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Abstract

This paper deals with scheduling divisible load appli-
cations on star networks, in presence of return mes-
sages. This work is a follow-on of [6, 7], where the
same problem was considered under the two-port model,
where a given processor can simultaneously send and
receive a message. Here, we concentrate on the one-port
model, where a processor can either send or receive a
message at a given time step. The problem of scheduling
divisible load on star platforms turns out to be very dif-
ficult as soon as return messages are involved. Unfor-
tunately, we have not been able to assess its complexity,
but we provide an optimal solution in the special (but
important) case of FIFO communication schemes. We
also provide an explicit formula for the optimal num-
ber of load units that can be processed by a FIFO or-
dering on a bus network. Finally, we provide a set of
MPI experiments to assess the accuracy and usefulness
of our results in a real framework.

1. Introduction

This paper deals with scheduling divisible load ap-
plications [9] on heterogeneous platforms. We target a
master-worker implementation where the master ini-
tially holds (or generates data for) a large amount
of work that will be executed by the workers. In the
end, output results will be returned by the workers
to the master. Each worker has a different computa-
tional speed, and each master-worker link has a differ-
ent bandwidth, thereby making the (single-level tree)
platform fully heterogeneous.

The divisible load scheduling problem (DLS) here is
first to decide how many load units the master sends

to each worker, and in which order. After receiving its
share of the data, each worker executes the correspond-
ing work and returns the results to the master. Again,
the ordering of the return messages must be decided
by the scheduler. From a theoretical standpoint, the
success of the DLS model is mostly due to its analyt-
ical tractability. Optimal algorithms and closed-form
formulae exist for important instances of the divisible
load problem. However, adding return messages dra-
matically complicates the picture, while it is a very
natural extension in practice. Indeed, without return
messages, it is implicitly assumed that the size of the
results to be transmitted to the master after the com-
putation is negligible, and hence has no (or very little)
impact on the whole DLS problem. This may be re-
alistic for some particular DLS applications, but not
for all of them. For example, suppose that the mas-
ter is distributing files to the workers. After process-
ing a file, the worker will typically return results in the
form of another file, possibly of shorter size, but still
non-negligible. In some situations, the size of the re-
turn message may even be larger than the size of the
original message: for instance the master initially scat-
ters instructions on some large computations to be per-
formed by each worker, such as the generation of sev-
eral cryptographic keys; in this case each worker would
receive a few bytes of control instructions and would re-
turn longer files containing the keys.

Because it is very natural and important in practice,
several authors have investigated the problem with re-
turn messages: see the papers [4, 15, 24, 3, 1]. How-
ever, all the results obtained so far are very partial.
Intuitively, there are hints that suggest that the prob-
lem with return messages is much more complicated.
The first hint lies in the combinatorial space that is
open for searching the best solution. There is no rea-
son for the ordering of the initial messages sent by the
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master to be the same as the ordering for the messages
returned to the master by the workers after the execu-
tion. In some situations a FIFO strategy (the worker
first served by the master is the first to return results,
and so on) may be preferred, because it provides a
smooth and well-structured pipelining scheme. In [1],
Adler, Gong and Rosenberg show that all FIFO strate-
gies are equally performing on a bus network, but even
the analysis of FIFO strategies is a difficult open prob-
lem on a star network.

This work is a follow-on of [6, 7] where we have stud-
ied FIFO strategies under the two-port model, where
the master can simultaneously send data to one worker
and receive from another. In this paper, we study FIFO
strategies under the one-port model, where the mas-
ter can only be enrolled in a single communication at
any time-step. The one-port model turns to be be more
complicated to analyze, because of the additional con-
straint imposed on the communication medium. How-
ever, it is also more realistic in practice, and all the MPI
experiments reported in Section 3 obey this model.

As pointed out, adding return messages dramatically
complicates the search for an optimal solution, despite
the simplicity of the linear cost model. In fact, we show
that the best FIFO schedule may well not involve all
processors, which is in sharp contrast with previous re-
sults from the literature. The main contributions of this
paper are the characterization of the best FIFO strat-
egy on a star network, together with an experimen-
tal comparison of several FIFO orderings. Rather than
simulations [6, 7] we perform extensive MPI experi-
ments on heterogeneous platforms.

The rest of the paper is organized as follows: we de-
velop our theoretical framework and results in Section 2
and we present our MPI experiments in Section 3, then
we briefly survey related work in 4 and we state some
concluding remarks in Section 5.

2. Theoretical results

2.1. Target platform and model

As illustrated in Figure 1, we target a star network
S = {P0, P1, P2, . . . , Pp}, composed of a master P0 and
of p workers Pi, 1 ≤ i ≤ p. In the linear cost model,
each worker Pi has a (relative) computing power wi:
it takes X.wi time units to execute X units of load on
worker Pi. Similarly, it takes X.ci time units to send
the initial data needed for computing X units of load
from P0 to Pi, and X.di time units to return the cor-
responding results from Pi to P0. Note that a bus net-
work is a star network such that all communication
links have the same characteristics: ci = c and di = d

for each worker Pi, 1 ≤ i ≤ p. It is natural to assume
that the quantity di

ci
is a constant z that depends on

the application but not on the selected worker. In other
words, workers who communicate faster with the mas-
ter for the initial message will also communicate faster
for the return message.

