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Abstract

This paper proposes a novel strategy that uses hyper-
graph partitioning and K-way iterative mapping-refinement
heuristics for scheduling a batch of data-intensive tasks
with batch-shared I/O behavior on heterogeneous collec-
tions of storage and compute clusters. The strategy for-
mulates file sharing among tasks as a hypergraph to min-
imize the I/O overheads due to duplicate file transfers and
employs a K-way iterative mapping-refinement scheme to
adapt to the heterogeneity of compute clusters and stor-
age networks in the system. We evaluate the proposed ap-
proach through real experiments and simulations on appli-
cation scenarios from two application domains; satellite
data processing and biomedical imaging. Our experimental
results show that our approach can achieve significant per-
formance improvement over algorithms such as HPS, Short-
est Job First, MinMin, MaxMin and Sufferage for workloads
with high degree of shared I/O among tasks.

1 Introduction

Data-driven approaches that make use of large datasets
to solve complex problems in science and engineering have
become increasingly important. Data analysis is a key com-
ponent in data-driven science and engineering to gain a bet-
ter understanding of the problem under study and to more
efficiently refine the search space for solutions. Most sci-
entific datasets are stored as a collection of files. In a data
analysis application, a data retrieval request specifies a sub-
set of data files from the dataset, which is being analyzed.
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The set of files are specified as input parameters or are ob-
tained after an index lookup (e.g., the data analysis applica-
tion may submit a high level query which defines the data of
interest on the attributes of the dataset and/or metadata as-
sociated with the data files; an index can be used to quickly
find the files that can satisfy the query). The data of inter-
est is retrieved from the storage system and processed for
analysis.
This paper looks at the problem of scheduling a batch

of data analysis tasks with batch-shared I/O behavior [27]
in a heterogeneous environment. Our goal is to minimize
the execution time of the batch. The target environment
consists of a heterogeneous collection of compute clusters
connected over switched/shared network(s) to one or more
storage clusters with different I/O bandwidths. We expect
that such configurations will increasingly be common in su-
percomputing centers as the capacity of commodity disks
continues to increase and their cost per gigabyte to decrease.
We propose a two-stage scheduling heuristic based on

hypergraph partitioning and a K-way iterative mapping re-
finement scheme. The proposed heuristic formulates the
sharing of files among tasks in the batch as a hypergraph. In
the first stage, an initial mapping of tasks to compute nodes
is computed without taking the system heterogeneity into
account and then this initial mapping is refined using hill-
climbing based K-way iterative mapping heuristics that take
system heterogeneity into account. In the second phase,
tasks that are mapped to compute nodes are ordered in or-
der to minimize end-point contention on the storage cluster.
We experimentally evaluate the proposed approach on real
platforms and using simulations with application emulators
from two application domains; analysis of remotely-sensed
data and biomedical imaging. The experimental results
show that our approach should be preferred for workloads
with high amount of I/O sharing among tasks. For such
workloads, significant performance gains are achieved over
algorithms such as Shortest Job First, MinMin, MaxMin
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and Sufferage.

2 Related Work

Many techniques have been developed for scheduling in
heterogeneous computing systems [1, 8, 14]. Some deal
with a single application structured as a DAG, while oth-
ers apply to globally scheduling many independent tasks.
These techniques target compute-intensive tasks with no file
sharing. Maheswaran et al. [23] considered three heuris-
tics designed for completely independent tasks (no input
file sharing). Casanova et al. [5] modified the MinMin,
MaxMin, and Sufferage heuristics to take into account the
additional constraint of inter-task file affinities. Their work
targets the scheduling of parameter sweep applications in a
Grid environment.
The work of Giersch et al. [11] addressed the problem

of scheduling a collection of tasks sharing files onto het-
erogeneous clusters. They proposed extensions to the well-
known MinMin heuristic [13] to lower the cost of schedul-
ing while achieving scheduling quality (i.e., batch execution
time) similar to that of MinMin. Our work differs from their
work in that we investigate whether the quality of schedul-
ing can be improved with the proposed algorithms.
In our recent work [19], we looked at the problem of

scheduling tasks exhibiting batch-shared I/O behavior on
homogeneous clusters. We modeled the file-sharing in tasks
using a hypergraph approach and employed hypergraph par-
titioning to get a load-balanced cut-minimized partitioning
of tasks onto compute nodes. That approach inherently
looked at homogeneous platforms. Our current work tar-
gets truly heterogeneous environments and uses efficient
mapping refinement heuristics to map tasks onto hetero-
geneous compute clusters. Kaya and Aykanat have con-
currently developed an iterative improvement based heuris-
tic for scheduling tasks sharing files on heterogeneous sys-
tems [17]. Their work assumes a central master file server,
while we target clustered storage systems where multiple
files are accessed in parallel.

