR) and dynamic FPLTF (Fastest 
Processor to Largest Task First) [11, 12]. 

Some mapping algorithms specific for master-slave 
applications have been presented in [13]. These 
algorithms adopt an accurate grid model as regards 
computation and communication performance, but do not 
take into account economic aspects of resources.  

On the other hand, in a future commercialisation of the 
Grid, a resource characterization based only on 
performance features is not sufficient to properly model 



resources. In economy theories, in particular, the price of 
resource utilization is the only additional parameter 
necessary to operate, providing so a simplified way to 
model the resource owner satisfaction and the competition 
among them. In [2] some economic models, that can be 
applied for managing grid resources and determining the 
price of resource utilization, have been studied, for 
example the commodity market model, the posted price 
model, the bargaining model, the auction model, the 
trading model and the monopoly/oligopoly model.  

Paper [14] represents one of the first effort to introduce 
economy-driven mapping algorithms based on deadline 
and budget constraints. Such algorithms were tested in 
Nimrod-G [15], a grid resource management system for 
scheduling parametric applications. The proposed 
approach, however, does not model task dependencies 
and do not ensure the assignment and execution of all the 
tasks, since it considers a shared and dynamic 
environment in which only a task at a time is assigned 
until the budget is consumed. 

Our idea, instead, is to grant the execution of all the 
tasks of the application respecting the established terms 
during the initial negotiation phase between the resource 
broker and the user. Our approach, in particular, requires 
to exploit selected resources in an exclusive way, so to 
maintain the predicted performance by the heuristic in the 
time necessary to complete the application execution.

A possible approach to grant the complete availability 
of selected resources to scheduled applications is the use 
of advance reservation mechanisms, both for 
communication and computational resources, delivered by 
the grid middleware [16]. 

3. Application and Grid Models and 

Notations

In this section the class of applications and grid 
systems for which our approach can be applied are 
described and modelled.  

3.1 Application Model 

A very simple model of application is the unstructured 

application, that is a distributed application composed of 
a set of independent and self-contained tasks. This model 
is considered as reference model in various resource 
broker systems for the activities of task mapping and 
scheduling, but can not be considered a realistic model, 
since distributed applications are typically composed of 
tasks characterized by data and control dependencies. In 
particular the computation in a distributed application can 
be viewed as a precedence graph, that is, a directed

acyclic graph (DAG). Each node in the DAG corresponds 
to a computation or communication task. The edges of the 

DAG express the dependencies between the tasks, that 
can be of execution, data, or both. 

Defining mapping algorithms, able to manage the task 
dependencies of an application described by a generic 
DAG, is difficult. In this work we focus on a class of 
applications described by the same DAG structure, and in 
particular those which adhere to the master-slave pattern 
[17]. In this pattern there are two kinds of entities: master
and slave. Generally a master decomposes the problem 
into smaller tasks, distributes these tasks among a farm of 
slaves and waits for partial results. Each slave performs 
its processing on the received task, then returns the result 
of the processing back to the master, which gathers and 
assembles the partial results in order to produce the final 
solution of the computation. 

We consider, in particular, the master-slave pattern for 
coarse-grained parallel applications, which embody a 
wide spectrum of application domains, from 
combinatorial optimization problems, to data mining, to 
processing of large measurement data sets, etc. For such 
applications the partition of input data is used to induce a 
partition of the overall workload among slaves (data 
partitioning), and, in particular, the following 
parallelization technique is adopted: the same sequential 
algorithm is executed simultaneously by the slaves, 
processing different input data.  

For the master-slave pattern we propose an application 
model in which the master performs a preliminary task of 
partitioning of input data, and a task of processing of 
partial results. The latter is performed when all the partial 
results are returned by the slaves.

The slaves, moreover, perform the overall workload, 
which is decomposed into a high number of sub-tasks, 
called atomic sub-tasks, which are parts of the original 
workload that can not be further decomposed. By 
definition, the atomic sub-tasks are independent, do not 
communicate with each other and are considered the 
smallest tasks which can be mapped onto resources. The 
application is characterized by the computation size (or 
complexity), called N, that corresponds to the total 
number of atomic sub-tasks, each of which is 
characterized by the same complexity in terms of 
computation, data storage and data transfer aspects (see 
figure 1).

However, for a large number of distributed resources 
the centralized control of master can become a bottleneck 
for applications and a single point of failure. 