P1 Pp

P0

PiP2

w1 wp

cp, dpc1, d1

wi

ci, dic2, d2

w2

Figure 1. Targeted platform

The standard one-port model in DLS problems for
communications is defined as follows: (i) the master
can only send data to (and receive data from) a single
worker at a given time-step; (ii) a given worker can-
not start its execution before it has terminated the re-
ception of the message from the master; similarly, it
cannot start sending the results back to the master be-
fore finishing the computation. In fact, this one-port
model naturally comes in two flavors with return mes-
sages, depending upon whether we allow the master to
simultaneously send and receive messages or not. If we
do allow for simultaneous sends and receives, we have
the two-port model we have studied in the companion
paper [7]. Here we concentrate on the fully one-port
model, where the master cannot be enrolled in more
than one communication at any time-step.

2.2. Scheduling problem

We focus on the following problem: given a time
bound T , what is the maximum number of load units
that can be processed within time T? As we adopt the
classical linear cost model (communication and com-
putation costs are proportional to the number of load
units), we can consider that T = 1 without loss of
generality. Also, owing to the linearity of the model,
this problem is equivalent to the problem of minimiz-
ing the execution time for a given amount of load to
be processed. A solution to the scheduling problem is
characterized by the subset of enrolled processors, and
their respective loads (we let αi denote the amount
of load assigned to, and processed by, each participat-
ing worker Pi), together with the dates at which each
event (incoming communication, computation, return
message) starts on each processor.

We can make a few useful simplifications. First, we
can assume that each worker starts computing right



upon completion of the initial communication from the
master. Also, we can assume that the master sends ini-
tial messages as soon as possible, i.e. without any de-
lay between two consecutive messages. Symmetrically,
we can assume that return messages are sent consec-
utively, and as late as possible, to the master. How-
ever, some idle time may well occur between the time
at which a worker Pi has completed its work and the
time at which it starts returning the message, just be-
cause the master may be busy communicating with an-
other worker. This idle time for Pi will be denoted as
xi. We can now sum up the description of a schedule
by a first permutation σ1 representing the ordering of
sending operations, from the master to each worker, a
second permutation σ2 representing the ordering of re-
ceiving operations, from each worker to the master, the
quantity αi of load units sent to each worker Pi, and
the idle time xi of each worker Pi.

t

Pi

αi × ci αi × wi xi αi × di

The permutation for input messages is σ1 =
(1, 2, 3, 4), while the permutation for output
messages is σ2 = (1, 3, 2, 4).

Figure 2. Example of a general schedule.

This knowledge allows us to completely describe a
schedule, as represented in Figure 2. We have not been
able to assess a general complexity result, but we have
explored special instances of the scheduling problem,
namely FIFO schedules for which the order for result
messages is the same as the order for input data mes-
sages (σ2 = σ1): the first worker receiving its data is
also the first to send back its results. Figure 3(a) gives
an example of such a FIFO schedule.

Note that when the ordering for results messages
is the reverse of the order for input data messages
(σ2 = σR

1 ), we have a LIFO schedule: the first worker
receiving its data is the last to send back its results. Fig-
ure 3(b) presents an example of such a LIFO schedule.
All LIFO schedules naturally obey the one-port model,
and we refer to [6, 7] for a characterization of the opti-
mal LIFO schedule.

2.3. Linear Program for a given scenario

In this section, we show that a linear programming
approach can be used to compute the throughput, once
the set of participating processors and the ordering of

xi αidiαiwi
αici

t

Pi

(a) FIFO schedule

t

αici αiwi xi αidi

Pi

(b) LIFO schedule

Figure 3. Examples of special scenarios.

the messages (permutations σ1 and σ2) have been de-
termined. We illustrate this approach for a FIFO so-
lution, because we mainly concentrate on FIFO sched-
ules in this paper. However, the method can easily be
extended to any permutation pair.

Consider the FIFO schedule represented on Fig-
ure 3(a), where q processors numbered P1 to Pq are en-
rolled in the computation. Consider processor Pi. Be-
fore receiving its initial data, Pi has to wait for all pre-
vious data transfers, i.e. the time needed for the mas-
ter to send αj load units to each processor Pj , for j < i;
this takes

∑i−1
j=1 αj × cj time-steps. Then processor Pi

receives its data in αi×ci time-steps, and processes it in
αi×wi time-steps. Next, Pi possibly waits for the com-
munication medium to be free, during xi time-steps. Fi-
nally, processor Pi sends back its results to the master,
in αi × di time-steps. There remains to wait for pro-
cessors Pi+1 to Pq to send their results to the master,
which requires

∑q
j=i+1 αj × dj time-steps. Altogether,

all this has to be done within a time less than the to-
tal execution time T = 1, hence we derive the con-
straint:

i∑
j=1

αj × cj + αi × wi +
q∑

j=i

αj × dj + xi ≤ 1 (1)



To enforce one-port constraints, we have to ensure
that communications do not overlap, which translates
into:

q∑
i=1

αi × ci +
q∑

i=1

αi × di ≤ 1

The throughput ρ of the schedule the total number
of tasks processed in time T = 1: ρ =

∑q
i=1 αi.

