
Parallel Algorithms for Inductance Extraction of VLSI Circuits∗

Hemant Mahawar1†, and Vivek Sarin1

1Texas A&M University
Department of Computer Science

College Station, TX 77843-3112 USA
{mahawarh,sarin}@cs.tamu.edu

Abstract

Inductance extraction involves estimating the mutual in-
ductance in a VLSI circuit. Due to increasing clock speed
and diminishing feature sizes of modern VLSI circuits, the
effects of inductance are increasingly felt during the testing
and verification stages. Hence, there is a need for fast and
accurate inductance extraction software. A generalized ap-
proach for inductance extraction requires the solution of a
dense complex symmetric linear system that models mutual
inductive effects among circuit elements. Iterative meth-
ods are used to solve the system without explicit compu-
tation of the matrix itself. Fast hierarchical techniques are
used to compute approximate matrix-vector products with
the dense system matrix. This work presents an overview of
a new parallel software package for inductance extraction
of large VLSI circuits. The technique uses a combination of
the solenoidal basis method and effective preconditioning
schemes to solve the linear system. Fast Multipole Method
(FMM) is used to compute approximate matrix-vector prod-
ucts with the inductance matrix. By formulating the pre-
conditioner as a dense matrix similar to the coefficient ma-
trix, we are able to use FMM for the preconditioning step
as well. A two-tier parallelization scheme allows an effi-
cient parallel implementation using both OpenMP and MPI
directives simultaneously. The experiments conducted on
various multiprocessor machines demonstrate the portabil-
ity and parallel performance of the software.

∗This work has been supported in part by NSF under the grants NSF-
CCR 9984400 and NSF-CCR 0113668. The AMD Linux cluster at Texas
A&M University was acquired through the MRI grant NSF-DMS 0216275.
Access to the IBM p690 was provided by the NCSA, University of Illinois
at Urbana-Champaign.

†Corresponding Author: mahawarh@cs.tamu.edu

1. Introduction

With more than million of interconnects tightly packed
in the next-generation VLSI circuits, signal delays play an
important role in the testing and verification stage of VLSI
circuit design. These delays are due to the presence of par-
asitic resistance, capacitance and inductance. With clock
frequency reaching giga-hertz (GHz) range and shrinking
feature sizes, these delays will be dominated by inductance.
Hence, there is a significant need for fast and accurate in-
ductance extraction software.

Inductance refers to the property of an electrical circuit
to oppose any change in its current. When current flows
through a conductor, it creates a magnetic field around the
conductor. This induced magnetic field affects the current
flow in the conductor and its neighbors. The effect on
the neighboring conductors is measured through mutual in-
ductance, whereas the change in self current is measured
through self inductance. In an electrical circuit with hun-
dreds of thousands of interconnect segments, the inductive
effects among the segments define the characteristics of the
circuit. Inductance extraction process refers to the estima-
tion of the inductance of the entire circuit.

A general approach for inductance extraction involves
discretization of the conductor surface using a two dimen-
sional mesh of filaments [5]. Kirchoff’s laws governing cur-
rent and voltage in such a mesh give rise to a set of linear
equations that are solved using iterative methods. The lin-
ear system consists of both sparse and dense sub-matrices.
Kirchoff’s current law at the mesh nodes constitutes the
sparse sub-matrix, whereas the potential drop constraints
across the mesh filaments give rise to the dense sub-matrix.
To avoid the memory and computational penalties of exact
matrix-vector product, fast hierarchical schemes are often
used to compute approximate matrix-vector products with
the system matrix. These approaches have a trade-off be-
tween accuracy and speed. To accelerate the convergence of
iterative methods, preconditioning schemes are used. The

1-4244-0054-6/06/$20.00 ©2006 IEEE

preconditioning step transforms the original system into an
“easier” one for the iterative methods.

This work presents a parallel inductance extraction soft-
ware for fast and accurate estimation of circuit inductance.
We use solenoidal basis functions [9] to represent the fil-
ament currents in terms of circular cell currents. This ap-
proach converts the linear system into a reduced system
with fewer unknowns to solve for. Further, we employ a
preconditioning scheme that reduces the number of iter-
ations required for the solution. We rely on the charac-
teristics of the system matrix to devise the preconditioner.
These steps reduce both memory and time requirements as
compared to existing software [9]. To further reduce the
solution time and to handle large problem instances, we
have developed a parallel implementation [6, 7]. A two-tier
parallelization scheme enables mixed mode parallelization,
which uses both OpenMP and MPI directives. Mixed mode
parallelization allows the software to run on shared, dis-
tributed and distributed-shared memory machines. To the
best of our knowledge, this is the first parallel software for
inductance extraction that can run on a variety of multipro-
cessors.

