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Abstract

Users and developers of grid applications have

access to increasing numbers of resources.  While more 
resources generally mean higher capabilities for an

application, they also raise the issue of application

scheduling scalability. First, even polynomial time 
scheduling heuristics may take a prohibitively long time

to compute a schedule. Second, and perhaps more

critical, it may not be possible to gather all the resource
information needed by a scheduling algorithm in a

scalable manner.  Our application focus is scientific

workflows, which can be represented as Directed Acyclic 
Graphs (DAGs). Our claim is that, in future resource-rich

environments, simple scheduling algorithms may be

sufficient to achieve good workflow performances. We
introduce a scalable scheduling approach that uses a

resource abstraction called a virtual grid (VG). Our 

simulations of a range of typical DAG structures and 
resources demonstrate that a simple greedy scheduling

heuristic combined with the virtual grid abstraction is as
effective and more scalable than more complex heuristic

DAG scheduling algorithms on large-scale platforms.

1. Introduction

Efficiently scheduling the tasks of a parallel

application on the resources of a distributed computing

platform is critical for achieving high performance. The

scheduling problem has been studied for a variety of 

models and assumptions and has proved to be NP-

complete in most cases [1]. Consequently, researchers 

have developed many heuristics that exhibit polynomial

time complexity and attempt to approach the optimal

schedule. A popular application model for which

scheduling heuristics have been developed is the “task

graph” model, by which an application is represented as a

weighted Directed Acyclic Graph (DAG). Nodes in the

DAG represent computational tasks, and edges represent

data communication among tasks. Node weights represent

computational costs, and edge weights represent amounts

of data to transfer between tasks. A survey of “DAG 

scheduling algorithms” is available in [2].

The DAG application model is particularly relevant

for scientific workflows [3]. The last few years have seen

active development and deployment of many such

workflows in various domains [4-6] and these workflows

require considerable amounts of computing power.

Therefore, it is natural to explore the possibility of

executing them on large-scale computing platforms such

as grids [7]. And indeed, several efforts are underway to 

provide software frameworks for “grid workflows” [8].

These efforts typically focus on workflow instantiation

and deployment issues and they leave the question of

efficient scheduling mostly unaddressed.

In this paper we ask the question: “Are sophisticated

DAG scheduling algorithms required to schedule

workflows on grid platforms?” Our claim is that, in many

relevant cases, simpler scheduling approaches are viable

alternatives and can be preferable in practice as they are

as effective, more robust, more scalable, and simpler to 

implement.

To “replace” the work done by sophisticated

scheduling algorithms, we employ a resource abstraction 

called the Virtual Grid (VG) [9, 10]. With this

abstraction, we demonstrate in simulation that a naïve

greedy scheduling algorithm, which does not account for 

resource information nor for application information

beyond task dependencies, can be as effective as a 

popular DAG scheduling algorithm for scheduling a 

workflow on large-scale grid platforms.

The rest of this paper is organized as follows. In

Section 2 we define the problem, identify challenges, and

highlight the limitations of current solutions. Section 3 

details our approach based on the VG abstraction. Section

4 presents our experimental methodology, and Section 5
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presents our results. Section 6 discusses our results and

highlights future directions.

2. Scheduling Applications in Large-Scale

Environment

Users of scientific applications, and in particular of

scientific workflows, are increasingly faced with

situations in which they have to select appropriate

compute resources among a large number of potential

resources distributed over the wide-area. This is due to 

two factors. First, with dropping hardware prices for

commodity computers, with several cluster vendors, and

with the availability of open-source cluster management

tools [11], it is increasingly affordable and

straightforward to purchase/deploy powerful Linux

clusters. Second, the development of the grid middleware

infrastructure [12] makes it straightforward for users to 

access a wide collection of resources uniformly and 

securely. Additionally, with projects [13] exploring

optical networks and providing high bandwidth among

many clusters, there is a trend towards resource-rich

environments with good network connectivity in which

users can access many clusters in many institutions

concurrently. Workflow applications can benefit from

such environments because they are often loosely coupled

and can utilize resources at multiple sites concurrently

and efficiently. 