To sum it up, given a scenario consisting of a set of q
participating processors and two permutations for ini-
tial and back communications, we can compute the op-
timal throughput and derive a schedule achieving such
a throughput by solving the following linear program:

Maximize ρ =
∑q

i=1 αi,
under the constraints⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2a)

∀i = 1, . . . q,
i∑

j=1

αjcj + αjwj +
q∑

j=i

αjdj + xi ≤ 1

(2b)
q∑

i=1

αi × ci +
q∑

i=1

αi × di ≤ 1

(2c) ∀i = 1, . . . q, αi ≥ 0
(2d) ∀i = 1, . . . q, xi ≥ 0

(2)

For a given scenario, the cost of this linear program-
ming approach may be acceptable. However, as already
pointed out, there is an exponential number of scenar-
ios. Worse, there is an exponential number of FIFO sce-
narios, even though there is a single permutation to try
in this case.

2.4. Optimal FIFO schedule on a star plat-
form

In this section, we analyze FIFO schedules. We as-
sume that di = zci for 1 ≤ i ≤ p, with 0 < z < 1. The
case z > 1 is symmetrical (see [5]). The following the-
orem summarizes the main result:

Theorem 1. There exists an optimal one-port FIFO
schedule where:
- processors are ordered in non-decreasing value of ci;
- all processors taking part in the computation have no
idle time, except possibly the last one.
Therefore, an optimal FIFO schedule (with resource se-
lection) can be determined in polynomial time.

We start the proof with some preliminary lemmas.
For a while, we assume that the set of participating pro-
cessors has been determined, and we come back to this
resource selection problem later. The following lemmas
provide useful characterizations of an optimal solution:

Lemma 1. There exists an optimal FIFO one-port
schedule where at most one participating processor has
some idle time.

Proof. Let us assume that there are q processors par-
ticipating in the solution. Any optimal FIFO one-
port schedule is an optimal solution to the linear pro-
gram (2). In this linear program, there are 2q unknowns
(the αi’s and the xi’s) and 3q+1 constraints. Using lin-
ear programming theory [25], we know that there is
a vertex of the polyhedron defined by the constraints
which is optimal. At this optimum, there are 2q out of
the 3q + 1 constraints which are tight, i.e. which are
equalities. Since we are considering q workers partici-
pating to the processing, none of the αi ≥ 0 constraints
is an equality. So, at this optimal vertex, there are 2q
equalities among the remaining 2q + 1 constraints: in
other words, at most one constraint is not tight. In
particular, there exists at most one processor Pi with
xi > 0, which means that there is at most one processor
with idle time, what achieves the proof of Lemma 1.

Lemma 2. There exists an optimal FIFO one-port
schedule where only the last participating processor may
have some idle time.

Proof. Let S be an optimal FIFO one-port schedule,
and assume that it involves processors P1 to Pq in this
order. According to Lemma 1, there is at most one pro-
cessor that may have some idle time between the end
of its processing and the start of its backward commu-
nication. By contradiction, suppose that this processor
is Pi, where i < q and xi > 0. We focus on proces-
sors Pi and Pj = Pi+1. Their activity in S is repre-
sented on Figure 4. We aim at building a schedule S ′,

αiwi
xi

αidiαici

αjcj αjwj αjdj

Pi

Pi+1 = Pj

Figure 4. Activity of Pi and Pi+1 in the initial
schedule S

where the i-th participating processor has no idle time,
but the i + 1-th participating processor may have idle
time, and the number of tasks processed in S’ is not
smaller than the number of tasks processed in S.

We consider two different cases, according to the
communication speeds of Pi and Pj :

• Case 1, ci ≤ cj .
The transformation used to analyze this case is



αiwi
xi

αidiαici

αjcj αjwj αjdj

Pi

Pj

α′
ici α′

idi

α′
jcj α′

jwj α′
jdj

α′
iwi

Pi

Pj
x′

j

Figure 5. From S to S ′, in the case ci ≤ cj

depicted in Figure 5. Roughly, we keep the over-
all communication time and the time intervals
used for forward and backward communications
unchanged, so that other communications (with
Pk �= Pi, Pj) are not affected by the transforma-
tion. We increase the amount of tasks processed
by Pi, and decrease the amount of tasks processed
by Pj , so that the overall number of tasks pro-
cessed by Pi and Pj increases.

More precisely, let us set

α′
i = αi +

xi

ci + wi
, α′

j = αj − ci

cj

xi

ci + wi
,

α′
k = αk for all k �= i, j

We set x′
i = 0, and we will formulate the xj value

later. The total time needed for data transfers in
the new schedule S ′ is given by

ciα
′
i + cjα

′
j = ciαi + cjαj + ci

xi

ci+wi
− cj

ci

cj

xi

ci+wi

= ciαi + cjαj

Therefore, the overall communication time for
sending data messages to (Pi, Pj) is the same
for S and S ′. In other words, Pj starts com-
puting at the same date in S and in S ′. Since
di = zci, we also have

diα
′
i + djα

′
j = z

(
ciα

′
i + cjα

′
j

)
= z (ciαi + cjαj)

= diαi + djαj ,

so that the overall time for backward communica-
tions is also the same.