The next section presents the mathematical formulation
of the problem. Section 3 describes the solenoidal basis
functions and the transformation steps to convert the sys-
tem matrix into a reduced system. Section 4 outlines the
preconditioning scheme and presents experimental results
to show the effectiveness of the preconditioner. Parallel im-
plementation details are presented in Section 5. Section 6
ends the paper with concluding remarks.

2. Mathematical Background

For a z conductor geometry, inductance extraction refers
to computing a z × z impedance matrix that represents the
inductive effect among the conductors. The kth column of
the matrix represents the inductive effect on all the conduc-
tors when a unit current flows through the kth conductor.
Under such conditions, the inductive effect on any conduc-
tor is equal to the potential drop across it. Solution of z such
instances yields the entire impedance matrix.

The current density J, at any point r, is related to poten-
tial φ by the following integral equation [5]

ρJ(r) + jω

∫
V

µ

4π

J(r′)

‖r− r′‖dV ′ = −∇φ(r), (1)

where µ is the magnetic permeability of the material, ρ is
the resistivity, ω is the angular frequency, ‖r − r′‖ is the
Euclidean distance between r and r′, and j =

√−1. The
volume of the conductor is denoted by V and incremen-
tal volume with respect to r′ is denoted by dV ′. Eq. (1)
arises from Maxwell’s equations that defines the basic laws
of electrodynamics.

Node

Filament

Current
Source

Figure 1. Discretization of a ground plane
with a mesh of filaments. Current flow along
an arbitrary path in the mesh can be used to
satisfy the constraints imposed by the exter-
nal current source. (Reproduced from [9].)

To obtain the numerical solution of (1), each conduc-
tor is discretized into n filaments, f1, f2 . . . , fn (see, e.g.,
Fig 1). Assuming current flows only along the length of the
filaments, and has constant current density, the following
linear system is obtained for the discretized conductor

[R + jωL]If = Vf , (2)

where R is an n×n diagonal matrix of filament resistances,
L is an n×n dense inductance matrix that relates the induc-
tive effects among the filaments, If is the vector of filament
currents, and Vf is the vector of potential difference across
the ends of each filament. The kth diagonal element of R

is given by Rkk = ρlk/ak, where lk is the length of the kth
filament fk, and ak is the cross-sectional area. Let uk de-
note the unit vector along the kth filament fk. The elements
of L are given by

Lkl =
µ

4π

1

akal

∫
rk∈fk

∫
rl∈fl

uk · ul

‖rk − rl‖dVkdVl.

Kirchoff’s current law at the nodes give rise to the following
equation

BT If = Is, (3)

where BT is m × n branch index matrix of nodes and fila-
ments, and Is is the known branch current vector of length
m with non-zero values corresponding to the source cur-
rents. The (k, l) entry of BT has the value −1 if the lth
filament originates at node k, 1 if it terminates at k, and
zero otherwise.

Using Eq. (2) and (3), and the fact that the unknown fil-
ament potential drop Vf can be represented in terms of the
node potential Vn by BVn = Vf , the following linear sys-
tem is obtained

[
R + jωL −B

BT 0

] [
If

Vn

]
=

[
0

Is

]
. (4)

This system must be solved to determine the unknown fil-
ament current If and node potential Vn. The solution
of large linear systems like (4) is not feasible through di-
rect methods. These systems are often solved using iter-
ative methods, such as the generalized minimal residual
(GMRES) method [10], to avoid the penalties of the di-
rect method. Further, the use of fast hierarchical methods
to compute approximate matrix-vector products reduces the
solution time.