With more resources to choose from, the question of

effective scheduling becomes critical. In this paper we

define application performance as application turn-around

time, which includes the time to compute a schedule

(encompassing selection of resources and selection of

task-resource mappings) and the time to execute the

schedule (also called makespan).

2.1. Challenges

With the explosion in the number of computing

resources, the major challenge for scheduling workflows

is scalability of the scheduling algorithm itself. Although

of polynomial complexity, DAG scheduling heuristics

may become impractical when considering large numbers

of individual resources. More importantly perhaps,

existing heuristics require information about individual

resources and about their distances from each other over

the network. Collecting and processing reasonably up-to-

date such information may itself not be scalable.  There is 

therefore a trade-off between the time spent computing a 

schedule (perhaps prohibitively high for a sophisticated

heuristics, but low for a simple one) and the time spent

executing it (arguably low for a sophisticated heuristic,

but probably high for a simple one).

2.2. Current Approaches and Limitations 

As seen in [2], DAG scheduling heuristics that

calculate and account for the ``critical path’’ of the DAG

are often the most effective. The critical path is essentially

the longest path in the DAG (in terms of node and edge

weights), and is thus a lower bound on the overall

makespan. These heuristics attempt to lower this lower 

bound in the hope of lowering the makespan.

In practice however, for the purpose of scheduling

grid workflows, these heuristics are not used. For

instance, the Pegasus grid workflow framework [14, 15]

implements only the simplistic random, round-robin, or

min-min [16] heuristics for scheduling workflows of the

Montage astronomy application [17, 18].

There are several reasons for the lack of acceptance

of more sophisticated scheduling algorithms. First, these

algorithms are more complicated to implement. Second, 

they often require more information about the application

and/or the resources, which may be difficult to obtain

scalably. Third, there has been no clear demonstration

that they would improve application turn-around time in

practice (i.e., achieve a good trade-off between the time to

compute a schedule and the time to execute it).

An open question is then “Should sophisticated

scheduling algorithms be used for workflows in grid

environment?” While scheduling is a common topic of

discussion in the grid workflow community there is not

consensus on the answer to this question. In this paper we

show that although the use of sophisticated algorithms

may be worthwhile, simplistic algorithms can achieve

comparable or even better application turn-around time in

many relevant cases, provided that an adequate resource

abstraction is used for resource pre-selection

3. Scheduling Using Virtual Grids

One simple way in which to improve the scalability

of a scheduling algorithm is to constrain its operation to a 

pre-selected set of resources. Scheduling algorithms

typically perform implicit resource selection: they 

consider a large number of potential resources and

compute a schedule that utilizes only a fraction of these

resources in the end. On resource-rich grid platforms for 

workflow applications this fraction is typically minute. If 

instead one pre-selects a “good” subset of the potential

resources and then run the scheduling algorithm, one

should be able to obtain schedules with comparable

makespans in significantly less time. Perhaps more

importantly, if the pre-selection is reasonable, it is

possible that very simple scheduling algorithms could

achieve similar makespans as more sophisticated 

algorithms. The sophisticated algorithms should improve

the makespan, but at the expense of longer time to

compute the schedule and may require a wealth of



information regarding resources and/or applications. The

question is whether one can “get by” with simpler

algorithms in practice.

3.1. Virtual Grids

A Virtual Grid (VG) provides a high-level,

hierarchical abstraction of the resource collection that is

needed and used by an application. This abstraction

provides a clean separation of concerns between grid

applications and the complexity of the grid infrastructure:

the application specifies its resource needs using a high-

level language, vgDL, and the Virtual Grid Execution

System (vgES) finds and allocates appropriate resources.

This abstraction is implemented as part of the

VGrADS project [19]. We discuss here only the concepts

and features that are relevant to the following sections.

More information on the vgDL language and the vgES

system can be found in [9] and [10].

