
An Economy-driven Mapping Heuristic for

Hierarchical Master-Slave Applications in Grid Systems

Nadia Ranaldo1, Eugenio Zimeo2

1University of Sannio
Department of Engineering

Benevento, 82100, Italy
ranaldo@unisannio.it

2University of Sannio
Research Centre on Software Technology

Benevento, 82100, Italy
zimeo@unisannio.it

Abstract

In heterogeneous distributed systems, such as Grids, a
resource broker is responsible of automatically selecting

resources, and mapping application tasks to them. A

crucial aspect of resource broker design, especially in a
next commercial exploitation of grid systems, in which

economy theories for resource management will be

applied, is the support to task mapping based on the
fulfilment of Quality of Service (QoS) constraints. The

paper presents an economy-driven mapping heuristic,

called time minimization, for mapping and scheduling the
tasks assigned to the slaves of a master-slave application

in a hierarchical and heterogeneous distributed system.
The validity and accuracy of such heuristic are tested by

implementing it in a resource broker of a hierarchical

grid middleware used for running a real world
application.

1. Introduction

A main challenge to efficiently execute parallel and
distributed applications in a grid system is the effective
management of the large amount of available
computational, storage and communication resources in
order to optimize the mapping on them of application
tasks. To this end, a central subsystem of a middleware
for grid computing is the Resource Management System

(RMS). The main goal of the RMS is to enable a
transparent access to the pool of resources available in the
Grid.

A fundamental component of an RMS is the resource
broker, which is mainly responsible of accepting
execution requests from the user and assigning them to
specific resources selected from the pool of available ones
[1]. In addition to this task, which is accomplished

through an Information System, the broker schedules for
the execution the application tasks distributed on the
selected resources, which are continuously monitored and
managed.

Mapping, scheduling, and execution are performed so
that some QoS requirements provided by the requester are
satisfied. In particular, the resource broker assigns tasks to
resources on the basis of specified policies, called
mapping policies, used to determine the best schedule for
the application on the set of available resources. The
mapping task phase, moreover, is one of the most
important functions for a resource broker, since it has a
direct impact on service response times and, as a
consequence, on user satisfaction.

The deployment of grid systems in the next years will
foster the adoption of new business models for computing
services. Big companies and organizations will prefer to
rent computing resources instead of buying them. In such
a scenario, the efficiency improvement of resource
allocation and scheduling will be possible through the
adoption of economic models to apply among resource
suppliers and requesters. In recent years, in this
perspective, some economics theories have been studied
for the implementation of resource management in a grid
environment [2]. A market, in fact, similarly to a grid
system, is decentralized, dynamic and deals with
competitive resources. The basic components in a market
are producer, consumer and commodities, corresponding
respectively to resource owner, resource requester (user)
and distributed resources in a grid environment.

An economy-driven resource management system
provides a mechanism for regulating the supply-and-
demand for resources and allocating them to applications
based on user preferences, such as cost and time
constraints. It also gives an incentive to resource owners
for making resources available for computation and a
basis to users for appropriately trading the quality of
service guarantees they receive against cost.

1-4244-0054-6/06/$20.00 ©2006 IEEE

In grid resource management systems a fine accuracy
of mapping decisions requires, in addition to detailed
information of the underlying distributed system, the
knowledge and model of application features, in terms of
computational requirements of each task, data and
execution dependencies and communication patterns.

This paper presents the definition of an application-
oriented and economy-driven mapping heuristic, called
time minimization, for mapping distributed tasks on a set
of heterogeneous and distributed resources. The proposed
heuristic is applied to a specific class of applications
which presents the same task dependencies, that is the
class of applications based on the master-slave model.

The main reasons of such choice are: (1) the master-
slave model is very spread in scientific community and
can be adopted to achieve a good performance
improvement of a wide class of applications in many
fields of science and engineering, such as weather
prediction, astrophysics, bioinformatics, earth quake
research, ground water pollution, multi particle physics,
etc.; (2) applications programmed according to the
master-slave model well fit grid systems because of well-
defined and limited communication patterns among the
distributed computing entities.

In fact, communication takes place only between the
master and the slaves and in well-defined times of
execution. For these reasons, this model is well suited to
be used in Grids where high-latency and shared wide-area
networks are a strong limitation for the execution of
applications based on tightly-coupled parallelism.

The simplest approach for performing repeatable tests
on task mapping, overcoming resource availability
problems, is to resort to simulation. Well known projects
in the context of grid simulation are GridSim [3] and
Simgrid [4]. On the other hand, the simulation approach
can be hardly used for studying, in a repeatable and non-
intrusive way, the subtle interactions between large-scale
shared distributed hardware, application software, and
complex resource management policies, which are typical
of grid environments. As a consequence, evaluation
results produced by simulation tools to study the
effectiveness of task mapping algorithms may be
inaccurate.

For this reason the accuracy of the proposed heuristic
and its usefulness in mapping and scheduling tasks of real
world applications with time and cost constrains is
studied using such heuristic for implementing the
mapping phase of a resource broker of HiMM
(Hierarchical Metacomputer Middleware) [5], a grid
middleware which delivers basic services of computation,
information, communication and resource management
for parallel and distributed object-oriented applications.
Nevertheless, the solution proposed can be easily applied
to other grid middlewares.

The time minimization heuristic is, moreover, tested on

an actual test-bed executing applications written for the
TMS (Transparent Master Slave) Framework [6], a
reflection-based framework for master-slave applications,
able to re-use existing code for non-distributed solutions
and to automatically parallelize and schedule the tasks
among multiple resources, by satisfying user QoS
constraints.