To overcome such limitations, a hierarchical version of 
the master-slave pattern is taken into account, by 
extending the single master to a hierarchy of masters, 
each of which controls a different group of slaves at 
different hierarchical levels. 

In the hierarchical  master-slave  pattern  [18], the 
master at the top of the hierarchy partitions input data to 
the  underlying   masters, a nd  so  on,  until to  reach   the  
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Figure 1. The Master-slave pattern. 

slaves, that directly process the received  input  data (see 
figure 2). 

Hierarchical master-slave applications, executed in a 
distributed environment, require to host masters and 
slaves on different computational resources. In this 
context the DAG structure requires to model, in addition 
to computation tasks performed by masters and slaves, 
communication tasks, due to the realistic limited 
performance of inter-networking resources. Such tasks are 
related in particular to input data transfers performed by 
the master towards the sub-master, until to the slaves, and 
to output data transfers performed by the slaves towards 
the master hierarchy.  

The paper focuses on applications for which 
partitioning  of   input   data  task,  processing  of  partial 
results task and communication tasks can be disregarded 
with respect to computation tasks performed by the 
slaves, whose optimised distribution on distributed 
heterogeneous    resource     determines     the   significant 
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performance improvement of the overall application. 
Such simplification will be removed in a future work 

in which a mapping policy for all the tasks of a 
hierarchical master-slave computation will be taken into 
account.    

3.2 Grid Model 

A grid system is generically composed of a pool of 
distributed and heterogeneous computational resources,  
characterized by different computation performance, 
inter-connected through communication resources and 
accessible via the Internet. In such distributed systems, 
some computational resources (especially nodes of 
clusters and networks of workstations) are often not 
directly accessible via the Internet and use dedicated, 
high-performance networks whose protocols may not be 
IP-compliant. As a consequence, a hierarchical 

organization is a natural topology to represent  grid 
systems and offers many advantages: (1) it can be adopted 
to recursively divide an application workload into 
multiple distributed and concurrent tasks running 
simultaneously on grid resources; (2) each administrative 
domain can be controlled separately from the others and 
so remote resource owners can easily enforce their own 
policies on external users; (3) grid applications can 
exploit dedicated and high-performance resources 
(supercomputers, dedicated high-speed networks of 
workstations, etc.) non-directly accessible through the 
Internet; (4) it removes the single centralization point for 
grid management, and so improves scalability. 

In a hierarchical topology, the resources are virtually 
organized into different levels, and only resources 
belonging to the same level can directly communicate 
among them. A designed machine of a level is used by the 
resources to communicate with the level above them or 
below them. In this organization, grid users access only to 
resources at the highest level, while the complexity of the 
underlying hardware and software infrastructure is 
hidden.  

Our grid model considers the grid system as a 
hierarchy of computational resources distributed on 
multiple levels. Due to the simplification of the 
application model, communication resources and their 
related performance are not modelled: this corresponds to 
consider a distributed environment characterized by high 
communication performance.  

Each level of the grid system is modelled as a set R of 
resources, each of which is characterized by computation 
performance and cost attributes. We indicate a resource 
with Ri,, with, i:1..M, where M is the number of available 
resources (see figure 3). A resource can be simple, if it 
represents a single computer, or aggregate, if it represents 
a pool of computers of a lower level in the hierarchy 
(such as a cluster or a network of workstations).  



The performance of a simple resource Ri is modeled as 
the total time required for the processing of an atomic 
sub-task and is indicated with ti. The cost of a simple 
resource Ri, called ci, is modeled as the cost of resource 
usage for the processing of an atomic sub-task. Called Ni

the number of resources of the lower level of Ri, and Rij

with J:1,..Ni, the lower level resources, the performance 
of an aggregate resource Ri can be modelled as the sum of 
the times tij, which are the times that each resource Rij

requires for processing an atomic sub-task, divided by Ni,
while the cost can be modelled as the sum of the costs cij

per atomic sub-task of each Rij. A more accurate model of 
aggregate resources, which takes into account the 
heterogeneity of resources of the lower level, will be 
considered in a future work. 

4. The Time Minimization Heuristic 

The time minimization heuristic is based on the 
economy model proposed in [2] in which the execution of 
an application is subject to both time and cost constraints. 
It regards the problem of finding the “best” resources on 
which to run the slaves of a master-slave application and 
the best assignment of distributed tasks to them. It can be 
adopted into a hierarchical environment, applying 
periodically the same procedure to each level of the 
hierarchy and considering both simple and aggregate 
resources related to that level. 