3 Solenoidal Basis Method

Solenoidal functions are divergence-free basis functions
that automatically satisfies the conservation laws, such as
Kirchoff’s current law in electrical circuits and mass con-
servation law in fluid mechanics. These functions have
been applied to a variety of engineering applications such
as CFD [11]. For the inductance extraction problem
with uniform discretization it is easy to construct such a
solenoidal basis. Figure 2 shows several instances of dis-
crete solenoidal current flows that can be used to construct
a solenoidal basis. Each such flow consists of constant cur-
rent flowing anticlockwise through the four filaments of a
cell in the mesh. Since the net flow of current into any node
is zero, these flows automatically satisfy Kirchoff’s current
law.

Figure 2. Examples of solenoidal current
flows in a section of a uniform two-
dimensional mesh. (Reproduced from [9].)

The solenoidal basis matrix P is an n × s matrix that
is derived from the current flows in the mesh cells. The
columns of P correspond to the cells in the mesh. Each
column of consists of four non-zero entries that denote the
current flow in a cell: 1 indicates a unit current flow along
the edge, and −1 indicates a unit current flow opposite to
the direction of edge. Construction of the solenoidal basis
matrix in this manner ensures that the following condition
is satisfied

BT P = 0. (5)

Before one can use the solenoidal basis method, the lin-
ear system (4) needs to be transformed. We determine a
particular current vector Ip that satisfies the constraints im-
posed by the external current source. The vector Ip repre-
sents current flow along an arbitrary path between the nodes
where the external source is connected (see, e.g., Fig. 1).
By splitting the filament current If into a particular current
Ip and an unknown current I, the linear system (4) can be
transformed to an equivalent system with a different right
hand side[

R + jωL −B

BT 0

] [
I

Vn

]
=

[
F

0

]
, (6)

where

I = If − Ip, F = − [R + jωL] Ip.

The difference between (4) and (6) is that the first system
satisfies current boundary conditions whereas the second
system satisfies voltage boundary conditions.

Using the circular cell currents, we can express the un-
known current I as: I = Px. Here x is a vector of unknown
cell currents, and P is the solenoidal basis matrix that rep-
resents filament currents in terms of circular cell currents.
From (5), it follows that I satisfies the constraints imposed
by the second block of equations in (6). The unknown vec-
tor Vn can be eliminated by multiplying the system with
PT from the left. The linear system (6) can be transformed
to the following reduced linear system of order s that must
be solved to determine x

PT [R + jωL]Px = PT F. (7)

By transforming the linear system (6) to the reduced sys-
tem (7), we can reduce the number of unknowns consider-
ably. Table 1 shows the number of unknowns in a ground
plane problem that involves computing the self impedance
of a square conductor.

The use of a local solenoidal basis results in a sparse
matrix P that is amenable to efficient matrix-vector product
computations. Matrix-free implementations are also pos-
sible since explicit construction of P is not necessary. In
addition, the sparsity of P can improve the efficiency of
parallel implementations.

Table 1. Comparison of the sizes of the original and reduced systems for ground plane problem.
Mesh Nodes Filaments Unknowns Solenoidal Size Ratio
Size (m) (n) (n + m) Functions (s) (s/(n + m))

32 × 32 1089 2112 3201 1024 32.0%
64 × 64 4225 8320 12545 4096 32.6%

128 × 128 16641 33024 49665 16384 33.0%
256 × 256 66049 131584 197633 65536 33.1%

4. Preconditioning Technique

Even for the reduced system (7) the use of direct methods
to compute the unknown cell current becomes prohibitively
expensive for modest sized problems. Direct methods suffer
from high computational costs and large memory require-
ments. To overcome these hurdles, iterative methods are
used. The most computationally expensive step of iterative
methods involve computing matrix-vector products with the
coefficient matrix. This cost can be reduced by using matrix
free hierarchical methods, such as FMM.

The convergence of iterative methods is related to the
spectral properties of the system matrix. For instance, a
large separation between the smallest and largest eigenval-
ues of a matrix often results in a large number of iterations
required for convergence. Preconditioning is a process of
transforming a linear system into one that has more favor-
able spectral properties. The linear system Ax = b may be
preconditioned by a matrix M as shown below

AM−1y = b, x = M−1y.

To solve the transformed system iteratively, each itera-
tion incurs an additional cost of matrix-vector product with
M−1. A preconditioning approach is advantageous only if
the overall time to compute the solution is reduced. The
preconditioner must be easy to compute, the precondition-
ing step must be relatively inexpensive, and the matrix M
should be an effective preconditioner that reduces the num-
ber of iterations considerably. A preconditioning approach
is considered optimal if the number of iterations required
are independent of the discretization parameters.