3 Problem Definition and Use-case Applica-
tions

Given a batch of tasks and a set of files required by these
tasks, our goal is to schedule the tasks in an efficient man-
ner so as to minimize the batch execution time (makespan).
Tasks in a batch may share files, i.e., the set of files required
by a task may overlap with the sets of files required by other
tasks. Our target hardware platforms are coupled hetero-
geneous compute and storage clusters. In these settings,
data files are distributed across storage clusters. The stor-
age clusters are connected to a heterogeneous collection of
compute clusters over switched/shared networks with dif-

fering bandwidths. Each compute cluster consists of a ho-
mogeneous collection of nodes. Each node in a compute
cluster is assumed to have local disks and can request files
from any of the storage nodes in the system. The files re-
quired by a task are copied from storage nodes to the com-
pute node to which the task has been assigned, before the
task is executed.
We have evaluated our approach using application sce-

narios from two application classes; analysis of remote
sensing data and biomedical image analysis. These appli-
cation scenarios are briefly described below.
Satellite data processing. Remotely sensed data is ei-

ther continuously acquired or captured on-demand via sen-
sors attached to satellites orbiting the earth [7]. Datasets of
remotely sensed data can be organized into multiple files.
Each file contains a subset of data elements acquired within
a time period and a region of the earth surface. For instance,
a dataset in the form of a snapshot of the surface captured by
a Landsat thematic mapper satellite consists of N files (usu-
ally 4 or 5 files), with each file corresponding to a specific
sensor on the satellite and storing data captured by the sen-
sor within the time period and surface region specified by
the ground control. When multiple scientists access these
datasets, there will likely be overlaps among the set of files
requested because of ”hot spots” such as a particular region
or time period that scientists may want to study.
Biomedical Image Analysis. Biomedical imaging is a

powerful method for disease diagnosis and for monitoring
therapy. State-of-the-art studies make use of large datasets,
which consist of time dependent sequences of 2D and 3D
images from multiple imaging sessions. Systematic devel-
opment and assessment of image analysis techniques re-
quires an ability to efficiently invoke candidate image quan-
tification methods on large collections of image data. A re-
searcher may apply several different image analysis meth-
ods on image datasets containing thousands of 2D and 3D
images to assess ability to predict outcome or effectiveness
of a treatment across patient groups.

4 HPS, Shortest Job First, MinMin,
MaxMin, and Sufferage

In this work, we compare our proposed approach against
our previous work, Hypergraph-based Scheduling Ap-
proach (HPS) [19], which was targeting homogeneous sys-
tems, and modified MinMin, MaxMin, Sufferage, and
Shortest Job First (SJF) heuristics, which take heterogeneity
into account. MinMin, MaxMin, SJF, and Sufferage were
originally proposed for scheduling independent computa-
tional tasks onto compute resources [13]. We employ the
algorithms as modified in [5, 4] to take into account the
time it takes to transfer input files to compute nodes and
files that have already been staged to a compute node in es-



timating the minimum completion time (MCT) of a task.
Though the work of Giersch et al. [11] addresses the prob-
lem of scheduling a collection of tasks sharing files onto
heterogeneous clusters, their focus is on providing lower
cost heuristics that achieve scheduling quality that is rea-
sonably close to the MinMin and Sufferage heuristics [13].
Since our focus in this paper is on improving the quality
of the schedule over Min-Min, Sufferage and other existing
scheduling heuristics and not on optimizing the scheduling
time, we do not compare our schemes with those proposed
in [11]. In the rest of the section, we briefly describe the
schemes against which we compare the performance of our
approach.
Hypergraph Partitioning Based Scheduling (HPS).