The time between the start of the data transfer
for Pi and the start of its return transfer is given
by

in S : (ci + wi)αi + xi

in S ′ : (ci + wi)α′
i = (ci + wi)(αi + xi

ci+wi
)

= (ci + wi)αi + xi

So the transfer of the return message for Pi starts
at the same date in S and S ′. Together with the

fact that communication times are identical in S
and S ′ for the group (Pi, Pj), this ensures that we
do not perturb the rest of the execution: nothing
changes in the data transfers before the date when
Pi starts receiving, and after Pj stops receiving.
The same holds true for transferring results back
to the master.

In S ′, Pj has fewer tasks to process than in S,
but it can start computing at the same date (since
the total data transfer time is the same), and it can
stop working later, as its return transfer is shorter.
Therefore, we need to introduce some idle time x′

j

on Pj . Since the time between the start of its com-
putation and the end of its output transfer is the
same for S and S ′, we can write:

(wj + dj)α′
j + x′

j = (wj + dj)αj

(wj + dj) × −ci

cj

xi

ci + wi
+ x′

j = 0

x′
j = xi

(
ci

cj

wj + dj

ci + wi

)
Thus, x′

j > 0 as soon as ci > cj , and x′
j = 0 oth-

erwise (ci = cj). The new schedule S ′ is repre-
sented in Figure 5, where it is compared to S. The
amount of tasks processed by both Pi and Pj in
S ′ is given by∑

i

α′
i =

∑
i

αi + εi− εj =
∑

i

αi +
cj − ci

cj

xi

ci + wi
.

Since cj ≥ ci, S ′ processes at least as many tasks
as S and we have moved the gap one step further
from Pi to Pj .

• case 2, ci > cj .
In this case, it is not worth moving the gap from Pi

to Pj . Therefore, the transformation (see Figure 6)
consists in keeping the gap at Pi, while changing
the communication ordering of the FIFO schedule,
by switching Pi and Pj . The sketch of the proof is
essentially the same as in the first case. We choose
the transformation so that the overall communi-
cation time for both forward and backward com-
munications to Pi and Pj is the same, thus letting
other communications unchanged. Then, we prove
that such a transformation increases the overall
number of tasks processed by Pi and Pj . More pre-
cisely, after the exchange, the number of tasks pro-
cessed by each processor is the following:

α′
j = αj +

αici(1 − z)
cj + wj

α′
i = αi − αicj(1 − z)

cj + wj

α′
k = αk for each processor Pk with k �= i, j



αiwi
xi

αidiαici

αjcj αjwj αjdj

Pi

Pj

Pj

Pi
x′

i

α′
jcj α′

jwj α′
jdj

α′
ici α′

iwi α′
idi

Figure 6. From S to S ′, in the case ci > cj

Moreover, let us set x′
k = 0 for all k �= i and x′

i =

xi

(
wj+dj

cj+wj

)
. As previously, we need to check that

the description of the new schedule in Figure 6 is
valid:

– communications for Pi, Pj take the same
time in S and S ′:
The time needed for data transfers for
(Pi, Pj) in S ′ is

cjα
′
j + ciα

′
i

= cjαj + cj
αici(1 − z)

cj + wj
+ ciαi − ci

αicj(1 − z)
cj + wj

= cjαj + ciαi

which is the time for data transfers for
(Pi, Pj) in S. Since di/ci = dj/cj = z, the
same analysis holds true for output mes-
sages.

– Pj starts sending output messages in S ′ at
the same date as Pi does in S:
If we assume that the first processor among
Pi, Pj starts receiving data at time 0, then Pj

starts sending its results at time

Tj = α′
jcj + α′

jwj

=
(

αj +
αici(1 − z)

cj + wj

)
· (cj + wj)

= αj(cj + wj) + αi(ci − di)

But in S, we have αj(cj +wj) = αi(wi +di)+
xi, so that Tj = αi(ci + wi) + xi, which is
exactly the date when the output transfer of
Pi starts in S.

– Pi has enough time to process its tasks:
The time between the beginning of the data
transfer for Pi and the beginning of its out-

put transfer in S ′ is given by

T 2
i = α′

ici + α′
iwi + x′

i

=
(

αi − αicj(1 − z)
cj + wj

)
︸ ︷︷ ︸

αi
wj+dj
cj+wj

(ci + wi) + xi

(
wj+dj

cj+wj

)

=
wj + dj

cj + wj

(
(ci + wi)αi + xi

)
and the time between the start of Pj ’s com-
putation and the end of its output transfer in
S ′ is

T 2
j = α′

jwj + α′
jdj

=
(

αj +
αi(ci − di)

cj + wj

)
(wj + dj).