For inductance extraction problem, we derive a precon-
ditioner by analyzing the reduced system (7). The matrix
P allows transformation of circular mesh currents to fila-
ment currents, and is equivalent to a discrete curl operator.
Furthermore, the matrix PT P is equivalent to a discrete
Laplace operator. Using these characteristics, we propose
the following preconditioner for the reduced system (7) [9]

M−1 = L̃
[
R̃ + jωL̃

]−1

L̃, (8)

where R̃ is a diagonal matrix of resistance to mesh currents.
The L̃kl entry gives the mutual inductance between parallel

filaments placed at the centers of loop k and l, and is defined
as follows

L̃kl =
µ

4π

1

akal

∫
rk∈Vk

∫
rl∈Vl

1

‖rk − rl‖dVkdVl.

At low and high frequencies, one can use the following ap-
proximations to the preconditioner without any significant
change in the rate of convergence

M−1
low = L̃R̃−1L̃, M−1

high = −jω−1L̃.

In each case, the preconditioning step is relatively cheap
since it does not involve an inner solve. For intermediate
frequencies, however, one must use the preconditioner in
(8).

As shown in Table 2, the number of iterations required
by the preconditioned GMRES algorithm to solve the linear
system (7) is almost constant when either the mesh width h
or the angular frequency ω is changed. Table 2 shows the ef-
fectiveness of the preconditioner for the ground plane prob-
lem (see Fig. 1). The ground plane is used to provide a uni-
form ground potential to all the components of a VLSI cir-
cuit. The problem requires computing the self-impedance
of a 1cm × 1cm ground plane. A uniform two-dimensional
mesh has been used to discretize the ground plane. A toler-
ance τ = 10−3 has been used as a stopping criteria for the
iterative method.

The proposed preconditioning approach has several ad-
vantages over incomplete factorization based precondition-
ers. Our preconditioning step requires a matrix-vector prod-
uct that is relatively inexpensive compared to incomplete
factorization based preconditioners. The latter involve in-
complete factorizations of a partially computed coefficient
matrix and triangular solves that are expensive, especially
on parallel platforms. In addition, experimental evidence
suggests that unlike incomplete factorization, our precon-
ditioner is robust and very effective over a wide range of
frequencies.

The second benchmark problem is the cross-over prob-
lem shown in Fig. 3. This setup represents a cross-over of
interconnect segments. The problem consists of determin-
ing the impedance matrix for these segments. The segments
are 2cm long and 2mm wide, and are separated by 300µm
in the horizontal direction and by 3mm in vertical direc-

Table 2. Number of iterations required for convergence of preconditioned GMRES method to com-
pute the self-impedance of a ground plane.

Mesh Filament Frequency
Size Length(cm) 100 MHz 1GHz 10 GHz 100 GHz

32 × 32 1/32 5 5 5 5
64 × 64 1/64 7 5 5 5

128 × 128 1/128 9 6 6 6
256 × 256 1/256 12 6 6 6
512 × 512 1/512 14 7 6 6

tion. The discretization is similar to the ground plane prob-
lem. These simulations were conducted for a frequency of
10GHz. Table 3 reports the number of iterations required by
the preconditioned GMRES method to compute the com-
plete impedance matrix(τ = 10−3). The growth in number
of iterations is minimal as the number of conductors in the
configuration is increased. Similarly, the growth in itera-
tions is slow as the mesh is refined. These results illustrate
the effectiveness of the preconditioning scheme for typical
extraction problems.

Figure 3. Cross-over problem with a view of a
discretized conductor.

Table 3. Number of iterations required
for convergence of preconditioned GMRES
method for the cross-over problem.

Mesh Size Filament Conductor Layout
Length (cm) 1+1 2+2 4+4

16 × 160 1/80 6 7 8
32 × 320 1/160 7 8 9
64 × 640 1/320 8 9-10 11

128 × 1280 1/640 8 9-10 11

The cost of the orthogonalization step in GMRES is pro-
portional to k2, where k is the number of iterations. Hence,
the parallel performance of GMRES degrades as k increases
due to the increased communication overhead of orthogo-
nalization step. By using an effective preconditioner that
requires very few iterations, we reduce the computational
cost as well as the storage requirement of GMRES. Further-
more, the parallel implementation does not suffer from the
effects of orthogonalization step.