The salient point of vgDL is the capability for

applications to specify hierarchical resource aggregates 

and qualitative notions of network proximity between

these aggregates. vgDL contains three resource

aggregates, distinguished by homogeneity and network

connectivity: (i) LooseBag: a collection of heterogeneous

nodes with possibly poor connectivity; (ii) TightBag: a

collection of heterogeneous nodes with good

connectivity; and (iii) Cluster: a set of well-connected

nodes with identical (or nearly so) individual resource

attributes. The notion of “good” is defined in term of a 

network latency threshold. The implicit assumption is a

positive correlation between low latency and high

bandwidth.  For instance, in vgDL, an application can 

request a Cluster of 32 Opteron processors with clock rate

higher than 2Ghz and more than 1GB of RAM that is 

“close” to a TightBag of 32 to 128 processors that have

clock rates higher than 1Ghz. The tenet of the VGrADS

project is that such simple and qualitative specifications

fit the need of most applications in practice. Such requests

are sent to the vgES system.

The vgES system constantly gathers and indexes

information about available resources in an off-line

manner using grid information services [20, 21]. It then

uses relational database technology and efficient

algorithms to select resources that match the requirements

expressed in a vgDL query (see [10] for an evaluation). 

Note that this system operates at a higher level than grid 

middleware such as Globus [12] and leverages such

middleware to acquire grid resources.

3.2. Scheduling with VGs 

Our scheduling approach consists of pre-selecting

resources by obtaining a VG corresponding to a simple

vgDL description, and then scheduling the application

within the resources in the VG. In essence, whereas

complex scheduling algorithms explicitly (and sometimes

by brute force) search for a good schedule by examining

trade-offs between computation and communication

explicitly, the vgES, when processing a vgDL requests,

immediately bypasses undesirable branches of the search.

There is no magic here: vgES does a lot of the necessary

work to prune the search space. The point is that it does it 

very efficiently and scalably.  Furthermore, vgES does

this once for the entire workflow – not for each task.

Thus, we anticipate that this reduced resource search

space (and reduced work) and a simple greedy heuristic

can in fact achieve comparable or perhaps better turn-

around times for many relevant applications in practice. 

4. Experimental Approach 

Our goal is to investigate whether using the VG 

abstraction can indeed simplify the scheduling of

workflow applications on large-scale platforms. We

perform the following experiments. We use DAGs from

a real-world grid workflow applications, Montage [17], as 

well as randomly generated DAGs to better understand

the impact of DAG characteristics on our results. We

consider a computing platform generated by a tool [22]

that instantiates synthetic large-scale computing

environments that are representative of current 

technology.

Using simulation we execute two different

scheduling algorithms: a naïve greedy algorithm (which 

we call “simple”) and a standard DAG scheduling

algorithm (which we call “complex”).  We execute these

algorithms in three modes: (i) on the whole “resource 

universe” without pre-selection of resources; (ii) only on

some pre-selected “top” fraction of the resources sorted

by clock rate; and (iii) only on pre-selected resources that

have been obtained as part of a VG. We obtain the VG by

querying our vgES prototype, which has stored resource

information corresponding to our synthetic computing

environment. Therefore, we conduct 6 different types of 

experiments, as summarized in Table 1. We provide

details on all the above in the following sections.

Table 1: Scheduling schemes in Grid 
environments

Scheduling

Algorithm

Resources

Complex Universe

Complex Top Hosts

Complex VG

Simple Universe

Simple Top Hosts

Simple VG



4.1. The Montage Application 

Montage is an astronomy application that creates a

mosaic image of a portion of the sky on demand. Figure 1 

shows the structure of a small Montage workflow. All

tasks on level k have a parent task on level k-1. The top-

level tasks (level 1) are not dependent on any other tasks.

For our experiments, we consider a 4469-task

Montage workflow used to create a five square degree

mosaic of the sky centered at M16. Table 2 shows the

average runtimes of Montage tasks on a 1.5Ghz host as

reported in [23]. We are interested in seeing how

communication might affect scheduling. Therefore, for

each Montage workflow, we vary the communication-to-

computation ratio (CCR). We test ratios of 0.1, 0.5, 1.0, 

2.0, and 10.0. A ratio of 1 implies equal amount of

computation and communication. For each task, we

calculate the size of its output file based on the

computational cost, the CCR, and the maximum

bandwidth in the network, which in our case is 10Gbps.