As previously, we have in S αj(cj + wj) =
αi(wi +di)+xi, so that we can replace αj by
its actual value in the previous equation:

T 2
j =

(
αi(wi + di) + xi

cj + wj
+

αi(ci − di))
cj + wj

)
(wj + dj)

=
wj + dj

cj + wj

(
(ci + wi)αi + xi

)
= T 2

i .

Therefore, in S ′, the end of Pj ’s output trans-
fer corresponds to the start of Pi’s output
transfer.

The number of tasks processed in S ′ is:

∑
i

α′
i =

∑
i

αi +
αi(ci − cj)(1 − z)

cj + wj

Since ci > cj , we have built a FIFO one-port
schedule that processes more tasks than S, which
is in contradiction with the optimality of S, so the
case ci > cj never happens.

We apply this approach as many times as needed so
that, at the end, the only processor with some idle time
is the last enrolled processor Pq.

We are now able to prove Theorem 1.

Proof. The previous lemmas prove that there exists
an optimal FIFO one-port schedule where the only par-
ticipating processor possibly with idle time is the last
one. In order to achieve the proof Theorem 1, we still
need to prove that there exists an optimal FIFO sched-
ule where processors are ordered by non-decreasing val-
ues of the ci’s.

Let us consider an optimal one-port schedule S
where the last processor only has idle time. We denote



by P1, . . . , Pq the processors taking part to the compu-
tation, in this order. Suppose that processors are not
ordered by non-decreasing value of ci. Then, there ex-
ists an index k such that ck > ck+1. We apply the trans-
formation of the second case of the proof of Lemma 2
to processors Pi = Pk and Pj = Pk+1. Note that this
transformation is valid even if there is no idle time for
processor Pi (xi = 0). In this case we get x′

i = 0 since
x′

i = xi

(
wj+dj

cj+wj

)
, so that there is no idle time for Pi and

Pj in the new schedule S ′. However, the total amount
of tasks processed in S ′ is given by

∑
i

α′
i =

∑
i

αi +
αi(ci − cj)(1 − z)

cj + wj
.

Since z < 1 and ci > cj , S ′ processes strictly more tasks
than S, which contradicts the optimality of S. There-
fore, in S, processors are ordered by non-decreasing val-
ues of the ci’s.

There remains to prove that:

Lemma 3. An optimal FIFO schedule (with resource
selection) can be determined in polynomial time.

Proof. Owing to Theorem 1, we know that there ex-
ists an optimal FIFO schedule where processors are or-
dered by non-decreasing values of ci, but we do not
know the optimal number of enrolled processors. The
following algorithm computes in polynomial time the
best throughput, and exhibits an optimal schedule:

1. Sort processors by non-decreasing values of the
ci’s: P1, . . . , Pp.

2. Build a linear program enrolling all p processors,
but with an idle-time variable xi for each of them.
This requires the resolution (in rational numbers)
of a linear program with 2p variables and 3p + 1
constraints.

3. The solution of the linear program provides the
set of participating processors (those such that
αi �= 0) and their load.

2.5. Optimal FIFO throughput on a bus
network

We give an explicit formula for the optimal through-
put of a FIFO schedule, when the platform reduces to
a bus network:

Theorem 2. The optimal FIFO one-port solution
when ci = c and di = d achieves the throughput

ρopt = min
{

1
c + d

,

∑p
i=1 ui

1 + d
∑p

i=1 ui

}

where ui = 1
d+wi

∏i
j=1

(
d+wj

c+wj

)
. Note that all proces-

sors are enrolled in the optimal solution.

Proof. First of all, we prove that for a given FIFO
one-port schedule, the throughput ρ is less than

min

{
1

c + d
,

∑k
i=1 ui

1 +
∑k

i=1 uid

}
.

Let S be a given one-port schedule enrolling workers
P1 to Pq, and let αi be the number of load units pro-
cessed by Pi. As we target a bus network, sending one
load unit from the master to any processor takes a time
c, whereas receiving one unit from any worker takes a
time d. So the time needed to send all data from the
master is

Tsend =
q∑

i=1

αic

and the time needed to receive all results is: Trecv =∑q
i=1 αid. As the schedule obeys the one-port model,

we know that no reception of the master can start un-
til all sends are completed. Thus we get the constraint
Tsend + Trecv ≤ 1. Hence:

Tsend + Trecv =
q∑

i=1

αic +
q∑

i=1

αid = ρ(c + d) ≤ 1

It remains to prove that ρ ≤ ρ̃, where
ρ̃ =

Pk
i=1 ui

1+
Pk

i=1 uid
. Consider a given FIFO one-port

schedule S with throughput ρ. S can be viewed as
a two-port schedule, so its throughput cannot ex-
ceed that of the optimal throughput in the two-port
model. As shown in [6, 7], the optimal two-port so-
lution for a bus network involves all processors and
achieves the throughput ρ̃, hence the result.

Then, we prove that their exists a schedule reaching
the optimal throughput ρopt.

We start with an optimal FIFO two-port schedule
S whose throughput is ρ̃ and we transform it into a
one-port schedule. We consider two cases:

• ρ̃ ≤ 1
c+d . Then there is no overlap between for-

ward and backward communications. The
two-port schedule actually is a one-port sched-
ule, whose throughput is ρ̃ = ρopt.