The rest of the paper is organized as follows. Section 2
presents related work, Section 3 describes the application
and grid model, Section 4 describes the proposed
mapping heuristic, Section 5 presents an evaluation of the
proposed heuristic performed adopting some experimental
results conducted on a real distributed environment.
Finally Section 6 summarizes the paper and presents
future work.

2. Related Work

Task mapping policies can be distinguished in system-
oriented policies, which try to optimise the overall
resource utilization, and application-oriented policies,
which try to optimise application execution.

Application-oriented policies are often QoS-based,
since they permit to satisfy QoS requirements specified by
the user. The optimal solution for such kind of policies in
a heterogeneous and distributed environment leads to NP-
complete problems and different heuristics have been
proposed in the literature to reach a near-optimal solution.

Most of the grid systems use application-oriented
mapping heuristics which try to optimise only the
execution performance, by adopting a mapping that
minimizes the overall execution time with respect to the
available resources. A simple example is the greedy
approach [7], which iteratively allocates each task to the
resource that is likely to produce the best performance,
without considering the rest of pending tasks. This
approach leads usually to sub-optimal solutions, since the
mapping decisions are based only on local task
information.

More complex mapping algorithms, which try to
overcome local optimal solutions, are based on genetic
algorithms [8], simulated annealing [9] or branch and
bound methods [10]. Other proposals of mapping
algorithms are Workerqueue (WQ), Workerqueue with
Replication (WQR) and dynamic FPLTF (Fastest
Processor to Largest Task First) [11, 12].

Some mapping algorithms specific for master-slave
applications have been presented in [13]. These
algorithms adopt an accurate grid model as regards
computation and communication performance, but do not
take into account economic aspects of resources.

On the other hand, in a future commercialisation of the
Grid, a resource characterization based only on
performance features is not sufficient to properly model

resources. In economy theories, in particular, the price of
resource utilization is the only additional parameter
necessary to operate, providing so a simplified way to
model the resource owner satisfaction and the competition
among them. In [2] some economic models, that can be
applied for managing grid resources and determining the
price of resource utilization, have been studied, for
example the commodity market model, the posted price
model, the bargaining model, the auction model, the
trading model and the monopoly/oligopoly model.

Paper [14] represents one of the first effort to introduce
economy-driven mapping algorithms based on deadline
and budget constraints. Such algorithms were tested in
Nimrod-G [15], a grid resource management system for
scheduling parametric applications. The proposed
approach, however, does not model task dependencies
and do not ensure the assignment and execution of all the
tasks, since it considers a shared and dynamic
environment in which only a task at a time is assigned
until the budget is consumed.

Our idea, instead, is to grant the execution of all the
tasks of the application respecting the established terms
during the initial negotiation phase between the resource
broker and the user. Our approach, in particular, requires
to exploit selected resources in an exclusive way, so to
maintain the predicted performance by the heuristic in the
time necessary to complete the application execution.

A possible approach to grant the complete availability
of selected resources to scheduled applications is the use
of advance reservation mechanisms, both for
communication and computational resources, delivered by
the grid middleware [16].

3. Application and Grid Models and

Notations

In this section the class of applications and grid
systems for which our approach can be applied are
described and modelled.

3.1 Application Model

A very simple model of application is the unstructured

application, that is a distributed application composed of
a set of independent and self-contained tasks. This model
is considered as reference model in various resource
broker systems for the activities of task mapping and
scheduling, but can not be considered a realistic model,
since distributed applications are typically composed of
tasks characterized by data and control dependencies. In
particular the computation in a distributed application can
be viewed as a precedence graph, that is, a directed

acyclic graph (DAG). Each node in the DAG corresponds
to a computation or communication task. The edges of the

DAG express the dependencies between the tasks, that
can be of execution, data, or both.

Defining mapping algorithms, able to manage the task
dependencies of an application described by a generic
DAG, is difficult. In this work we focus on a class of
applications described by the same DAG structure, and in
particular those which adhere to the master-slave pattern
[17]. In this pattern there are two kinds of entities: master
and slave. Generally a master decomposes the problem
into smaller tasks, distributes these tasks among a farm of
slaves and waits for partial results. Each slave performs
its processing on the received task, then returns the result
of the processing back to the master, which gathers and
assembles the partial results in order to produce the final
solution of the computation.

We consider, in particular, the master-slave pattern for
coarse-grained parallel applications, which embody a
wide spectrum of application domains, from
combinatorial optimization problems, to data mining, to
processing of large measurement data sets, etc. For such
applications the partition of input data is used to induce a
partition of the overall workload among slaves (data
partitioning), and, in particular, the following
parallelization technique is adopted: the same sequential
algorithm is executed simultaneously by the slaves,
processing different input data.

For the master-slave pattern we propose an application
model in which the master performs a preliminary task of
partitioning of input data, and a task of processing of
partial results. The latter is performed when all the partial
results are returned by the slaves.

The slaves, moreover, perform the overall workload,
which is decomposed into a high number of sub-tasks,
called atomic sub-tasks, which are parts of the original
workload that can not be further decomposed. By
definition, the atomic sub-tasks are independent, do not
communicate with each other and are considered the
smallest tasks which can be mapped onto resources. The
application is characterized by the computation size (or
complexity), called N, that corresponds to the total
number of atomic sub-tasks, each of which is
characterized by the same complexity in terms of
computation, data storage and data transfer aspects (see
figure 1).

However, for a large number of distributed resources
the centralized control of master can become a bottleneck
for applications and a single point of failure.

To overcome such limitations, a hierarchical version of
the master-slave pattern is taken into account, by
extending the single master to a hierarchy of masters,
each of which controls a different group of slaves at
different hierarchical levels.