For example, for a CCR of 1, we derive the appropriate

file size such that the communication cost would also be

8.2 seconds. In this case, the files size would be 152MB,

as it would take 8.2 seconds to transfer this on the fastest

link in our synthetic platform.

Figure 1: A small Montage workflow

Table 2: Runtime and number of tasks at various
levels of the Montage workflow

Level Task name Number

of Tasks

Runtime (in

seconds)

1 mProject 892 8.2

2 mDiffFit 2633 2

3 mConcatFit 1 68

4 mBgModel 1 56

5 mBackground 892 1

6 mImgtbl 25 6

7 mAdd 25 40

4.2. Random DAGs

We also generate a collection of random DAGs

following the method outlined in [2]. For each random

graph, we vary its size, its mean computation cost (using

a 1.5Ghz host as the reference), its communication-to-

computation ratio (CCR), its parallelism, its density, its 

regularity, and its mean task computational cost. The

parallelism parameter determines the width of the DAG;

density characterizes the number of edges; regularity

determines the regularity of the number of tasks at each

level. Table 3 summarizes the different parameters and 

their corresponding values for the random DAGs we

generate. See [2] for more details.

Table 3: DAG parameters and corresponding
values for random DAG generation

DAG

Parameter

Values Default

Value

DAG size (tasks) 44, 447, 4469, 8938 4469

CCR 0.1,0.2,1,2,10 1

Parallelism 0.1,0.2,0.5,0.8,1 0.5

Density 0.1,0.2,0.5,0.8,1 0.5

Regularity 0.1,0.2,0.5,0.8,1 0.5

Mean comp cost 1,5,40,100 40

4.3. Scheduling Algorithms 

Among all the DAG scheduling algorithms surveyed

and evaluated in [2] we choose the popular MCP 

(Modified Critical Path) algorithm [24], as it is

competitive according the results in [2]. MCP is our

“complex” scheduling algorithm. The pseudo code for

MCP is shown in Figure 2.

CP = length of the longest path (in terms of node weights

 and edge weights)  from the root node to the end

 node, including both these nodes

For each non-root node Ni in the DAG 

BLi =  length of the longest path (in terms of node

 weights and edge weights) from node Ni to the

 end node, including both these nodes 

ALAPi = CP – BLi

End For

For each node Ni

Li = list of the ALAP values of node Ni and all its

 descendents, in ascending order 

End For

Sort all Li lists in lexicographical order and

Re-Order the nodes according to this order

For each node Ni

  Schedule Ni on the host that would complete its

  execution soonest

End For

Figure 2: Modified Critical Path (MCP) Algorithm 



Figure 3: Simple Greedy Algorithm 

For our “simple” scheduling algorithm we use a

greedy scheduling algorithm that assigns each task to a

random available host as soon as the task’s dependencies

have cleared. The corresponding pseudo code is shown in

Figure 3. 

We expect that running a more complex scheduling

algorithm such as MCP on the resource universe would

produce the best makespan by taking into consideration

all the resources. We hope that appropriate resource pre-

selection would allow a simple scheduling algorithm to

achieve better trade-off between the time to compute a 

schedule and the time to execute the schedule, thereby

leading to better turn-around time.

4.4. Resources

We are interested in scheduling applications in large-

scale environments. Since we do not have immediate

access to hundreds of clusters for running our

experiments, we use simulation of a synthetic resource

pool. We use the synthetic resource generator described in

[22] that bases its models on the characteristics of 650

real-world clusters (ones registered with the Rocks project 

[25]). We generate 1000 clusters for a total of 33,667

hosts. While having access to 1,000 different clusters may

seem far-fetched today, current trends indicate that this 

may be typical within 5 years. 

When scheduling and simulating the execution of

workflows we ignore the architectures of the hosts and

use only clock rates to determine task runtimes. We scale 

the reference task runtimes on a 1.5GHz host to account 

for lower or higher clock rates.