• ρ̃ ≥ 1
c+d . This is the case with overlap between

communication from and to the master, repre-
sented in Figure 7. Therefore we have to delay
the receptions of return messages until the mas-
ter has finished sending data (see second sched-
ule on Figure 7). To do so, we add a gap of length
x = ρ̃×(c+d)−1 between the end of the computa-
tion and the transmission of the return message on



ρ̃ × (c + d)

T

Figure 7. How to transform an optimal two-port
schedule into a one-port schedule.

each processor. The overall execution time of the
schedule becomes T ′ = ρ̃ × (c + d). Finally, to ob-
tain a schedule of total execution time 1, we scale
down all quantities by a factor 1

ρ̃×(c+d) (see the
third schedule on Figure 7). We obtain the follow-
ing characteristics:
number of tasks processed by Pi:

α′
i =

αi

ρ̃ × (c + d)

gap for every processor:

x = 1 − 1
ρ̃ × (c + d)

The throughput of this new schedule is:

ρ′ =
ρ̃

ρ̃ × (c + d)
=

1
c + d

It remains to prove that the new schedule satis-
fies the conditions for the one-port model. We will
prove that T ′

send + T ′
recv ≤ 1:

T ′
send + T ′

recv = (c + d)ρ′ = 1

Hence this schedule obeys the one-port model, and
achieves the bound ρopt.

3. MPI experiments

In this section we present practical tests using one-
port LIFO and FIFO strategies. We choose matrix mul-
tiplication as the target application to be implemented

on a master/worker platform. The multiplication of two
matrices results in a single matrix, hence the initial
data message will be twice bigger than the output mes-
sage: z = 1/2. The objective is to minimize the total
execution time for executing a large number M of ma-
trix products. In our tests we compare the behavior of
the following algorithms:

• a FIFO heuristic using all processors, sorted by
non-decreasing values of ci (faster communicating
workers first), called INC C

• a FIFO heuristic using all processors, sorted
by non-decreasing values of wi (faster comput-
ing workers first), called INC W

• the optimal one-port LIFO solution, called LIFO.

By construction, the optimal two-port LIFO solu-
tion of [6, 7] is indeed a one-port schedule. It involves
all processors sorted by non-decreasing values of ci.
These three heuristics are implemented using the lin-
ear programming framework developed in Section 2.3:
the choice of the heuristic provides both transfer per-
mutations σ1 and σ2; the optimal value of the αi’s,
as computed by the linear program, are used for the
scheduling. The solution of the linear program is ex-
pressed in rational numbers, but we need to send, pro-
cess and return integer numbers of matrices. The pol-
icy to round the αi’s to integer values is the follow-
ing. We first round down every value to the immedi-
ate lower integer, and then we distribute the K re-
maining tasks to the first K workers of the schedule
in the order of the sending permutation σ1, by giv-
ing one more matrix to process to each of these work-
ers. For instance with 4 processors P1 to P4 used in
this order for σ1, if M = 1000, α1 = 200.4, α2 = 300.2,
α3 = 139.8 and α4 = 359.6, then K = 2, and we as-
sign 200+1 matrices to P1, 300+1 to P2, 139 to P3 and
359 to P4. Obviously, rounding induces some load im-
balance, which may slightly impact the actual perfor-
mance of the heuristics.

3.1. Experimental setting

All tests were made on the cluster gdsdmi, which is
located within the LIP laboratory at ENS Lyon, and
consists in P4 2.4GHz processors with either 256MB
or 1GB of memory. In this cluster, 12 nodes are avail-
able, so we mainly conduct experiments with one mas-
ter and 11 workers. To run our test application, we use
the MPICH implementation [18] of the Message Pass-
ing Interface MPI. To solve all linear programs, we used
the lp solve solver [8]. The total number M of matri-
ces to be processed has been fixed to M = 1000.



3.2. Heterogeneity and linear model

The cluster described in the previous Section al-
lows us to start with homogeneous conditions: all nodes
have the same computation and communicating capa-
bilities. As we target heterogeneous platforms, we sim-
ulate heterogeneity by slowing down or speeding up
some operation (transfer or computation). We chose
to consider the original speed as the slowest available,
and sometimes speed up communication or computa-
tion when we want to simulate faster workers. For ex-
ample, to simulate a worker which communicates twice
faster than the original speed, we reduce the size of the
data and result messages by a factor 2. The data miss-
ing for the computation might appear critical, but we
are interested in the execution time rather than in the
result, so we randomly fill up all the matrices we use.
We proceed in the same manner for the computation:
simulating a processor which is 5 times faster is done
by processing only a fifth of the original computation
amount. We have chosen not to slow down transfers
or computations in order to avoid problems of mem-
ory swapping, which could have happened with very
big message sizes, and also in order to reduce execu-
tion time.
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Figure 8. Linearity test with different message
sizes, simulating heterogeneous workers.

First, we check that the basic linear cost model
which we adopted in our divisible load approach is
valid. So we perform a linearity test, by sending dif-
ferent sizes of messages to worker with different (sim-
ulated) communication speeds. The results of this test
are presented in Figure 8 and show that our assump-
tion on linearity holds true, and that no latency needs
to be taken into account.