The parameters specified by the user, that determine 
the objective function, are: (1) the total execution time, 
which represents the deadline, called D, and (2) the total 
price for resource usage, which represents the available 
budget, called B.

The proposed heuristic selects a sub-set of resources 
from the pool of available ones, so that the aggregate cost 
for their usage is lower than budget B (but not necessarily 
the minimum) and that are able to complete the 
application execution as quickly as possible (time 
minimization) and within deadline D.
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Figure 3.  The grid model. 

The goal of the proposed heuristic is to minimize the 
total execution time, so the distribution has to be chosen 
in order to utilize the best performance resources to 
minimize execution time on each resource. Since we 
consider economic aspects of resource usage, the 
distribution is also performed so as to not exceed the 
budget. 

With respect to the application and grid models 
described in the previous section, the mapping problem 
can be formalized as follows. The objective function is: 

M1int1
ii

..:)min()(

where ni denotes the number of atomic sub-tasks assigned 
to resource Ri and represents the unknown quantity of the 
algorithm. 

Objective function (1) must be reached respecting the 
following constraints: 
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where ni has to be not negative, (2) ensures that the 
deadline is not exceeded, (3) is the constraint on the 
actual execution of N tasks, and (4) ensures that the 
budget is not exceeded. Since an atomic sub-task can not 
be further divided, an additional constraint is that ni must 
be integer, since it represents the number of atomic sub-
tasks assigned to resource Ri.

To minimize the execution time, we assign a non 
uniform number of atomic sub-tasks to the available 
slaves such that they will finish at roughly the same time. 
So (1) is equivalent to the following objective function: 

M1jintnt5
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The approximation in (5) is caused by the 
heterogeneity of resources, which are characterized by 
different performance, and by the constraint on ni to be 
adjusted to integers. 

Indicated with t the execution time of an atomic sub-

task for the resource with the highest performance, (5) 
implies: 
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where n  is the number of atomic sub-tasks assigned to 

the quickest resource. The calculation of n permits to 

evaluate ni as: 
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Generally constraints (2), (8) and (9) are not satisfied 
simultaneously. As a consequence, we propose an 
iterative algorithm whose steps are described in the 
following: 
(a) Consider set R of all available resources and indicate 
with Rp the quickest resource. Solve (9) in order to find 
real value n  considering to consume the budget, that 

means to equalize the total cost to B. Then approximate 

n  to the nearest smaller integer, so to not exceed B.

(b) Use n  to calculate ni of all the other resources, 

solving (7) for all i:1,..M except p.

(c) Use constraint (8), considering the equality to N, in 
order to find the factor x to normalize the calculated ni

values so that their sum is N:

Nxn
M

1i i
)(

i.   If x>1, that means that (8) can not be satisfied 
using the current makespan, continue to step (e); 

ii.  If x<=1, that means that (8) can be satisfied 
using the current makespan, recalculate ni multiplying 
them by the factor x.

(d) Verify constraint (2).  
i.    If (2) is violated the algorithm ends without a 

solution; 

ii. If (2) is not violated then the algorithm ends with 
a solution given by ni calculated at step (c).ii. 

(e) Sort list Ro of resources by increasing order of cost 
per atomic sub-task. If two or more resources have the 
same cost, order them for decreasing performance, so to 
prefer, among resources with the same cost, the quickest 
ones: 

M1jttandccorccwith

RRRR

1jj1jj1jj

Mj1o

..

),..,,..,(

In this order the most expensive resource is RM.

(f) Because of the required exceeding budget, it is 
necessary to decrease the number of atomic sub-tasks 
assigned to the most expensive resource. As a 
consequence, a part of atomic sub-tasks assigned to RM,

called , is distributed among the (M-1) resources in a 
proportional manner to their performance. To this aim, the 
following system has to be solved: 
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i.   If there is a solution with 0n )(  that verifies 

constraint (2) on deadline, then the solution of the time 
minimization heuristic is given by ni calculated as: 
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rounding the obtained values to the nearest integers.  

ii. If there is not a solution with 0n )(  that 

satisfies the constraint on deadline, then the procedure 
is iterated from step (a), eliminating the resource RM

from the set of available resources. If steps from (a) to 
(e) are iterated for M times terminating without a 
solution, it is possible to conclude that there is not a 
sub-set of the available resources which permits to 
satisfy simultaneously the constraints on deadline and 
budget. 