In the hierarchical master-slave pattern [18], the
master at the top of the hierarchy partitions input data to
the underlying masters, a nd so on, until to reach the

. . .
1 2 N

Atomic
Sub-task

Atomic
Sub-task

Atomic
Sub-task

Atomic
Sub-task

Partitioning of
input data

Processing of
partial results

master

master

slaves

distribute tasks

return results

Figure 1. The Master-slave pattern.

slaves, that directly process the received input data (see
figure 2).

Hierarchical master-slave applications, executed in a
distributed environment, require to host masters and
slaves on different computational resources. In this
context the DAG structure requires to model, in addition
to computation tasks performed by masters and slaves,
communication tasks, due to the realistic limited
performance of inter-networking resources. Such tasks are
related in particular to input data transfers performed by
the master towards the sub-master, until to the slaves, and
to output data transfers performed by the slaves towards
the master hierarchy.

The paper focuses on applications for which
partitioning of input data task, processing of partial
results task and communication tasks can be disregarded
with respect to computation tasks performed by the
slaves, whose optimised distribution on distributed
heterogeneous resource determines the significant

. . .

1 N

Atomic
Sub-task

Atomic
Sub-task

Atomic
Sub-task

Atomic
Sub-task

Partitioning of
input data

Processing of
partial results

masters

masters

slaves

Partitioning of
input data

Partitioning of
input data

Partitioning of
input data

Atomic
Sub-task

Atomic
Sub-task

.

Processing of
partial results

Processing of
partial results

Processing of
partial results

master
at the top

of hierarchy

master
at the top

of hierarchy

distribute tasks

distribute tasks

return results

return results

Figure 2. The hierarchical master-slave
pattern.

performance improvement of the overall application.
Such simplification will be removed in a future work

in which a mapping policy for all the tasks of a
hierarchical master-slave computation will be taken into
account.

3.2 Grid Model

A grid system is generically composed of a pool of
distributed and heterogeneous computational resources,
characterized by different computation performance,
inter-connected through communication resources and
accessible via the Internet. In such distributed systems,
some computational resources (especially nodes of
clusters and networks of workstations) are often not
directly accessible via the Internet and use dedicated,
high-performance networks whose protocols may not be
IP-compliant. As a consequence, a hierarchical

organization is a natural topology to represent grid
systems and offers many advantages: (1) it can be adopted
to recursively divide an application workload into
multiple distributed and concurrent tasks running
simultaneously on grid resources; (2) each administrative
domain can be controlled separately from the others and
so remote resource owners can easily enforce their own
policies on external users; (3) grid applications can
exploit dedicated and high-performance resources
(supercomputers, dedicated high-speed networks of
workstations, etc.) non-directly accessible through the
Internet; (4) it removes the single centralization point for
grid management, and so improves scalability.

In a hierarchical topology, the resources are virtually
organized into different levels, and only resources
belonging to the same level can directly communicate
among them. A designed machine of a level is used by the
resources to communicate with the level above them or
below them. In this organization, grid users access only to
resources at the highest level, while the complexity of the
underlying hardware and software infrastructure is
hidden.

Our grid model considers the grid system as a
hierarchy of computational resources distributed on
multiple levels. Due to the simplification of the
application model, communication resources and their
related performance are not modelled: this corresponds to
consider a distributed environment characterized by high
communication performance.

Each level of the grid system is modelled as a set R of
resources, each of which is characterized by computation
performance and cost attributes. We indicate a resource
with Ri,, with, i:1..M, where M is the number of available
resources (see figure 3). A resource can be simple, if it
represents a single computer, or aggregate, if it represents
a pool of computers of a lower level in the hierarchy
(such as a cluster or a network of workstations).

The performance of a simple resource Ri is modeled as
the total time required for the processing of an atomic
sub-task and is indicated with ti. The cost of a simple
resource Ri, called ci, is modeled as the cost of resource
usage for the processing of an atomic sub-task. Called Ni

the number of resources of the lower level of Ri, and Rij

with J:1,..Ni, the lower level resources, the performance
of an aggregate resource Ri can be modelled as the sum of
the times tij, which are the times that each resource Rij

requires for processing an atomic sub-task, divided by Ni,
while the cost can be modelled as the sum of the costs cij

per atomic sub-task of each Rij. A more accurate model of
aggregate resources, which takes into account the
heterogeneity of resources of the lower level, will be
considered in a future work.

4. The Time Minimization Heuristic

The time minimization heuristic is based on the
economy model proposed in [2] in which the execution of
an application is subject to both time and cost constraints.
It regards the problem of finding the “best” resources on
which to run the slaves of a master-slave application and
the best assignment of distributed tasks to them. It can be
adopted into a hierarchical environment, applying
periodically the same procedure to each level of the
hierarchy and considering both simple and aggregate
resources related to that level.

The parameters specified by the user, that determine
the objective function, are: (1) the total execution time,
which represents the deadline, called D, and (2) the total
price for resource usage, which represents the available
budget, called B.

The proposed heuristic selects a sub-set of resources
from the pool of available ones, so that the aggregate cost
for their usage is lower than budget B (but not necessarily
the minimum) and that are able to complete the
application execution as quickly as possible (time
minimization) and within deadline D.

R1 R2

R1

cM =...

tM =...

. . .

cM 1

tM 1

cM 2

tM 2

cM NM

tM NM

RM 1 RM 2 RM NMR1N1

. . .

c21

t21

c22

t22

c2N2

t2N2

R21 R22 R2N2

level 1

level 2 level 2 level 2

c3

t3

c11

t11

c12

t12

c1N1

t1N1

R11 R12

. . .

c1=c11+c12+..+c1N1

t1=(t11+t12+..+t1N1)/N1

c2=c21+c22+..+c2N2

t2=(t21+t22+..+t2N2)/N2

R2 R3
. . . RM

Figure 3. The grid model.