3.3. Execution analysis

Figure 9. Visualizing an execution on a hetero-
geneous platform.

To analyze the behavior of the platforms during our
experiments, we perform some trace analysis. Figure 9
presents the visualization of one execution, obtained
using the Pajé software [13]. The first line represents
the activity of the master, while the other five lines rep-
resent workers with different speeds. The initialization
of the workers is not shown on this figure. The visual-
ization shows the data transfers (in white), the compu-
tation (in dark gray) and the output transfers (in pale
gray). Note that for each transfer, the bar“starts”when
the receiver is ready for communicating, and “ends”
when it has received all data. This explains why at
the beginning, all workers start receiving, as they are
all waiting for the master to send them some data. As
the workers of the platform have (simulated) heteroge-
neous communicating and computing speeds, not nec-
essary all workers are involved in the computation. In-
deed, in the execution shown in Figure 9, only the first
three workers are actually performing some computa-
tion. In this experiment, we use FIFO ordering: the
sending order is the same for input data and results.

3.4. Heuristics comparison

We present here the results of the experiments for a
large number of platforms, randomly generated, with
parameters varying from 1 to 10, where 1 represents the
original speed either for communication or for compu-
tation, and 10 represents a worker 10 times faster. Each
point of the following graphs is obtained as the aver-
age performance on 50 platforms randomly generated.

3.4.1. Homogeneous bus platforms. Figure 10(a)
shows the experimental results for homogeneous bus
platforms: in these tests, all workers have the same
communication and computation capabilities.

In this figure, as in the following ones, we plot
the actual execution time of each heuristic, after hav-
ing normalized it against the theoretical prediction
for the INC C heuristic. For example the line “LIFO



real/INC_C lp” means (execution time of the LIFO
heuristic in the experiments)/(theoretical execution
time of the INC C heuristic).

We plot only the INC C FIFO heuristic because all
FIFO strategies are the same with homogeneous com-
munication and computation speeds. In these homoge-
neous settings, LIFO performs better than FIFO, both
in the linear program and in the real experiments.

3.4.2. Heterogeneous bus platforms. Our results
on platforms with homogeneous communications and
heterogeneous computing speeds are presented on Fig-
ure 10(b). This kind of platform corresponds exactly
to the platforms used in Theorem 2. The results sup-
ports the theoretical study: INC C gives better results
that INC W. Again, LIFO performs better than the
FIFO strategies. Although the experimental results dif-
fer from the theoretical prediction, the theory correctly
ranks the different heuristics: in the linear program-
ming approach, LIFO is better than INC C, which is
better than INC W, and this order in the same in the
practical experiments.

3.4.3. Heterogeneous star platforms. Fig-
ure 10(c) presents the results for the case of platforms
with heterogeneous communication speeds and het-
erogeneous computation capabilities. Again, INC C
is the best FIFO strategy, as predicted by Theo-
rem 1. The results are very similar as for heteroge-
neous platforms: LIFO is better than the FIFO strate-
gies, and the linear program correctly predicts the
relative performance of the heuristics, although abso-
lute performance differ from what is predicted by a
factor bounded by 20%.

3.4.4. Changing the communication to compu-
tation ratio. In this section, we describe the exper-
iments which we performed to better understand the
impact of the ratio between communication and com-
putation cost. Starting from the last set of experiments
(Figure 10(c)), we first increase the computation power
of each processors by a factor 10, and perform the same
experiments. Results are presented in Figure 11(a). The
test shows that with small matrix sizes, the perfor-
mances of the LIFO heuristic are much worse than ex-
pected, while the performances of both FIFO strate-
gies are very close to each other. This is quite unex-
pected as the linear program gives a good performance
to the LIFO strategy, as in the previous scenarios. The
LIFO heuristic might be very sensitive to small perfor-
mance variations in this case.

Then, we perform the same experiments with plat-
forms where the communication is 10 times faster
than in the original tests, and computation speeds are
not changed. Results are presented in Figure 11(b).
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Figure 11. Heuristics performance for platforms with different communication/computation ratio, nor-
malized by FIFO theoretical running time.

This shows the limits of the linear cost model, as the
ratio between practical performance and theoretical
throughput increases linearly with the size of the ma-
trices. However the linear program correctly predicts
the relative performance of the different heuristics.

3.4.5. Observing the number of participating
workers. As stated earlier, when considering return
messages, it can happen that not all workers should be
enrolled in the solution to obtain best performances.
In this section, we want to check if our framework cor-
rectly determines the optimal number of workers that
are involved in the computation. We use a platform
consisting in 4 workers, where the first 3 workers are
fast both in computation and in communication, and
the last worker is slower. The following table precisely
describes their characteristics:

worker: 1 2 3 4
communication speed: 10 8 8 x

computation speed: 9 9 10 1

Depending on the value of the communication speed
x of the last worker, this one should participate or not
in the computation. In the following tests, we run our
program with a number of slaves from one to four.
Then, we record the number of slaves that were re-
ally used, and the performance obtained. Figure 12(a)
presents the results for x = 1. In this case, the last
worker is never used (even when we authorize four
workers to be used). In Figure 12(b), we present the re-
sults for the case x = 3. In this case, the fourth worker
is used, and the performance is slightly better when us-

ing all four workers (even it is hardly noticeable on the
graph). This shows that our framework, on this lit-
tle example, is able to make the right choice about the
number of participating processors.