A survey of three topology generators [26-28]

showed that none had convincing models for latencies,

bandwidths, or contention. We opted for the following

simple model. We use a Gaussian distribution for the

latencies between clusters. The Gaussian distribution has

mean of 100ms and standard deviation of 100ms. We

opted for classifying the bandwidths in our synthetic

resource pool into 10Gbps for intra-cluster connections

and connections with latency lower than 0.5ms (e.g.,

within a building), 1Gbps for latencies lower than 1ms

(e.g., within a campus), 622Mbps (OC12 link) for

latencies lower than 40ms, and 155Mbps (OC3 link) for

latencies greater than 40ms.

To run our experiments, we used an Intel Xeon

2.4GHz machine, on which all scheduled computations

and VG instantiations were performed.

We have assumed that vgES has negotiated with the

local resource managers such that the application has sole

access to the resources in the VG for the duration of its 

execution; thus we do not consider resource contention.

For network contention, we did not find any other

convincing models, so we are using the Gaussian

distribution outlined above. We have assumed no wide

variance in network workloads for the duration of the

application. Studying the effects of possible jitter in file 

transfer times is outside the scope of this paper, but these

effects should impact all our scheduling methods equally

anyway.

While there are still some tasks to schedule

For each node Ni whose predecessors, if any,

 have already been scheduled

  Schedule Ni on the host that would start its execution 

 soonest 

End For

End While

Virtual Grids. In general, one can expect that using an

unlimited number of the fastest machines in a cluster will

lead to the lowest application makespans. Unfortunately,

the number of nodes in a cluster is limited. In fact, the

fastest clusters might not always be the biggest clusters.

Furthermore, it may be best to use multiple clusters

provided they are not too “far” from each other.

The above is exactly the sort of trade-offs that make

scheduling difficult. The VG abstraction allows users the

luxury of asking for a TightBag (that is sets of

heterogeneous hosts that are “close”), with a parameter to

determine what “close” means. The vgES will identify

such a TightBag quickly, even in large-scale

environments [10]. Our approach focuses on finding an

appropriate TightBag for a given DAG. The size of the

TightBag (in number of hosts) should be proportional to

the widest portion of the DAG to allow maximum

parallelism. For instance, for the Montage workflow

described in Table 2, we can write the vgDL specification 

shown in Figure 4, which asks for a TightBag containing

between 500 and 2633 hosts, where hosts have clock rates

higher than 3Ghz. We choose 2633 as the upper bound on

the number of hosts in the VG as this represents the

widest portion of the Montage DAG. The [rank = Nodes]

statement just means that a larger TightBag is preferable.

(See [10] for all details regarding vgDL.) When the

resource platform does not contain the number of

resources we want (2633) for a TightBag, we can specify

the willingness to accept fewer resources.

In our synthetic resource environment such a request 

returns a VG containing 924 hosts. If a sufficiently large

TightBag cannot be found however, then more complex

VG structures may be required. This is an interesting

question and a possible answer is to use a LooseBag of 

TightBags (with as few TightBags as possible so that a 

sufficient number of nodes are acquired). In this case, 

sophisticated scheduling algorithms would indeed be

necessary, especially for  applications that tend to be data-

intensive and for which scheduling of data transfers



between TightBags must be judiciously chosen. Other

efforts [29] in the VGrADS project are exploring the use

of such resource structures and of non-greedy scheduling

algorithms to achieve high performance. We argue that, 

although this may not be true today, when and if resource

environments become abundant with good networking

connectivity among many subsets of the available

clusters, then for many relevant applications (but not all),

the vgES would acquire reasonably sized TightBags on

behalf of the user with high probability.

Figure 4: vgDL used for the Montage workflow

Top Hosts (Fastest). To show that using a VG is better

than just picking the fastest hosts in the resource universe,

we experiment with a subset of the resource universe that

consists of the fastest 2633 hosts. We run our scheduling

algorithms on this subset of the hosts.

5. Results

The main result from our experiments is that,

regardless of DAG size, using the VG approach with a 

simple scheduling algorithm is preferable. We discuss

below specific results for Montage and random DAGs.