The goal of the proposed heuristic is to minimize the
total execution time, so the distribution has to be chosen
in order to utilize the best performance resources to
minimize execution time on each resource. Since we
consider economic aspects of resource usage, the
distribution is also performed so as to not exceed the
budget.

With respect to the application and grid models
described in the previous section, the mapping problem
can be formalized as follows. The objective function is:

M1int1
ii

..:)min()(

where ni denotes the number of atomic sub-tasks assigned
to resource Ri and represents the unknown quantity of the
algorithm.

Objective function (1) must be reached respecting the
following constraints:

Bnc

Nn

MiDnt

M

i ii

M

i i

ii

1

1

)4(

)3(

..1:)2(

where ni has to be not negative, (2) ensures that the
deadline is not exceeded, (3) is the constraint on the
actual execution of N tasks, and (4) ensures that the
budget is not exceeded. Since an atomic sub-task can not
be further divided, an additional constraint is that ni must
be integer, since it represents the number of atomic sub-
tasks assigned to resource Ri.

To minimize the execution time, we assign a non
uniform number of atomic sub-tasks to the available
slaves such that they will finish at roughly the same time.
So (1) is equivalent to the following objective function:

M1jintnt5
jjii

..:,)(

The approximation in (5) is caused by the
heterogeneity of resources, which are characterized by
different performance, and by the constraint on ni to be
adjusted to integers.

Indicated with t the execution time of an atomic sub-

task for the resource with the highest performance, (5)
implies:

M1intnt6
ii

..:)(

where n is the number of atomic sub-tasks assigned to

the quickest resource. The calculation of n permits to

evaluate ni as:

M1in
t

t
n7

i

i
..:)(

that, applied to (3) and (4), leads to:

Nn
t

t
n

M

i
i

M

i i 11
)8(

Bcn
t

t
cn

M

i i

i

M

i ii 11
)9(

Generally constraints (2), (8) and (9) are not satisfied
simultaneously. As a consequence, we propose an
iterative algorithm whose steps are described in the
following:
(a) Consider set R of all available resources and indicate
with Rp the quickest resource. Solve (9) in order to find
real value n considering to consume the budget, that

means to equalize the total cost to B. Then approximate

n to the nearest smaller integer, so to not exceed B.

(b) Use n to calculate ni of all the other resources,

solving (7) for all i:1,..M except p.

(c) Use constraint (8), considering the equality to N, in
order to find the factor x to normalize the calculated ni

values so that their sum is N:

Nxn
M

1i i
)(

i. If x>1, that means that (8) can not be satisfied
using the current makespan, continue to step (e);

ii. If x<=1, that means that (8) can be satisfied
using the current makespan, recalculate ni multiplying
them by the factor x.

(d) Verify constraint (2).
i. If (2) is violated the algorithm ends without a

solution;

ii. If (2) is not violated then the algorithm ends with
a solution given by ni calculated at step (c).ii.

(e) Sort list Ro of resources by increasing order of cost
per atomic sub-task. If two or more resources have the
same cost, order them for decreasing performance, so to
prefer, among resources with the same cost, the quickest
ones:

M1jttandccorccwith

RRRR

1jj1jj1jj

Mj1o

..

),..,,..,(

In this order the most expensive resource is RM.

(f) Because of the required exceeding budget, it is
necessary to decrease the number of atomic sub-tasks
assigned to the most expensive resource. As a
consequence, a part of atomic sub-tasks assigned to RM,

called , is distributed among the (M-1) resources in a
proportional manner to their performance. To this aim, the
following system has to be solved:

Nn
t

t
n

t

t

Bcn
t

t
cn

t

t

M

M

i i

i

M

M

M

i i

i

)()(

)()(

)10(
1

1

1

1

i. If there is a solution with 0n)(that verifies

constraint (2) on deadline, then the solution of the time
minimization heuristic is given by ni calculated as:

)(

1..1)(

)11(

n
t

t
n

Min
t

t
n

M

M

i

i

rounding the obtained values to the nearest integers.

ii. If there is not a solution with 0n)(that

satisfies the constraint on deadline, then the procedure
is iterated from step (a), eliminating the resource RM

from the set of available resources. If steps from (a) to
(e) are iterated for M times terminating without a
solution, it is possible to conclude that there is not a
sub-set of the available resources which permits to
satisfy simultaneously the constraints on deadline and
budget.

Starting from objective function (5) and constraints (2),
(3) and (4), an optimal solution could be reached with real
values of ni. On the other hand, a good rounding to the
nearest integers permits to remain very close to the
optimal solution.

In order to obtain the solution that as best as possible
approximates the optimal one, we propose a generic
procedure for the rounding of ni values to integers,
respecting the established deadline and budget constraints
and maintaining N as total summation of all ni. In this
procedure an ni value is considered integer when the
absolute value of the difference between it and the nearest
integer is less than a specified little value >0.

Consider list Ro of resources ordered as indicated at
step (e) of the procedure.
- If n1 is not an integer, if deadline is not exceeded for
resource R1, n1 is approximated to the nearest greater

integer, indicated with g1, else it is approximated to the
smaller one, indicated with s1.

In the case of approximation to the nearest greater
integer, the difference between g1 and n1 is subtracted to ni

of the necessary resources in the list, starting from R2,
until such values become the respective nearest smaller
integers (eventually except for the last one).

In the case of approximation to the nearest smaller
integer:

- the difference between n1 and s1 is added to the
resources in list Ro, starting from resource R2, until
their values become the respective nearest greater
integers (eventually except for the last one, called RL).

- (9) constraint is checked. If (9) is violated, repeat
the previous step without considering RL and the
following ones, and so on. If no adjustment permits to
satisfy (9), the procedure ends without a solution.

- (2) constraint, for resources whose ni was changed,
is checked. If (2) is violated for one or more resources,
the total quantity of ni values which cause the
violation is distributed among the previous resources
and the previous step is repeated.