Starting from objective function (5) and constraints (2), 
(3) and (4), an optimal solution could be reached with real 
values of ni. On the other hand, a good rounding to the 
nearest integers permits to remain very close to the 
optimal solution.  

In order to obtain the solution that as best as possible 
approximates the optimal one, we propose a generic 
procedure for the rounding of ni values to integers, 
respecting the established deadline and budget constraints 
and maintaining N as total summation of all ni. In this 
procedure an ni value is considered integer when the 
absolute value of the difference between it and the nearest 
integer is less than a specified little value >0.

Consider list Ro of resources ordered as indicated at 
step (e) of the procedure. 
-  If n1 is not an integer, if deadline is not exceeded for 
resource R1, n1 is approximated to the nearest greater 



integer, indicated with g1, else it is approximated to the 
smaller one, indicated with s1.

In the case of approximation to the nearest greater 
integer, the difference between g1 and n1 is subtracted to ni

of the necessary resources in the list, starting from R2,
until such values become the respective nearest smaller 
integers (eventually except for the last one). 

In the case of approximation to the nearest smaller 
integer: 

-  the difference between n1 and s1 is added to the 
resources in list Ro, starting from resource R2, until 
their values become the respective nearest greater 
integers (eventually except for the last one, called RL).

- (9) constraint is checked. If (9) is violated, repeat 
the previous step without considering RL and the 
following ones, and so on. If no adjustment permits to 
satisfy (9), the procedure ends without a solution. 

-  (2) constraint, for resources whose ni was changed, 
is checked. If (2) is violated for one or more resources, 
the total quantity of ni values which cause the 
violation is distributed among the previous resources 
and the previous step is repeated. 

-  Repeat starting from the following resource in list Ro,
(R2, R3, until to RM) and until all ni are rounded to integer. 

Such rounding procedure determines the relative error 
of the heuristic result from the optimal one, that can be 
considered very trivial in the following case: 

M1jitnt
jii

..:,

which is verified in the case of high values of ni.

5. Experimental Results 

The time minimization heuristic was tested on 
applications written for the TMS Framework, an object-
oriented framework for transparent and hierarchical 
master-slave applications, which is able to re-use existing 
code for non-distributed solutions and to automatically 
parallelize and distribute the tasks generated by the 
execution among multiple distributed resources. 

5.1 The TMS Framework 

Thee TMS Framework manages the functionalities of 
resource management, scheduling and communication 
required to deploy the application and is able to leverage 
already existing services delivered by the middleware 
used as underlying layer. 

Such framework was implemented through reflection 
mechanisms provided by the run-time proxy-based Meta-
Object Protocol (MOP) provided by the ProActive library 

for distributed programming [19]. By using MOP, the 
TMS Framework permits to use every existing class to 
transparently instantiate the set of active objects that 
correspond to masters and slaves instances in the 
hierarchical topology, maintaining the application similar 
to that used for a sequential computation. Therefore, the 
hierarchical master-slave pattern is dynamically 
implemented and every active object can be turned in a 
master able to transparently split the service task into sub-
tasks and in a slave able to perform the assigned part of 
the overall task.  

The programming model of the TMS Framework 
requires to provide the name of the configuration file used 
to dynamically configure the deployment of active 
objects. It is an XML-based file, called Job Description 

Format (JDF), which follows a well-defined format. In 
particular, a part depends on the underlying middleware 
adopted for active object management and 
communication, while the other one is common and is 
used for the reflection mechanisms. The common part, in 
particular, contains the following information: the method 
whose invocations have to be distributed over master and 
slaves objects; the input parameters that have to be 
partitioned and the policy to partition each of them; the 
assembly policy of the output parameter.  

Thanks to the ProActive-HiMM middleware 
developed by the authors in a previous research work 
[20], the TMS Framework can be easily adopted to 
leverage HiMM, a hierarchical component and Java-based 
middleware for grid computing, which delivers grid 
services of information, communication and resource 
management. HiMM, in particular, provides a resource 
broker which allows users to submit applications 
specifying application code, input data, features and QoS 
requirements described using XML-based descriptor files 
[21].  

The time minimization heuristic, implemented for the 
task mapping phase of the HiMM resource broker, adopts 
information on the application structure and economic-
based requirements contained in the XML-based files 
specified by the user and the performance and cost 
information about the available resources delivered by the 
Resource Managers, HiMM components whose task is to 
publish information about available resources in the grid 
system. The performance information is necessary in 
order to predict the execution time of the assigned number 
of atomic sub-tasks to each resource. 