4. Related work

In addition to the landmark book [9], several sources
to DLS literature are available: see the two introduc-
tory surveys [10, 23], the special issue of the Cluster
Computing journal entirely devoted to divisible load
scheduling [17], and the Web page collecting DLS-
related papers is maintained [22].

DLS applications include linear algebra [12], image
processing [19, 21], video and multimedia broadcast-
ing [2, 3], database searching [14, 11], and the process-
ing of large distributed files [26]. These applications
are amenable to the simple master-worker program-
ming model and can thus be easily implemented and
deployed on computing platforms ranging from small
commodity clusters to computational grids [16].

The DLS model comes in two flavors, with a linear
cost model and with an affine cost model. The linear
cost model is the original model, and has been widely
adopted because of its simplicity: several closed-form
formulas are available for star, tree, mesh networks
among others [9, 22]. The affine cost model (which
amounts to introduce a start-up overhead in the com-
munication cost, and/or in the computation cost) has
been advocated more recently, for two main reasons: (i)
it is more realistic than the linear model; and (ii) it can-
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Figure 12. Test of participating workers on a heterogeneous platform.

not be avoided when dealing with multiple-round sce-
narios, where the master is allowed to send data to the
workers with several messages rather than with a sin-
gle one. Multiple-round strategies are better amenable
to pipelining than one-round approaches, but using a
linear cost model would then favor sending a large col-
lection of infinitely small messages, hence the need to
add communication latencies. However, latencies ren-
der the problem more complex: the DLS problem has
recently been proved NP-hard on a star network with
the affine model [20].

When dealing with one-round scenarios, as in this
paper, the linear model is more realistic, especially
when the total work to be distributed to the slaves is
large. From a theoretical perspective, one major ques-
tion was to determine whether adding return messages,
while retaining the linear model, would keep the DLS
scheduling problem polynomially tractable. We failed
to answer this question, but we have been able to char-
acterize optimal solutions for FIFO strategies under
the one-port model. This result nicely complements our
previous study under the two-port model.

Relatively few papers have considered adding re-
turn messages in the study of DLS problems. Pioneer-
ing results are reported by Barlas [4], who tackles the
same problem as in this paper (one round, star plat-
form) but with an affine framework model. Barlas [4]
concentrates on two particular cases: one called query
processing, where communication time (both for ini-
tial and return messages) is a constant independent of
the message size, and the other called image processing,
which reduces to linear communication times on a bus
network, but with affine computation times. In both

cases, the optimal sequence of messages is given, and
a closed-form solution to the DLS problem is derived.
In [15], the authors consider experimental validation of
the DLS model for several applications (pattern search-
ing, graph coloring, compression and join operations in
databases). They consider both FIFO and LIFO distri-
butions, but they do not discuss communication order-
ing.

Rosenberg [24] and Adler, Gong and Rosenberg [1]
also tackle the DLS model with return messages, but
they limit themselves to a bus network (same link
bandwidth for all workers). They introduce a very de-
tailed communication model, but they state results
for affine communication costs and linear computa-
tion costs. They have the additional hypothesis that
worker processors can be slowed down instead of work-
ing at full speed, which allows them to consider no idle
times between the end of the execution and the emis-
sion of the return messages. They state the very in-
teresting result that all FIFO strategies are equivalent,
and that they perform better than any other proto-
col. Note that our results, although not derived under
the same model, are in accordance with these results:
when the star platform reduces to a bus platform, the
theoretical results of this paper show that all proces-
sors should be involved in the computation, and that
their ordering has no impact on the quality of the so-
lution.

Finally, we point out that Altilar and Paker [3] also
investigate the DLS problem on a star network, but
their paper is devoted to the asymptotic study of sev-
eral multi-round strategies.



5. Conclusion

In this paper, we present two optimality results
for scheduling divisible load on star networks in pres-
ence of return messages and under the one-port
model. First we are able to characterize the op-
timal FIFO scheduling on general star networks,
where fast-communicating processors should be en-
rolled first in the computation. We also provide an an-
alytic expression of the total amount of load that
can be processed by a FIFO scheduling on homo-
geneous networks. We have also provided a set of
MPI experiments to assess the performance of sev-
eral heuristics in a real framework.

This paper constitutes the first attempt, to the best
of our knowledge, to take return messages into account
under the one-port model. Nevertheless, we are still
far from the optimal solution of the general problem.
Indeed, we are only able to provide optimal schedul-
ings for fixed communication orderings such as FIFO
or LIFO. The complexity of finding the pair of optimal
permutations for forward and return messages remains
open, under both the one-port and two-port models.
Despite the simplicity of the linear cost model both for
computations and communications, the problem looks
very combinatorial, and we conjecture that it is NP-
hard.
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