- Repeat starting from the following resource in list Ro,
(R2, R3, until to RM) and until all ni are rounded to integer.

Such rounding procedure determines the relative error
of the heuristic result from the optimal one, that can be
considered very trivial in the following case:

M1jitnt
jii

..:,

which is verified in the case of high values of ni.

5. Experimental Results

The time minimization heuristic was tested on
applications written for the TMS Framework, an object-
oriented framework for transparent and hierarchical
master-slave applications, which is able to re-use existing
code for non-distributed solutions and to automatically
parallelize and distribute the tasks generated by the
execution among multiple distributed resources.

5.1 The TMS Framework

Thee TMS Framework manages the functionalities of
resource management, scheduling and communication
required to deploy the application and is able to leverage
already existing services delivered by the middleware
used as underlying layer.

Such framework was implemented through reflection
mechanisms provided by the run-time proxy-based Meta-
Object Protocol (MOP) provided by the ProActive library

for distributed programming [19]. By using MOP, the
TMS Framework permits to use every existing class to
transparently instantiate the set of active objects that
correspond to masters and slaves instances in the
hierarchical topology, maintaining the application similar
to that used for a sequential computation. Therefore, the
hierarchical master-slave pattern is dynamically
implemented and every active object can be turned in a
master able to transparently split the service task into sub-
tasks and in a slave able to perform the assigned part of
the overall task.

The programming model of the TMS Framework
requires to provide the name of the configuration file used
to dynamically configure the deployment of active
objects. It is an XML-based file, called Job Description

Format (JDF), which follows a well-defined format. In
particular, a part depends on the underlying middleware
adopted for active object management and
communication, while the other one is common and is
used for the reflection mechanisms. The common part, in
particular, contains the following information: the method
whose invocations have to be distributed over master and
slaves objects; the input parameters that have to be
partitioned and the policy to partition each of them; the
assembly policy of the output parameter.

Thanks to the ProActive-HiMM middleware
developed by the authors in a previous research work
[20], the TMS Framework can be easily adopted to
leverage HiMM, a hierarchical component and Java-based
middleware for grid computing, which delivers grid
services of information, communication and resource
management. HiMM, in particular, provides a resource
broker which allows users to submit applications
specifying application code, input data, features and QoS
requirements described using XML-based descriptor files
[21].

The time minimization heuristic, implemented for the
task mapping phase of the HiMM resource broker, adopts
information on the application structure and economic-
based requirements contained in the XML-based files
specified by the user and the performance and cost
information about the available resources delivered by the
Resource Managers, HiMM components whose task is to
publish information about available resources in the grid
system. The performance information is necessary in
order to predict the execution time of the assigned number
of atomic sub-tasks to each resource.

In a heterogeneous environment, accurate performance
prediction of resources is a fundamental aspect in order to
obtain an efficient mapping and so the real fulfillment of
user QoS requirements.

The prediction performance represents an important
research area in which many efforts have been made.
Several solutions have been proposed and adopted to
evaluate the resource performance. These can be based on

benchmarking, analytical modelling, and monitoring.
In benchmarking methodologies well-defined

applications are executed on systems to measure the
performance in term of CPU utilization, RAM
occupation, etc., which can be also used as a basis for
comparisons with other systems. Analytical modelling
methodologies require the construction of a mathematical
or logical model that represents the behaviour of the
system and that has to be analytically evaluated (an
example is the LogP model [22]). Monitoring approach is
used to continuously measure and analyse the
performance of systems (such as NWS [23]).

In the current approach, because of the assumption of
using resources in a exclusive way by adopting
reservation mechanisms, a simple benchmarking-based
performance estimation is adopted to predict resource
performance in terms of execution times. Since the
adoption of a generic benchmark can not be used to
accurately evaluate the execution time of a specific
application, our solution is to evaluate resource
performance with respect to the specific atomic sub-task
of an application. As a consequence we suppose to use a
Resource Manager which publishes information related to
the time required to execute an atomic sub-task of an
application and the cost per task expressed in dollars.
Atomic sub-tasks are identified by symbolic names,
execution times are expressed in seconds, and have to
refer to the computational size of the application, if they
depend on it.

5.2 A Case-study

The time minimization heuristic was tested on various
applications written for the TMS Framework, among
which matrix multiplication, finite integral calculation,
Mandelbrot set computation, image rendering, etc. For
each of these applications, application complexity, atomic
sub-task, partition and assembly policies were
individuated. For example for the multiplication of two
square matrices of n2 dimension, the application
complexity corresponds to the number of rows, that is n,
an atomic sub-task is the computation of a row of the
result matrix, which can be calculated using as input data
the right matrix and the corresponding row of the left
matrix. The partition policy requires to distribute to all the
slaves the right matrix and to the j-th slave nj rows of the
left matrix whose indices correspond to those of the result
matrix rows which the slave has to compute.

An intense experimentation on a real test-bed,
moreover, was conducted on the scientific application
called On-line Power System Security analysis (OPSSA)
which regards the security analysis of electrical networks
useful to control system operation when power system
operators increase the infrastructure exploitation to
maximize their profits [24].

The OPSSA application deals with the on-line
assessment of the electrical system’s capacity to maintain
the flow of electricity from generators to customers, under
unforeseen phenomena, called contingencies, that could
compromise the correct system behaviour. A contingency
can be, for example, an unexpected modification in the
power system structure or a sudden change of the
operational conditions.

The OPSSA works on real-time distributed data
measurements, used to get the most recent estimation of
the system state variables. Moreover, since such
application requires stringent time constraints, in order to
output data to be usefully leveraged by the system
operators, it is particularly apt for testing the behavior of
the proposed mapping heuristic.