In a heterogeneous environment, accurate performance 
prediction of resources is a fundamental aspect in order to 
obtain an efficient mapping and so the real fulfillment of 
user QoS requirements.  

The prediction performance represents an important 
research area in which many efforts have been made. 
Several solutions have been proposed and adopted to 
evaluate the resource performance. These can be based on 



benchmarking, analytical modelling, and monitoring. 
In benchmarking methodologies well-defined 

applications are executed on systems to measure the 
performance in term of CPU utilization, RAM 
occupation, etc., which can be also used as a basis for 
comparisons with other systems. Analytical modelling 
methodologies require the construction of a mathematical 
or logical model that represents the behaviour of the 
system and that has to be analytically evaluated (an 
example is the LogP model [22]). Monitoring approach is 
used to continuously measure and analyse the 
performance of systems (such as NWS [23]).  

In the current approach, because of the assumption of 
using resources in a exclusive way by adopting 
reservation mechanisms, a simple benchmarking-based 
performance estimation is adopted to predict resource 
performance in terms of execution times. Since the 
adoption of a generic benchmark can not be used to 
accurately evaluate the execution time of a specific 
application, our solution is to evaluate resource 
performance with respect to the specific atomic sub-task 
of an application. As a consequence we suppose to use a 
Resource Manager which publishes information related to 
the time required to execute an atomic sub-task of an 
application and the cost per task expressed in dollars. 
Atomic sub-tasks are identified by symbolic names, 
execution times are expressed in seconds, and have to 
refer to the computational size of the application, if they 
depend on it. 

5.2 A Case-study  

The time minimization heuristic was tested on various 
applications written for the TMS Framework, among 
which matrix multiplication, finite integral calculation, 
Mandelbrot set computation, image rendering, etc. For 
each of these applications, application complexity, atomic 
sub-task, partition and assembly policies were 
individuated. For example for the multiplication of two 
square matrices of n2 dimension, the application 
complexity corresponds to the number of rows, that is n,
an atomic sub-task is the computation of a row of the 
result matrix, which can be calculated using as input data 
the right matrix and the corresponding row of the left 
matrix. The partition policy requires to distribute to all the 
slaves the right matrix and to the j-th slave nj rows of the 
left matrix whose indices correspond to those of the result 
matrix rows which the slave has to compute.  

An intense experimentation on a real test-bed, 
moreover, was conducted on the scientific application 
called On-line Power System Security analysis (OPSSA)
which regards the security analysis of electrical networks 
useful to control system operation when power system 
operators increase the infrastructure exploitation to 
maximize their profits [24].  

The OPSSA application deals with the on-line 
assessment of the electrical system’s capacity to maintain 
the flow of electricity from generators to customers, under 
unforeseen phenomena, called contingencies, that could 
compromise the correct system behaviour. A contingency 
can be, for example, an unexpected modification in the 
power system structure or a sudden change of the 
operational conditions.

The OPSSA works on real-time distributed data 
measurements, used to get the most recent estimation of 
the system state variables. Moreover, since such 
application requires stringent time constraints, in order to 
output data to be usefully leveraged by the system 
operators, it is particularly apt for testing the behavior of 
the proposed mapping heuristic. 

The OPSSA consists of three main steps: 
1. the screening phase: screening of the most “credible” 
contingencies, that are the most probable and the most 
dangerous ones; 
2. the predicting phase: the prediction of the impact of 
each credible contingency on the entire system operation 
through the system behavior simulation, called Power
Flow problem, in both static and dynamic regime (it is the 
most compute-intensive task of the OPSSA); 
3. the controlling phase: the identification of preventive 
and corrective proper control actions able to reduce the 
risk of system malfunctioning.

The master-slave solution is based on the distribution 
to the slaves of the set of contingencies, each of which 
can be analysed independently from each other (see figure 
4).

In particular the master has the following main tasks: 
- to collect static and dynamic data of the electric 
network necessary to perform the Power Flow problem; 
- to opportunely partition the set of credible 
contingencies; 
- to distribute the set of contingencies among the slaves; 
- to collect the partial results replied by the slaves; 
- for each contingency, to perform the check of 
constraints and to generate an alarm in the case of 
constraint violation. 