HPS formulates the sharing of files (batch-shared I/O)
among tasks as a hypergraph and clusters the tasks into
groups via hypergraph partitioning. Each group is mapped
to a compute processor in the system. The scheduling prob-
lem is translated into a load-balanced cut minimizing hy-
pergraph partitioning problem. However, HPS formulation
does not take heterogeneity into account.
Shortest Job First (SJF). SJF orders tasks in increas-

ing order of their expected execution times. The execution
time of a task ti is calculated as the sum of the time it takes
to transfer files needed for ti (assuming all files have to be
transferred from the remote storage) and the execution time
for processing the files. The task with the least expected
execution time is scheduled on the next processor that be-
comes idle.
MinMin and MaxMin. This algorithm computes the

minimum completion time (MCT) of each task on each
node in the system. Among the unscheduled tasks in the
batch, MinMin chooses the task with the minimum MCT
and assigns it to the node that can execute that task fastest.
MaxMin chooses the task with the maximum MCT. When
computing the MCT of a task on a node, both strategies take
into account the files already available on the node and the
files that will be staged onto that compute node by currently
running tasks.
Sufferage. The underlying idea is that the system should

execute the task that will suffer the most if the task is not as-
signed to the host that will execute the task fastest. The suf-
ferage of a task is computed as the difference between the
task’s best MCT and its second best MCT. Among unsched-
uled tasks, Sufferage chooses the task with highest suffer-
age and assigns it to the node that will achieve the best MCT
for the task.

5 A Hypergraph-based Scheduling Heuristic
for Heterogeneous Systems (Het-HPS).

We propose a two-stage heuristic for scheduling tasks
with batch-shared I/O on heterogeneous systems. The first

stage consists of hypergraph partitioning-based mapping of
tasks to the compute nodes. The second stage is the ordering
of tasks on each compute node. Here we will first present
a very brief introduction to hypergraph partitioning and the
stages of our scheduling algorithm will follow.

5.1 Hypergraph Partitioning

Hypergraphs are mostly used for VLSI layout place-
ment [22] and modeling the computational structure of par-
allel applications [6]. Their success in parallel and dis-
tributed computing area stems from the fact that they can
model asymmetric dependencies and the total volume of
communication as a cut metric [6]. A hypergraph H =
(V,N ) is defined as a set of vertices V and a set of nets
(hyper-edges) N among those vertices. Every net nj ∈ N
is a subset of vertices, i.e., nj ⊆ V . The size of a net nj

is equal to the number of vertices it has, i.e., sj = |nj | .
Weights (wi ) and costs (cj ) can be assigned to the vertices
(vi ∈ V ) and edges (nj ∈ N ) of the hypergraph, respec-
tively. P = {V1, V2, . . . , VP } is a P-way partition of H if
1) each part is a nonempty subset of V , 2) parts are pair-
wise disjoint and 3) union of P parts is equal to V . In a
partition P of H , a net nj is said to be cut if it connects
more than one parts. The hypergraph partitioning problem
can be defined as the task of dividing a hypergraph into
two or more parts such that the cutsize is minimized, while
a given balance criterion among the part weights is main-
tained. Algorithms based on the multi-level paradigm, such
as hMETIS [16] and PaToH [6], have been shown to com-
pute good partitions quickly.

5.2 Task Mapping

Our goal is to find a mapping of tasks to compute nodes
such that computational and I/O load of the compute nodes
and I/O load of the storage nodes are balanced, and the total
communication volume between the storage nodes and
compute nodes is minimized. Our solution for this problem
is again a two-phase approach. In the first phase, a parti-
tioning of tasks is done by modeling file-sharing interaction
as a hypergraph and partitioning is achieved by assuming
all the nodes are homogeneous. In the second phase, this
initial partition is refined using a K-way mapping heuristic
that takes heterogeneity into account. For the first phase,
we leverage our previous work [19] on scheduling tasks
with batch-shared I/O on homogeneous systems and use
a publicly available hypergraph partitioner, namely Pa-
ToH [6], to compute the partitioning. For the second phase,
we propose a K -way iterative mapping heuristics based on
Sanchis [25] multi-way circuit partitioning algorithm.