The OPSSA consists of three main steps:
1. the screening phase: screening of the most “credible”
contingencies, that are the most probable and the most
dangerous ones;
2. the predicting phase: the prediction of the impact of
each credible contingency on the entire system operation
through the system behavior simulation, called Power
Flow problem, in both static and dynamic regime (it is the
most compute-intensive task of the OPSSA);
3. the controlling phase: the identification of preventive
and corrective proper control actions able to reduce the
risk of system malfunctioning.

The master-slave solution is based on the distribution
to the slaves of the set of contingencies, each of which
can be analysed independently from each other (see figure
4).

In particular the master has the following main tasks:
- to collect static and dynamic data of the electric
network necessary to perform the Power Flow problem;
- to opportunely partition the set of credible
contingencies;
- to distribute the set of contingencies among the slaves;
- to collect the partial results replied by the slaves;
- for each contingency, to perform the check of
constraints and to generate an alarm in the case of
constraint violation.

The slaves, instead, have the following main tasks:
- to receive from the master the most recent state
estimation of the electrical grid and the sub-set of
contingencies to analyze;

- to perform the system simulation, through the Power
Flow problem solution, considering each assigned
contingency;
- to reply to the master the system behavior evaluation
for each assigned contingency.

Experiments on the OPSSA application execution were
performed on the IEEE 118-nodes test network. Such
network is composed of 118 nodes and the
experiments refer to potential 186 contingencies related to
the breaking of one of the 186 transmission lines.

Any
constraint
violated ?

YES

NO

.

Acquire field
data

Subdivide the
set of contingencies

Select the
contingency 1

Compute the
power flow

solution

Check the
constraints

Select the
contingency N

Compute the
power flow

solution

Check the
constraints

Generate an
alarm

Compute state
estimation

[for each contingency]*

Figure 4. Activity diagram of the OPSSA
application.

The execution time of the OPSSA would not exceed
few minutes in order to predict in a useful time the impact
of each credible contingency on the correct system
operation. For this reason in the experimentation we
chose as deadlines 15 minutes (900 seconds) and 20
minutes (1200 seconds).

5.3 The test-bed

The OPSSA application was implemented for the TMS
Framework and was deployed on a real test-bed with a
two-level topology composed of eight homogeneous
resources of a cluster, accessed through a front-end, and
three directly accessible heterogeneous computers (see
figure 5). The configuration of the cluster resources and
of the front-end is indicated with R1 and those of the
three single computers are indicated with R2, R3 and R4
(see table 1). The client was executed on a notebook with
Intel Pentium III 650 MHz, 256 MB of RAM and running
Windows 2000 operating system.

The software platform to manage the distributed
architecture was implemented by using Java provided by
the JDK 1.4.1, HiMM version 1.1 and ProActive version
2.2.

For the OPSSA application, an atomic sub-task
(further called task for brevity) is the analysis of a

contingency, which strongly depends on the
characteristics of the electrical network. For this reason
some preliminary experiments were conducted to evaluate
the mean execution time for the analysis of a contingency
for the 118-nodes test network. The mean execution time
was evaluated for each machine, but, because the
measured values were very similar for resources with the
same configuration, we associated them to the resource
configuration.

The estimated execution times of a contingency

Client

R4R3

R1

R2
R1

R1

R1

R1

R1

R1

R1

R1

Internet

COW

COW front-end

level 1

level 2

Figure 5. The test-bed.

Resource

Configuration
CPU

Clock
(MHz)

RAM

(MB)
OS

R1
Intel Pentium II
(dual processor)

350 128 Windows 2000

R2 Intel Pentium III 350 256 Windows 98

R3 Intel Pentium III 350 256 Windows 2000

R4 Intel Pentium III 500 64 Windows 98

Table 1. Resource configuration.

Resource
Configuration

OPSSA Atomic
Sub-task

Execution Time

OPSSA Atomic
Sub-task Cost

R1 76.5 s 1.25 $

R2 75.0 s 4 $

R3 77.0 s 5 $

R4 70.0 s 5 $

Table 2. OPSSA atomic sub-task evaluation.

analysis and related costs, (chosen with a nearly-random
criterion) are summarized in table 2.

Because the proposed heuristic requires to characterize
a resource only with a mean execution time of the task
and the related cost (which are data collected by the
resource broker from the Resource Managers), the cluster
has to be considered as an aggregate resource, with a
performance given by the mean execution time of the
nodes divided by the number of nodes. As a consequence
the cluster will be characterized by the following mean
execution time:

s
t

t R
COW 56.9

8
1

Moreover the cost per task of the cluster is modelled as
the cost of a cluster node multiplied by the number of
nodes, that is 10 $.

5.4 Experimental Results

Table 3 reports the execution times and expended
budgets predicted by the time minimization heuristic in
relation to a deadline of 900 seconds and a budget of
1200 $.

The estimated execution time for the overall
computation is evaluated as the maximum value among
the execution times of each resource. As it is possible to
observe, using this test-bed and budged, it is not possible
to execute 130 tasks within the deadline (the estimated
execution time is 910 seconds), that means that it is
possible to complete the analysis of only a part of all the
possible contingencies.

Figure 6 shows the number of tasks assigned to each
resource varying the total amount of tasks to perform.
Because of similar capabilities of resources R2, R3 and
R4, the number of assigned tasks to each of them is very
similar. On the contrary, because the cluster (indicated
with COW) has the best performance with respect to the
others, it receives a greater amount of tasks, which in
particular increases with the total number of tasks to
perform.