The slaves, instead, have the following main tasks: 
- to receive from the master the most recent state 
estimation of the electrical grid and the sub-set of 
contingencies to analyze;

- to perform the system simulation, through the Power 
Flow problem solution, considering each assigned 
contingency;
- to reply to the master the system behavior evaluation 
for each assigned contingency. 

Experiments on the OPSSA application execution were 
performed on the IEEE 118-nodes test network. Such   
network   is  composed   of   118  nodes  and   the 
experiments refer to potential 186 contingencies related to 
the breaking of one of the 186 transmission lines. 
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Figure 4.   Activity diagram of the OPSSA 
application.

The execution time of the OPSSA would not exceed 
few minutes in order to predict in a useful time the impact 
of each credible contingency on the correct system 
operation. For this reason in the experimentation we 
chose as deadlines 15 minutes (900 seconds) and 20 
minutes (1200 seconds). 

5.3 The test-bed

The OPSSA application was implemented for the TMS 
Framework and was deployed on a real test-bed with a 
two-level topology composed of eight homogeneous 
resources of a cluster, accessed through a front-end, and 
three directly accessible heterogeneous computers (see 
figure 5). The configuration of the cluster resources and 
of the front-end is indicated with R1 and those of the 
three single computers are indicated with R2, R3 and R4 
(see table 1). The client was executed on a notebook with 
Intel Pentium III 650 MHz, 256 MB of RAM and running 
Windows 2000 operating system. 

The software platform to manage the distributed 
architecture was implemented by using Java provided by 
the JDK 1.4.1, HiMM version 1.1 and ProActive version 
2.2.

For the OPSSA application, an atomic sub-task 
(further called task for brevity) is the analysis of a 

contingency, which strongly depends on the 
characteristics of the electrical network. For this reason 
some preliminary experiments were conducted to evaluate 
the mean execution time for the analysis of a contingency 
for the 118-nodes test network. The mean execution time 
was evaluated for each machine, but, because the 
measured values were very similar for resources with the 
same configuration, we associated them to the resource 
configuration. 

The   estimated    execution   times   of   a  contingency  

Client

R4R3

R1

R2
R1

R1

R1

R1

R1

R1

R1

R1

Internet

COW

COW front-end

level 1

level 2

Figure 5.  The test-bed.

Resource

Configuration
CPU

Clock
(MHz)

RAM

(MB)
OS

R1
Intel Pentium II
(dual processor)

350 128 Windows 2000

R2 Intel Pentium III 350 256 Windows 98

R3 Intel Pentium III 350 256 Windows 2000

R4 Intel Pentium III 500 64 Windows 98

Table 1.  Resource configuration. 

Resource
Configuration

OPSSA Atomic
Sub-task

Execution Time

OPSSA Atomic
Sub-task Cost

R1 76.5 s 1.25 $

R2 75.0 s 4 $

R3 77.0 s 5 $

R4 70.0 s 5 $

Table 2.  OPSSA atomic sub-task evaluation.



analysis and related costs, (chosen with a nearly-random 
criterion) are summarized in table 2. 

Because the proposed heuristic requires to characterize 
a resource only with a mean execution time of the task 
and the related cost (which are data collected by the 
resource broker from the Resource Managers), the cluster 
has to be considered as an aggregate resource, with a 
performance given by the mean execution time of the 
nodes divided by the number of nodes. As a consequence 
the cluster will be characterized by the following mean 
execution time: 

s
t

t R
COW 56.9

8
1

Moreover the cost per task of the cluster is modelled as 
the cost of a cluster node multiplied by the number of 
nodes, that is 10 $. 

5.4 Experimental Results 

Table 3 reports the execution times and expended 
budgets predicted by the time minimization heuristic in 
relation to a deadline of  900 seconds and a budget of 
1200 $.

The estimated execution time for the overall 
computation is evaluated as the maximum value among 
the execution times of each resource. As it is possible to 
observe, using this test-bed and budged, it is not possible 
to execute 130 tasks within the deadline (the estimated 
execution time is 910 seconds), that means that it is 
possible to complete the analysis of only a part of all the 
possible contingencies. 

Figure 6 shows the number of tasks assigned to each 
resource varying the total amount of tasks to perform. 
Because of similar capabilities of resources R2, R3 and 
R4, the number of assigned tasks to each of them is very 
similar. On the contrary, because the cluster (indicated 
with COW) has the best performance with respect to the 
others, it receives a greater amount of tasks, which in 
particular increases with the total number of tasks to 
perform.  