We compute a lower bound on application makespan by

assuming that all tasks run on hosts as fast as the fastest 

available host and that all data transfers take place on 

network links as fast as the fastest network link available.

5.1. Montage

Figure 5 and Figure 6 show results for the Montage

workflow using the MCP and the greedy algorithm.

Results include the time to compute the schedule, the

application makespan resulting from the schedule, the

time to obtain a VG when applicable, and the total

application turn-around time including all of the above.

The results in Figure 5 are for the actual Montage

communication costs. The intermediate files generated by

different stages ranged from 300 bytes to 4 megabytes, so

communication costs were relatively low. The conclusion

from these results is that running the greedy algorithm on

a VG achieves the best application turn-around time

overall (within 8% of the ideal lower bound), if not the

best makespan. The best makespan is achieved when

running MCP on the whole resource universe, but this

makespan comes with a prohibitive scheduling cost.

Running on Top Hosts (fastest) gives good performance

(if not best) because communication costs are low.

Interestingly, running the greedy algorithm on the whole

resource universe still outperforms running MCP on the

whole universe in spite of poor makespan since the time

to compute the MCP schedule is so high.
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VG = TightBagOf(nodes) [500:2633]
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}

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
p

p
li

c
a
ti

o
n

 T
u

rn
-

A
ro

u
n

d
 T

im
e
 (

s
)

MCP

Universe

MCP Top

Hosts

MCP VG Greedy

Universe

Greedy Top

Hosts

Greedy VG

VGCreation

scheduler runtime

makespan

Figure 6: Running Montage workflow with equal 
communication and computation costs

Figure 6 shows similar results for a CCR value of 1,

which is balanced communication and computation cost.

Here, it is not enough to simply schedule tasks on the

fastest machines as communication costs matter, and the

benefits of using a VG are plain. Surprisingly, running the

greedy algorithm on a VG produces a better makespan

than running MCP on the resource universe. This is 

because MCP is just a heuristic with no guarantees. It 

makes greedy decisions based on the relations between

tasks and the critical path, disregarding possibly harmful

effects due to task dependencies. More sophisticated 

scheduling algorithms may or may not lead to better

makespans in our experimental setting.  At any rate, using

a simple greedy scheduling algorithm is as effective once

resources have been pre-selected.

Varying CCR. Figure 7 shows the ratio of Montage

makespans as compared to running MCP on the universe,

for increasing CCRs.  One striking result is that when the

CCR is increased, either algorithm running on the VG can 

construct schedule with much shorter makespans than the

schedule MCP can construct on the whole resource

universe.
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For most CCRs, when using the VG, no differences

exist between using the greedy algorithm and MCP. Only

when the CCR is very high do we notice a slight

improvement in performance when MCP is used.  The

makespan for the greedy algorithm running on either the

top hosts or the universe were 6 to 23 times longer than

the MCP on universe makespan. We contend that this is 

not the case for many workflow applications.

We show Figure 8 to highlight the definite advantage

of using the VG. When taking the scheduling time into

consideration, using either algorithm running on the VG

achieves application turn-around time less than 30% of 

the turn-around time needed to run MCP on the universe.

5.2. Random DAGs

We generate random DAGs according to the

characteristics in Table 3. When varying a single

parameter all other parameters take the default values

shown in the table. In some cases the application turn-

around time for running the greedy algorithm on the

resource universe were so large that we left them out of

the figures. Each data point is averaged over 10 random

DAGs. The coefficients of variation for these samples

were all within 3%, except for the case of running MCP 

on the universe, which ranged from 1% to 73%.

Varying DAG Sizes. As we vary the DAG sizes, we

needed to vary the corresponding vgDLs to create

different VGs for each DAG size (that is larger VGs for 

larger DAG widths).  Expectedly, scheduling time for

running MCP increases as the DAG sizes increased.