First Phase: Hypergraph Partitioning. In the hypergraph
formulation of a bag-of-tasks, each task ti is represented by



Storage 1

File A

File B

Storage 3

File E

File F

Storage 2

File C

File D

Task 1

Task 2

Task 3

Batch of Tasks
Storage Nodes

Task 4

Task 5

Task 6

File G

a) A sample batch of tasks

b) Hypergraph representation

Figure 1. Hypergraph representation of a
sample batch of tasks. The numbers indi-
cate tasks. The letters are files required by
the tasks.

a vertex vi in the hypergraph. Each hyper-edge nj repre-
sents a file fj and connects the vertices that require this file
as input. Computation requirement of the task ti and size
of the file fj are used as weight of the vertex vi and cost of
the net nj . An example batch of tasks and its hypergraph
representation are illustrated in Figure 1.
The estimated execution time of a task on a compute

node is calculated as the sum of I/O overhead (the trans-
fer time of files from storage nodes plus the I/O time to
read files from local disk) and the computation cost of the
task. To employ an existing hypergraph partitioner with-
out any modification, we use a probabilistic approach when
computing the execution time ExecTi of task ti as vertex
weights in the partitioner. Let the set of files a task ti needs
be Fi and the number of compute nodes in the system be
K . The cost of transferring one byte of file fj , Trj , for
task ti is equal to

Trj =
ProbFNE

BW
+(1−ProbFNE)∗ (1 − ProbFE)

BW
(1)

Here, BW is the minimum {I/O,network} bandwidth be-
tween any storage and compute node pair, ProbFNE is
the probability that task ti will be the first task to execute
in its group that requires fj , and ProbFE is the proba-
bility that ti executes on a node, to which file fj has al-
ready been transferred. In our current implementation, we

assume uniform probability distribution, ProbFNE = 1
sj

and ProbFE = 1
K . sj denotes the number of tasks that

shares the file fj . With the assumption that computation
time is linear with the size of the input files, the estimated
execution time of task ti is computed as

ExecTi =
∑

fj∈Fi

filesize(fj)× (Trj +
1

LBW
+ C) (2)

where LBW is the I/O bandwidth from local disk on
a compute node and C is the compute cost of one
byte [19]. By assigning file sizes as hyper-edge costs
and the estimated execution times as vertex weights, the
proposed method reduces the task mapping problem to
the K -way hypergraph partitioning problem according to
the connectivity-1 cutsize definition [6]. Each and every
file needed by a task in the batch will be transfered to the
compute system at least once. More specifically, if the tasks
that share the file fj is assigned to λj compute nodes,
file fj needs to transfered λj − 1 more times after its
first transfer. By using expected execution times as vertex
weights, the algorithm aims to balance computational load
across the compute nodes.

Second Phase: Refining Initial Partition. The initial par-
titioning is done assuming a homogeneous system. Hence,
it may lead to computational load imbalance and should
be refined to account for heterogeneity in the system.
We propose a direct K -way mapping refinement heuris-
tic based on Sanchis [25] multi-way circuit partitioning al-
gorithm. Given an initial mapping, the algorithm itera-
tively refines the mapping by reconsidering the assignment
of each of the tasks by tentatively moving them to differ-
ent parts one by one. There are many different iterative
refinement heuristics in the literature, such as Kernighan-
Lin-based heuristics [18, 10], Simulated Annealing-based
heuristics [20, 2, 12, 15] and Genetic Algorithms-based
heuristics [24, 26]. We have chosen Sanchis’s Algorithm
as our base algorithm because of two reasons. First, San-
chis’s algorithm is a generalization of Kernighan-Lin-based
algorithms that have been proven to produce very good so-
lutions. Second, it does not require parameter tuning to
achieve faster executions.
Algorithm 1 outlines our mapping heuristic. The goal of

the algorithm is to minimize the overall execution time. In
this work, we modeled the total execution time as the sum of
execution time of the maximally loaded compute-node and
the I/O time of the maximally loaded storage node. That is

ExecutionT ime = max
i

Exec(Pi) + max
p

IO(Sp) (3)

where Exec(Pi) and IO(Sp) are the execution time of
compute node i and I/O time of the storage node p . The
algorithm selects a task, from the most heavily loaded part,



that will yield the maximum reduction in the above men-
tioned cost. The amount of the reduction is called themove-
gain of that task.