Figure 7 is related to the same conditions of the
previous figure and shows the estimated execution time
for each resource. In this scenario the budget is sufficient

Number of tasks 30 40 50 60 70 80 90 100 110 120 130

Execution

time (s)
231 277 375 450 525 564 631 698 770 841 910

Expended

budget ($)
249 337 420 503 586 675 758 841 935 1014 1096

Table 3. Estimated execution times and
expended budgets (D=900s, B=1200$).

to permit the assignment of all the tasks minimizing the
execution time of all the resources, without requiring
adjustments. Even if the proposed algorithm requires an
approximation of the calculated optimal real numbers of
tasks, in order to assign a whole number of tasks to each
resource, this figure shows as the algorithm is able to
obtain quite similar execution times for each resource.

The shift around the mean execution time is due to the
rounding applied by the heuristic. As much different as
the performance of resources are, as more its value is
greater. In particular, in this case, the shift is about a
minute, which is the difference of execution times among
the resource COW and the other resources.

Figure 8 shows the distribution of the contingencies
among the resources, under maximum exploitation of
deadline and budget, considering 900 seconds as deadline
and different budget values.

10

20

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100 110 120

N
.

o
f

ta
s

k
s

 f
o

r
R

e
s

o
u

rc
e

Total n. of tasks

R1
R2
R3

COW

Figure 6. Tasks assigned to each resource
varying the total amount of tasks (D=900s,
B=1200$).

200

300

400

500

600

700

800

900

30 40 50 60 70 80 90 100 110 120

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

N. of tasks

R2
R3
R4

COW

Figure 7. Estimated execution times for
each resource varying the total amount of
tasks (D=900s, B=1200$).

10

20

30

40

50

60

70

80

90

R2R3R4 COW R2R3R4 COW R2R3R4 COW R2R3R4 COW R2R3R4 COW

N
.

o
f

ta
s

k
s

Resources

n=39 (B=200$)

n=59 (B=400$)

n=79 (B=600$)

n=93 (B=800$)

n=116 (B=1000$)

Figure 8. Maximum number of tasks
assigned to each resource with different
budgets (D=900s).

 10

 20

 30

 40

 50

 60

 70

 80

 725 750 775 800 825 850 875 900 925

N
.

o
f

ta
s

k
s

Budget ($)

R2
R3
R4

COW

Figure 9. Number of tasks assigned to
each resource varying the budget
(D=1200s, total number of tasks=100).

700

800

900

1000

1100

1200

725 750 775 800 825 850 875 900 925

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

Budget ($)

Figure 10. Estimated execution time
varying the cost budget (D=1200s, total
number of tasks=100).

The figure shows as, by increasing the budget, the more
expensive (but even faster) resource, that in this case is
the cluster, can be used to map an increasing number of
contingencies.

The time minimization heuristic was further tested
considering a budget not sufficient to minimize the
execution time of all the resources and some adjustments,
using the proposed iterative algorithm, were performed in
order to exploit more economic ones.

In particular figure 9 shows the number of tasks
assigned to each resource for deadline of 1200 seconds,
total number of tasks of 100, and a budget varying from
725 $ to 925 $. Until to about a budget of 850 $, it is
possible to minimize the execution time until to 707
seconds (see figure 10), which is obtained assigning 72
tasks to the cluster, 9 to R2, 9 to R3 and 10 to R4. For
values from 825 $ to 750 $ the limited budget requires to
decrease the number of tasks assigned to the most
expensive resource, that is the cluster, in particular from
72 until 55 tasks. Finally, with 725 $ no adjustment
permits to remain within the deadline (the minimum
execution time is 1232 seconds).

Finally figure 11 shows the execution times that were
actually measured and the estimated execution times
produced by the proposed heuristic, varying the problem
computation size (number of tasks) under fixed deadline
and budget. Since HiMM does not implement reservation
mechanisms, the experiments were conducted considering
a single user and avoiding the execution of external jobs,
so to not affect execution times and to not introduce a
degree of unpredictable variability in performance
evaluations.

The execution times have a nearly linear trend with
respect to the number of tasks to execute, condition which
proves a good scalability of the overall system, which did
not show problems of performance reduction increasing
the number of tasks to execute.

100

200

300

400

500

600

700

800

900

30 40 50 60 70 80 90 100 110 120

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
)

Total n. of tasks

255$

338$

421$
510$

593$

676$

769$

850$
935$

1014$

Estimated Time
Measured Time

Figure 11. Measured and predicted
execution times varying the total number
of tasks (D=900s, B=1200$).

The experimental analysis shows, moreover, as the
estimated execution times closely match the measured
ones, so proving the good level of accuracy of the
proposed heuristic.

The little difference between the estimated time and
the measured one, that was observed during the
experimentation, is mainly due to the communication
tasks that, even if the distributed application is executed
in a computing environment characterized by a high inter-
networking capability, require interval times which are
not taken into account by the proposed mapping heuristic.

6. Conclusions

This paper proposed an economy-driven mapping
heuristic, the time minimization heuristic, able to map and
schedule the tasks assigned to the slaves of a hierarchical
master-slave application and that we feel can be usefully
adopted for scheduling a large class of parallel and
distributed applications.

The paper presented, moreover, an evaluation of the
proposed mapping heuristic performed through an
experimental analysis conducted in a hierarchical and
heterogeneous environment on a real world engineering
application, which proved the good level of accuracy of
estimated execution times and the scalability of the
overall system.

Improvements to the heuristic will be made by
including master and communication tasks in the
application model, and the inter-networking resource
performance and usage cost in the grid model. Moreover,
we will implement the heuristic in a framework that aims
to simplify design, implementation, deployment and
execution of applications whose complexity can be
reduced by adopting the “divide and conquer” approach.

References

[1] K. Krauter, R. Buyya, M. Maheswaran. A Taxonomy and
Survey of Grid Resource Management Systems for
Distributed Computing, International Journal of Software:

Practice and Experience, Wiley Press, USA, 32(2), 2002.
[2] R. Buyya, D. Abramson, J. Giddy, H. Stockinger.