However, because of the relative small sizes of the VGs

compared to the universe, this increase was only

marginal. Application makespan consists of the major

bulk of the contribution of application makespan for MCP

running on the universe. We also observed no significant

makespan differences between running MCP on VG and

running greedy on VG. Figure 9 shows the ratios of the

application turn-around times compared to running

greedy on VG. One can see that there is virtually no 

difference between running greedy or running MCP on

VG in terms of turn-around time, especially with bigger

DAGs. With smaller DAGs, because of smaller turn-

around time, the difference between using MCP or greedy

algorithm on the VG is magnified.

0

1

2

3

4

5

6

7

44 447 4469 44690

DAG Size

R
a
ti
o
 o

f 
A

p
p
li
c
a
ti
o
n
 T

u
rn

-A
ro

u
n
d

T
im

e

MCP Universe

MCP VG

Greedy VG

Figure 9: Varying DAG sizes for random DAGs

0

1

2

3

4

5

6

0.1 0.5 1 2 10

Communication-to-Computation Ratio

R
a
ti

o
 o

f
A

p
p

li
c
a
ti

o
n

 T
u

rn
-

A
ro

u
n

d
 T

im
e

M CP Universe

M CP VG

Greedy VG

Figure 10: Varying CCR for random DAGs 



Varying CCR. As with Montage, we wanted to 

investigate whether the greedy on VG approach would

tolerate high-communication scenarios. Figure 10 shows

that greedy on VG is within only 4% of results for MCP 

on VG for all CCR values. The performance of running

greedy on the universe was between 16 and 62 times the

application turn-around time for running greedy on VG.

Varying Parallelism. When the parallelism of a DAG (as

defined in [2]) is 0, then the DAG is just a chain of tasks

where each task depends on the previous task. Scheduling

consists in finding the fastest host. When the parallelism

is 1, all of the tasks can be run in parallel and scheduling

consists in finding the fastest N hosts for each of the N 

tasks in the DAG.

Figure 11 shows results for varying DAG

parallelisms. We see that at 0.5 or higher, running the

greedy algorithm on the VG has comparable performance

to running MCP on the VG. For parallelism of 0.8,

running the greedy algorithm is actually preferable to

running MCP due to MCP taking more time to compute

the schedule because of the increased number of tasks at 

each level. However, we see the limitation of using the

VG as a means for good performance when the

parallelism is below 0.5. (A value of 0.5 implies that the

number of tasks per stage is equivalent to the square root

of the total number of tasks in the DAG.) 
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Figure 11: Varying parallelism for random DAGs 

The poorer performance while running the greedy

algorithm for less parallel DAGs is due to increased

communication costs, or rather, the lack of opportune

communications savings. Whereas MCP actively seeks to 

minimize communication costs by calculating the tradeoff

between scheduling two tasks on the same host

sequentially that would lead to longer computational time,

but zero communication costs, the greedy algorithm

would greedily schedule the two tasks on separate hosts

whenever the second host becomes available. Of course,

note that a minor modification of our greedy algorithm

could alleviate this deficiency (e.g., always try to reuse a 

host that has been used before). Nevertheless, while the

implication of Figure 11 is that when workflows are not

highly parallel our approach is not effective, it is

reasonable to expect that many applications will in fact

have parallelism higher than 0.5 and thus not mandate

anything more sophisticated than our greedy algorithm.

Varying Density. The density of a DAG determines the

number of dependencies among the tasks. A density of 

0.5 means that each task depends on 50% of the tasks in

the previous level. Here again we found that scheduling

on a VG greatly outperforms scheduling on the whole

universe of resources. The application turn-around time

for running MCP on the universe is 3 to 15 times more

than running greedy on VG, depending on the density of

the DAG. Figure 12 shows that running MCP on VG

outperforms running greedy on VG in most cases. For

densities higher than 0.2 the difference is below 4%, but it 

is up to 18% for a density of 0.1.

MCP was able to achieve better application

performance as the number of dependencies decreased

because it was able to schedule some of the tasks on the 

same hosts as their parents, particularly tasks that have

one parent task. As the number of dependencies

decreases, unlike the greedy algorithm, MCP can 

increasingly optimize the communication costs.

Varying Regularity. Regularity quantifies the

distribution of the number of tasks per level in the DAG.