Algorithm 1Direct K -way Mapping Refinement Heuristic
Require: M : Initial mapping
Ensure: M : Final mapping
1: BEST ← ExecutionT ime(M);
2: repeat
3: unlock all vertices
4: let s be the heavily loaded part
5: compute K−1 move gains of each vertex v in part

s
6: while there exists an unlocked vertex do
7: select an unlocked vertex v with max gain gmax

from s to processor t
8: tentatively realize the move of vertex v ; M [v]← t
9: lock vertex v ;
10: update the move gains of unlocked vertices in s
11: if ExecutionT ime(M) < BEST then
12: BEST ← ExecutionT ime(M)
13: permanently realize the moves up to current

move
14: let s′ be the heavily loaded part
15: if s �= s′ then
16: s ← s′

17: recompute K − 1 move gains of each unlocked
vertex v in part s

18: until no more improvements in execution time

The execution time of a part and I/O time of a storage
node is estimated as follows. Let P = {P1, P2, . . . , PK}
be a K -way partitioning of tasks, where each Pj be the
set of tasks allocated to part j . Let S = {S1, S2, . . . , Sm}
be the set of storage nodes. The execution time of part i ,
Exec(Pi) , is the sum of two components; computation and
network. The computation component Comp(Pi) repre-
sents the aggregate computation weight of the part in terms
of the estimated time that would be spent in computation by
all the tasks belonging to that part. The network component
Network(Pi) represents the total communication weight
of that part in terms of the estimated time spent in transfer-
ring files to that part. This component is calculated keeping
in mind the fact that tasks belonging to a part share files and
a particular file needed by multiple tasks needs to be trans-
ferred only once for that part. The I/O cost of storage node
p , IO(Sp) , is the aggregate I/O weight of the storage node
in terms of the estimated time that would be spent in I/O for
all the files resident on that storage node.

Exec(Pi) = Comp(Pi) + Network(Pi) (4)

Comp(Pi) =
∑

tk∈Pi

∑

ft∈Fk

filesize(ft) × (
1

LBWi
+ Ci)

(5)

Network(Pi) =
∑

fj∈Filei

filesize(fj) × 1
NBWi,M(fj)

(6)

IO(Sp) =
∑

fj∈Sp

filesize(fj) × 1
IBWp

(7)

Here, Files(Pi) represents the set of all the files required
by the tasks allocated to the part i , M(fj) represents the
storage node that file j is stored, IBWp represents the I/O
bandwidth available at storage node p , and NBWi, p rep-
resents the network bandwidth between the compute node i
and the storage node p . These estimates take into account
both file affinities and the fact that different compute nodes
may have different computing capacities and different net-
work bandwidths with the remote storage nodes. Once the
execution time of each part is computed, the part with the
highest time is chosen and all the free vertices are consid-
ered to move. After each such move, the cost function is
recomputed. If the current value is less than the best one
so far, all the moves (including the ones with negative gain)
are committed. Allowing tentative negative moves allows
the algorithm to get out off a local optima. This procedure
works in an iterative manner until no improvement in the
batch execution time is obtained.

5.3 Ordering of Tasks

Once the tasks are partitioned into groups, the second
phase of the scheduling algorithm is to order tasks in each
group and to schedule transfer of files from the storage clus-
ter to the compute cluster. Two tasks that are in different
groups may have their input files stored on the same set of
storage nodes. Thus, ordering of tasks in each group and
transfer of files should be done in a way to minimize end-
point contention on the storage cluster. We employ a strat-
egy in which tasks within a group are scheduled based on
their earliest completion time. The earliest completion time
of a task is computed iteratively and dynamically based on
the availability of resources.
The algorithmmaintains an estimate of the wait times for

each of the storage nodes. The wait time of a storage node
is the earliest time at which the storage node would become
free to service a queued request. When a task in a group is
scheduled for execution, the estimated transfer cost of the
task from each of the storage nodes is added to the wait
times associated with the corresponding storage nodes. In
our model, we assume that multiple requests to the same
storage node are multiplexed and that a compute node can
receive a file after it has finished storing the previously re-
ceived file on disk.