Figure 7 is related to the same conditions of the 
previous figure and shows the estimated execution time 
for each resource. In this scenario the budget is sufficient 

Number of tasks 30 40 50 60 70 80 90 100 110 120 130

Execution

time (s)
231 277 375 450 525 564 631 698 770 841 910

Expended

budget ($)
249 337 420 503 586 675 758 841 935 1014 1096

Table 3.  Estimated execution times and 
expended budgets (D=900s, B=1200$).

to permit the assignment of all the tasks minimizing the 
execution time of all the resources, without requiring 
adjustments. Even if the proposed algorithm requires an 
approximation of the calculated optimal real numbers of 
tasks, in order to assign a whole number of tasks to each 
resource, this figure shows as the algorithm is able to 
obtain quite similar execution times for each resource.  

The shift around the mean execution time is due to the 
rounding applied by the heuristic. As much different as 
the performance of resources are, as more its value is 
greater. In particular, in this case, the shift is about a 
minute, which is the difference of execution times among 
the resource COW and the other resources. 

Figure 8 shows the distribution of the contingencies 
among the resources, under maximum exploitation of 
deadline and budget, considering 900 seconds as deadline 
and different budget values.  
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Figure 6. Tasks assigned to each resource 
varying the total amount of tasks (D=900s, 
B=1200$).
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The figure shows as, by increasing the budget, the more 
expensive (but even faster) resource, that in this case is 
the cluster, can be used to map an increasing number of 
contingencies. 

The time minimization heuristic was further tested 
considering a budget not sufficient to minimize the 
execution time of all the resources and some adjustments, 
using the proposed iterative algorithm, were performed in 
order to exploit more economic ones. 

In particular figure 9 shows the number of tasks 
assigned to each resource for deadline of 1200 seconds, 
total number of tasks of 100, and a budget varying from 
725 $ to 925 $. Until to about a budget of 850 $, it is 
possible to minimize the execution time until to 707 
seconds (see figure 10), which is obtained assigning 72 
tasks to the cluster, 9 to R2, 9 to R3 and 10 to R4. For 
values from 825 $ to 750 $ the limited budget requires to 
decrease the number of tasks assigned to the most 
expensive resource, that is the cluster, in particular from 
72 until 55 tasks. Finally, with 725 $ no adjustment 
permits to remain within the deadline (the minimum 
execution time is 1232 seconds).  

Finally figure 11 shows the execution times that were 
actually measured and the estimated execution times 
produced by the proposed heuristic, varying the problem 
computation size (number of tasks) under fixed deadline 
and budget. Since HiMM does not implement reservation 
mechanisms, the experiments were conducted considering 
a single user and avoiding the execution of external jobs, 
so to not affect execution times and to not introduce a 
degree of unpredictable variability in performance 
evaluations.  

The execution times have a nearly linear trend with 
respect to the number of tasks to execute, condition which 
proves a good scalability of the overall system, which did 
not show problems of performance reduction increasing 
the number of tasks to execute.  
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The experimental analysis shows, moreover, as the 
estimated execution times closely match the measured 
ones, so proving the good level of accuracy of the 
proposed heuristic. 

The little difference between the estimated time and 
the measured one, that was observed during the 
experimentation, is mainly due to the communication 
tasks that, even if the distributed application is executed 
in a computing environment characterized by a high inter-
networking capability, require interval times which are 
not taken into account by the proposed mapping heuristic. 

6. Conclusions 

This paper proposed an economy-driven mapping 
heuristic, the time minimization heuristic, able to map and 
schedule the tasks assigned to the slaves of a hierarchical 
master-slave application and that we feel can be usefully 
adopted for scheduling a large class of parallel and 
distributed applications. 

The paper presented, moreover, an evaluation of the 
proposed mapping heuristic performed through an 
experimental analysis conducted in a hierarchical and 
heterogeneous environment on a real world engineering 
application, which proved the good level of accuracy of 
estimated execution times and the scalability of the 
overall system.  

Improvements to the heuristic will be made by 
including master and communication tasks in the 
application model, and the inter-networking resource 
performance and usage cost in the grid model. Moreover, 
we will implement the heuristic in a framework that aims 
to simplify design, implementation, deployment and 
execution of applications whose complexity can be 
reduced by adopting the “divide and conquer” approach. 
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