Economic Models for Resource Management and
Scheduling in Grid Computing. Special Issue on Grid

Computing Environments, The Journal of Concurrency and

Computation: Practice and Experience, Wiley Press, USA,
May 2002.

[3] R. Buyya, M. Murshed. GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing.
Concurrency and Computation: Practice and Experience

(CCPE) Journal, Wiley Press, volume 14, issue 13-15,
pages 1175-1220, USA, November - December 2002.

[4] H. Casanova. Simgrid: a Toolkit for the Simulation of
Application Scheduling. In IEEE/ACM International

Symposium on Cluster Computing and the Grid, Brisbane,
Australia, May 2001.

[5] M. Di Santo, F. Frattolillo, W. Russo, E. Zimeo. A
Component-based Approach to Build a Portable and
Flexible Middleware for Metacomputing. Parallel

Computing, Elsevier, 28(12) pages 1789-1810, 2002.
[6] N. Ranaldo. A Transparent Framework for Hierarchical

Master-Salve Grid Computing based on an Economy-
driven Broker. PhD Thesis, University of Sannio, Italy,
May 2005.

[7] E. Huedo, R. S. Montero, I. M. Llorente. An Experimental
Framework for Executing Applications in Dynamic Grid
Environments. ICASE Technical Report, 2002.

[8] V. Martino, M. Mililotti. Scheduling in a Grid Computing
Environment using Genetic Algorithms. In International

Parallel and Distributed Processing Symposium, 2002.
[9] A. YarKhan, J. Dongarra. Experiments with Scheduling

Using Simulated Annealing in a Grid Environment.
Workshop on Grid Computing, pp. 232-242, Baltimore,
USA, November 2002.

[10] M. O. Neary, P. Cappello. Advanced Eager Scheduling for
Java-Based Adaptively Parallel Computing. In 2002 Joint

ACM-ISCOPE Conference on Java Grande, 2002.
[11] D. Paranhos, W. Cirne, F. Brasileiro. Trading Cycles for

Information: Using Replication to Schedule Bag-of-Tasks
Applications on Computational Grids. In Euro-Par 2003,
August 2003.

[12] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F.
Brasileiro, J. Sauve. Running Bag-of-Tasks Applications
on Computational Grids: The MyGrid Approach. In
International Conference on Parallel Processing, pages
407-416, October 2003.

[13] F. Berman et al.. Adaptive Computing on the Grid Using
AppLeS. IEEE Transactions on Parallel and Distributed

Systems, 14(4) pages 369-382, 2003.
[14] R. Buyya, M. Murshed, D. Abramson. A Deadline and

Budget Constrained Cost-Time Optimization Algorithm for
Scheduling Task Farming Applications on Global Grids. In
International Conference on Parallel and Distributed

Processing Techniques and Applications, Las Vegas, USA,
June 2002.

[15] R. Buyya, D. Abramson, J. Giddy. Nimrod/G: An
Architecture for a Resource Management and Scheduling
System in a Global Computational Grid. In 4th

International Conference and Exhibition on High

Performance Computing in Asia-Pacific Region, Beijing,
China, May 2000.

[16] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,
A. Roy. A Distributed Resource Management Architecture
that Supports Advance Reservations and Co-Allocation. In
International Workshop on Quality of Service, 1999.

[17] F. Bushmann et al., Pattern-Oriented Software
Architecture: A System of Patterns. J. Wiley and Sons,
1996.

[18] M. Di Santo, N. Ranaldo, A. Vaccaro, E. Zimeo. Java-
based Distributed Architectures for Intensive Computations
in Electrical Grids. In 6th International Workshop on Java

for Parallel and Distributed Computing, Santa Fe, New
Mexico, April 2004.

[19] D. Caromel, W. Klauser, J. Vayssiere. Towards Seamless
Computing and Metacomputing in Java. Concurrency:

Practice and Experience, 10(11-13) pages 1043-1061,
September-November 1998.

[20] M. Di Santo, F. Frattolillo, N. Ranaldo, W. Russo, E.
Zimeo. Programming Metasystems with Active Objects. In
5th International Workshop on Java for Parallel and

Distributed Computing, Nice, France, April 2003.
[21] M. Di Santo, N. Ranaldo, E. Zimeo. A Broker Architecture

for Object-Oriented Master/Slave computing in a
Hierarchical Grid System. Parallel Computing, Elsevier,
volume 13, pages 609-616, Dresda, Germany, September
2003.

[22] D. Culler et al.. LogP: Towards a Realistic Model of
Parallel Computation. In ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 1-
12, 1993.

[23] R. Wolski, T. Spring Neil, J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing. Journal of Future Generation

Computing Systems, October 1999.
[24] M. Di Santo, A. Vaccaro, D. Villacci, E. Zimeo. A

Distributed Architecture for on-line Power Systems
Security Analysis. IEEE Transactions on Industrial

Electronics, 51(6), December 2004.

Biographies

Nadia Ranaldo is a Research Assistant at the Department
of Engineering, University of Sannio. She received the
PhD degree in Computer Science from University of
Sannio in Benevento, Italy, in 2005. Her main research
interests are resource management systems, frameworks
for distributed systems, parallel computing, wireless and
sensor networks and grid and service computing.

Eugenio Zimeo is an Assistant Professor of computer
science in the School of Engineering and member of the
Research Centre on Software Technology (RCOST) at the
University of Sannio. His primary research interests are
software architectures and frameworks for distributed
systems, high performance middleware, agent-oriented
programming, mobile and ubiquitous computing, wireless
and sensor networks, parallel and distributed systems, and
grid and service computing. Zimeo has a PhD in
Computer Science from the University of Naples, Italy.
He is a member of the IEEE Computer Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