The earliest estimated completion time for task ti is
computed as the sum of 1) time to stage its input files, 2)
time to read the files on local disk, and 3) CPU time to pro-
cess the files. If all of the input files are already in the com-
pute node, the staging time will be zero. Otherwise, it will
be the amount of time spent to transfer the required files
from the remote storage system. The staging time is com-
puted as the sum of the actual transfer times (size of the file
divided by the storage bandwidth) from each of the the stor-
age nodes and the corresponding wait times at each of those
storage nodes.
When a compute node becomes idle, the task with the

earliest expected completion time in that group is executed.

6 Experimental Results

We evaluated the scheduling algorithms through real ex-
periments and simulations, against two application classes:
satellite data processing and biomedical image analysis.

6.1 Application Workloads

The datasets for the satellite data processing application
(referred to here as SAT) were generated using the applica-
tion emulator developed in [28]. The SAT application [7]
operates on data chunks that are formed by grouping sub-
sets of sensor readings that are close to each other in spatial
and temporal dimensions. In our experimental setup, one
data chunk is stored in each data file. A data analysis task
specifies the data of interest via a spatio-temporal window.
For the image analysis application (referred to here as IM-
AGE), we developed a program to emulate studies that in-
volve analysis on images obtained from MRI and CT scans
(captured on multiple days as follow-up studies). An im-
age dataset consists of a series of 2D images obtained for
a patient and is associated with metadata describing patient
and study related information (in our case, we used patient
id and study id as the metadata). Each image in a dataset is
associated with an imaging modality and the date of image
acquisition and stored in a separate file. An image analy-
sis program can select a subset of images based on a set of
patient ids and study ids, image modality, and a date range.
The scheduling strategies were evaluated under three dif-

ferent types of workloads; high overlap, medium overlap,
and low overlap, each of which represents different amounts
of file sharing among tasks in a batch. For SAT, we simu-
lated queries directed to geographically distant parts of the
world. Four sets of queries were generated representing
the queries directed to 4 hot spot regions. The number of
queries in each set varies from 50 for smaller workloads to
500 for bigger workloads. Across the sets, there is no over-
lap between the queries, and in each set, queries are adjusted
such that for high overlap, they resulted in a 85% overlap,
on average, in terms of files requested by different tasks in

the batch. Similarly, we generated medium and low over-
lap workloads with 40% and 10% overlap, respectively. For
IMAGE, different degrees of overlap is achieved by varying
the values of patient and time attributes across requests by
different tasks. We generated workloads with 85%, 40%,
and 0% overlap for high, medium, and low overlap cases.
We generated 35 days worth of data, about 162 GB for

SAT. The data was distributed across the storage nodes us-
ing a Hilbert-curve based declustering method [9]. Each file
in the dataset was around 4.5 MB. In the high overlap case,
each task accessed on an average 30 files. In the medium
and low overlap cases, each task accessed on an average 8
files. For IMAGE, the dataset generated by the emulator
corresponded to a dataset of 5000 patients and images ac-
quired over several days from MRI and CT scans. The sizes
of images were 1 MB and 16 MB for MRI and CT scans,
respectively. The overall size of the dataset was around 330
GB. Images for each patient were distributed among all the
storage nodes in a round robin fashion. For both application
domains, the number of tasks in a batch varied from 200
tasks for small experiments to 2000 tasks for larger exper-
iments. In order to create data intensive workloads which
are targeted in this paper, we set the processing time for
each task to be 0.001 seconds per Megabyte of data.

6.2 Performance Evaluation on Real Ma-
chines

Our experiments were carried out using two compute
clusters and a single storage cluster as described below. The
first system (OSC) is a compute cluster at the Ohio Su-
percomputer Center. The compute cluster consists of dual-
processor nodes equipped with dual 2.4 GHz Intel P4 Xeon
processors with hyper threading, resulting in 4 virtual CPUs
per node. Each node has 4 GB of memory, 62 GB of lo-
cal scratch space, interconnected by an 8 Gbps Infiniband
switch. The second is a 5 node cluster of dual Intel P4
Xeon 2.4 GHz nodes (DC). Each node on this cluster has
2 GB of memory and uses switched Gigabit Ethernet for
intra-cluster communication. Through micro-benchmarks,
we measured each DC node to be about 1.2 times faster
than an OSC node1. The storage cluster is a cluster of Pen-
tium III 933 MHz nodes (OSUMED). Each node of this
cluster has 300 GB disk space and 512 MB of memory. The
disk bandwidth available on these storage nodes varies from
18MB/sec to around 25 MB/sec. Using micro-benchmarks,
we measured the bandwidth of the shared links between the
storage cluster OSUMED and the compute clusters OSC
and DC to be around 100 Mbps.
We evaluated the algorithms on configurations with dif-

1Even though both systems have same type of CPUs we believe that
the difference of the speed comes form hyper threading and possibly from
memory bandwidth differences of the motherboards.