A regularity of 1 means that all levels have the same

number of tasks. The lower the granularity the higher the

variance in the numbers of tasks per level. Here again,

using a VG is preferable to using the whole resource

universe. Figure 13 shows that with the appropriate VG, 

running a greedy algorithm can create a schedule with

makespans more than ten times shorter than running MCP 

on the universe when the DAG is highly irregular.

Performance is more than fifty times better (not shown)

when compared to greedy running on the whole universe

of resources. We see that for any regularity type, the

greedy algorithm running on the VG performs within 3% 

of MCP running on the VG.

Varying Mean Computational Cost. Varying the mean

computational cost makes very little difference between

running the greedy algorithm or running MCP on the VG,

as seen in Figure 14. Here again, using a VG greatly 

outperforms using the whole resource universe.
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Figure 12: Varying density for random DAGs
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Figure 13: Varying Regularity of number of tasks 
per stage in the DAG 
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Figure 14: Varying mean computational costs for
random DAGs 

5.3. Summary

Montage DAG. Our results show that under various

CCRs the greedy algorithm on a VG achieves the

comparable or better turn-around times than using more

sophisticated algorithms such as MCP. 

Random DAGs. In almost all of the scenarios we tested, 

the greedy algorithm running on the VG perform within

4% of MCP running on the VG, both of which greatly

outperforms either running on the resource universe. The

only limitations we found for using the greedy algorithm

on the VG occurs when the DAG is very sparse, either 

due to low parallelism or low number of dependencies

among the tasks. 

6. Summary and Impact 

In this study, we have addressed the question of

whether sophisticated DAG scheduling algorithms are 

needed to schedule workflows on grid platforms. We have

considered two scheduling algorithms: (i) MCP, a popular

DAG scheduling algorithm that accounts for node and

edge weights in the DAG and for the characteristics of the 

heterogeneous underlying resources in terms of compute

power and network connectivity; and (ii) a greedy

algorithm that accounts only for task dependencies and is 

oblivious to node and edge weights and to resource

capabilities. We have used simulation to demonstrate that,

by using the virtual grid abstraction, the greedy algorithm

leads to performance that is either better or within a few 

percents of that of MCP in many cases that are relevant to

practice.

The above result was confirmed for DAGs from a 

real-world application as well as for random DAGs, and

holds even for DAGs that exhibit high CCR ratios.  We

found that our approach does not perform well when the

DAGs are sparse, either because of small amount of 

parallelism or small number of dependencies. We contend

that in practice DAGs from real-world scientific

workflows are rarely so sparse that our approach would

be ineffective.

The impact of our finding is clear for scheduling grid

workflows in practice:  rather than investing time in

developing and implementing sophisticated scheduling

algorithms, one should initially implement simplistic

algorithms but perform fast and appropriate resource pre-

selection. The VG abstraction defined and prototyped in

[9, 10, 19] provides the necessary resource pre-selection

capabilities. Given that most existing grid workflow 

frameworks already implement simple scheduling

algorithms similar to our greedy algorithm, these

frameworks could just integrate and use the VG

abstraction directly to ensure that many applications

experience good performance. As discusses in Section

4.4, there are cases in which our approach will not suffice. 

If a sufficiently large TightBag cannot be found, then

more complex VG structures would be required and

mandate more sophisticated scheduling algorithms,

especially for data-intensive applications. Other efforts in

the VGrADS project [29] consider more complex VG

structures and scheduling algorithms. Nevertheless, we



argue that in (future) resource-rich environments, with 

high bandwidth between many clusters, finding a 

reasonably large TightBag should be possible with high

probability for many relevant applications.

Another direction for future work is to explore the

impact of the resource management policies. We have

assumed that all resources are instantly available when

needed and dedicated once acquired. However, in real-

world grid platforms resource acquisitions may be 

delayed, denied, or revoked.  Note that common sense

suggests that in such a complex and time-varying

environment, a simple greedy algorithm such as the one

we used in this study should be more robust than and thus

preferable to a more complex scheduling heuristic such as 

MCP.
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