(a) (b)

Figure 2. Throughput achieved by different algorithms on 8 OSC nodes and 4 DC nodes (a) IMAGE
and (b) SAT.

(a) (b)

Figure 3. Performance of HPS and Het-HPS with varying degrees of network heterogeneity (a) IMAGE
and (b) SAT.

ferent number of compute nodes in each cluster to capture
varying degrees of heterogeneity. Figure 2 shows the rel-
ative performance of the various scheduling schemes on
workloads with different degrees of shared I/O among tasks,
for both application classes. These experiments were con-
ducted using 12 compute nodes (8 OSC and 4 DC nodes)
and 6 storage nodes (OSUMED) on the high, medium and
low overlap workloads of 200 tasks each. The results show
that the Het-HPS strategy performs better than the other
algorithms for most cases. This is because the mapping
heuristic groups tasks that share files together, thus lever-
aging data reuse, while adapting to the system and network
heterogeneity. The performance improvement due to the
mapping heuristic is maximum for the high overlap work-
load and reduces as the degree of overlap decreases, as ex-
pected. Among the base algorithms, Sufferage seems to per-
form well in most cases. For image analysis workload, SJF
seems to perform well for the case of low overlap. This is
because, in the image analysis workload, low overlap cor-
responds to no sharing of files among tasks and hence all
schemes transfer the same amount of data from the stor-
age server. In this scenario, SJF achieves maximum load

balance among all schemes, since it implicitly balances the
load after each task completion.
In terms of scheduling time, the Het-HPS algorithm

does comparable to the MinMin, MaxMin and Sufferage
schemes. Although we have not optimized our implemen-
tation of the scheduling algorithms, we observed in our ex-
periments that the scheduling times for all of the algorithms
were significantly less than the corresponding batch execu-
tion times.
The next set of experiments (Figure 3) is to demonstrate

how the Het-HPS approach adapts to varying levels of net-
work heterogeneity. In this experiment we have used 6 stor-
age nodes and 8 compute nodes from OSC and 4 compute
nodes from DC cluster. The workload used for these ex-
periments was a 200 task high overlap workload. While we
keep the network bandwidth between OSUMED and OSC
at 100 Mbps, we have varied network bandwidth between
the OSUMED storage nodes and the DC compute nodes
from 100 Mbps to 400 Mbps, by transferring proportion-
ally smaller amounts of data to the DC nodes. The results
show that the Het-HPS scheme does better than the HPS
scheme. The performance benefit of the Het-HPS scheme



(a) (b)

Figure 4. Comparison of real experiment and simulation trends on 8 OSC nodes and 4 DC nodes for
high, medium and low degrees of overlap (a) IMAGE and (b) SAT.

(a) (b)

Figure 5. Performance of different algorithms for IMAGE with varying number of (a) storage nodes
and (b) compute nodes .

over the HPS scheme increases as the level of network het-
erogeneity increases. This is expected, since the Het-HPS
scheme is able to adapt well to increasing levels of network
heterogeneity. For the medium and low overlap workloads,
we observed that Het-HPS was able to adapt to the hetero-
geneity of the system well.

6.3 Performance Evaluation through Sim-
ulations

We used simulations to understand the performance of
the various scheduling schemes on larger systems. We ran
our simulations using the Simgrid Toolkit [3, 21]. This
toolkit implements event-driven simulation of applications
on heterogeneous distributed systems. It models a resource
by two performance characteristics: latency (time to access
the resource) and service rate (number of work units per-
formed per time unit). It also provides the flexibility of
modeling time-shared resources like shared links and differ-
ent topologies. In our simulations, we used version 2.18.5
of this toolkit. Since Simgrid does not provide an abstrac-
tion for disk, we modeled the disk as a time-shared resource
with bandwidth equal to disk bandwidth. Each task was

modeled as a set of data transfer tasks to stage necessary
files from the remote storage, followed by a computation
task which simulates processing of the input files.

For the purpose of validating the simulation results, we
simulated a hardware configuration similar to the experi-
mental setup for the real experiments. We simulated two
clusters, ClusterA and ClusterB. ClusterA simulated the
configuration of the OSC cluster and ClusterB simulated the
configuration of the DC cluster. Nodes within each cluster
are homogeneous in terms of processing capability and lo-
cal disk bandwidth. The networks between compute clus-
ters (ClusterA and ClusterB) and the storage nodes is simu-
lated as two separate 100 Mbps links. The heterogeneity in
the network comes from different number of nodes in each
of the clusters which means that the bandwidth seen by a
node of ClusterA and a node of ClusterB differ. This is be-
cause all the nodes of a compute cluster share the link to the
storage cluster and thus, in the worst case, the bandwidth
is shared by all of them. Nodes in ClusterB are 1.2 times
faster in processing capability than those in ClusterA. Fig-
ure 4 shows the comparison between the real experiments
and the simulated results for both application domains. We



see that the relative trends of the simulated results closely
follow those of the real experiments even though the abso-
lute values vary slightly.
To analyze the performance of our scheduling strategy

with respect to the varying number of storage and compute
nodes in the system, we ran simulations of high overlap
workloads of 2000 IMAGE tasks using a 4 compute cluster
configuration, and the results are presented in Figure 5. The
network bandwidth between the compute clusters and the
storage cluster was simulated to be in the ratio 1:4 for the
compute cluster with the slowest network to the compute
cluster with the fastest network. The simulated network
bandwidth values varied from 12.5 MB/sec to 50 MB/sec.
The disk bandwidth in these simulations was taken to be as
40 MB/sec. The number of compute nodes in each cluster
were taken to be as 4. Figure 5(a) shows the performance of
the various scheduling algorithms as the number of storage
nodes in the system are scaled. The results show that as the
number of storage nodes increase, the performance of all
the algorithms improves only slightly. The reason is that in
these simulations, the network is the bottleneck since, even
the fastest network bandwidth of 50 MB/sec between one
of the compute clusters and the storage clusters is shared
among 4 compute nodes. Thus, increasing the number of
storage nodes does not quite yield the benefit of distributing
the data across more storage nodes. The results however,
do show that the Het-HPS scheme performs significantly
better than all the other schemes as the number of storage
nodes in the system increase. Figure 5(b) shows the simu-
lation results while varying the number of compute nodes
to 4, 8 and 16 in each cluster. The number of storage nodes
in these simulations was 6. The Het-HPS algorithm gives
roughly 280% improvement over the base algorithms (SJF,
MinMin, MaxMin and Sufferage) and 40% over the HPS al-
gorithm. The results show that the throughput values do not
scale well as the number of compute nodes per cluster in-
creases, because there is increasing degree of contention on
the shared link between the compute cluster and the storage
cluster. We also ran both real experiments and simulations
for the 2-cluster configuration (OSC and DC) for validation,
by varying the number of OSC compute nodes from 4 to 16
and keeping the number of compute nodes of DC fixed at
4. Figure 6 shows the comparison between the real experi-
ments and the simulated results for IMAGE. We see that the
relative trends of the simulated results closely follow those
of the real experiments.

7 Conclusions and Future Work

This paper presents a novel strategy for scheduling a
collection of data intensive tasks with batch-shared I/O
on heterogeneous systems. The performance results ob-
tained on real machines and through simulations show that
our strategy achieves significant performance improvement

Figure 6. Comparison of real experiments
and simulations for different algorithms with
varying number of compute nodes for IM-
AGE.

over HPS, SJF, MinMin, MaxMin and Sufferage. The base
schemes like MinMin and Sufferage look at each task-host
pair in isolation for making scheduling decisions and do
not explicitly consider inter-task dependencies arising out
of file-sharing. Our proposed approach, on the other hand,
maps tasks to processors based on a global view of the tasks
and their file sharing behavior. In comparison to our earlier
work HPS, HPS only looks at task-file affinities without tak-
ing into account any system heterogeneity whereas our new
approach Het-HPS models the system heterogeneity, result-
ing in significantly better schedules on systems with diverse
resources.
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