5. Parallel Matrix Vector Product

Both the preconditioner matrix L̃ and the inductance ma-
trix L are dense matrices with similar structures. Since each
step of the iterative method requires matrix-vector prod-
ucts with L and L̃, it is worthwhile to reduce the compu-
tational cost of these operations. For a dense n × n ma-
trix, the computational cost of a straightforward matrix-
vector product is O(n2). The entries of L and L̃ have a
1/r decaying kernel, which makes them suitable candidates
for the fast hierarchical methods. A number of such tech-
niques have been developed, including the well known Ap-
pel’s algorithm [1], the Barnes-Hut [2] method, and Fast
Multipole Method (FMM) [4]. Parallel formulations of
multipole-based techniques have been developed by several
groups [3, 12, 13, 14].

These methods compute approximate matrix-vector
products in O(n log n) or O(n) steps. The reduction in
computational complexity is at the expense of accuracy.
These methods provide a matrix-free way to compute the
matrix-vector product in which the system matrix is never
stored. This approach reduces the memory requirements of
the solver. The Barnes-Hut method relies on particle-cluster
interaction to achieve O(n log n) computational complex-
ity, whereas FMM additionally uses cluster-cluster inter-
actions to obtain a complexity of O(n). The particles are
clustered into groups that form the nodes of an oct-tree. In
Barnes-Hut method, one calculates the “center of mass” at
the internal nodes in a bottom-up fashion. The center of
mass at each node approximates the effect of all the particles

in its subtree. To compute the effect due to the node’s parti-
cles at an observation point, a top-down traversal is done to
identify nodes that satisfy the multipole acceptance criteria.
The acceptance criteria requires that the ratio of the size of
the node to the distance of the observation point from the
node be below a threshold value. To get the effect of the
particles in a node’s subtree, one has to use the center of
mass of the node. More details on it can be found in [2].

In FMM, multipole coefficients are calculated in a
bottom-up fashion, whereas local coefficients are computed
in a top-down fashion. The multipole coefficients give the
effect of the particles belonging to the node’s subtree at an
observation point far-away from the node. On the other
hand, local coefficients give the effect of far-away parti-
cle clusters at an observation point inside the nodes. The
effect of “near-by” particles is computed directly in both
Barnes-Hut and FMM. We have also developed a hierar-
chical multipole method (HMM) [8]. HMM can be treated
as an augmented Barnes-Hut or modified FMM. It has the
implementation ease of Barnes-Hut and accuracy of FMM.
HMM relies only on particle-cluster interactions to achieve
an O(n log n) computational bound. In this work, we use a
variant of FMM algorithm to compute approximate matrix-
vector products with both L and L̃. Filament mid-points
form the set of particles for FMM.

We have developed an object oriented inductance extrac-
tion software package. This software combines the advan-
tages of the solenoidal basis method, fast hierarchical meth-
ods for dense matrix-vector products, and highly effective
preconditioning schemes to provide a powerful package for
inductance extraction. In addition, the software includes
an efficient parallel implementation that reduces the overall
computation time on a variety of parallel architectures [6].

We employ a two-tier parallelization scheme, as shown
in Fig. 4, which provides software portability. Each conduc-
tor is assigned to a different processor to exploit conductor
level parallelism. All data structures that are native to a
conductor are local to its processor. This includes filaments
in a conductor and the associated FMM tree. Only matrix-
vector products incur communication cost as they involve
interactions among different conductors that are distributed
across processors.

Conductor k Conductor nConductor 2Conductor 1

MPI Communication

Tree 2
Sub

Tree n
Sub

OpenMP OpenMP OpenMP

Tree 1
Sub

Figure 4. Two-tier parallelization scheme.

The matrix-vector products with L and L̃ involve inter-
actions among filaments of the same conductor as well as
between the filaments of different conductors. To calculate
the interactions between filaments of the same conductor,
only local computation is required. Communication is re-
quired to get the effect of filaments in other conductors.
Communication is also needed to compute direct interac-
tion among “near-by” nodes that reside on different proces-
sors. During a pre-processing step, the software identifies
those nodes in a conductor’s tree that are required by other
conductors. This cost is amortized over the iterations of the
solver. This type of communication is proportional to the
number of filaments on the subdomain boundary.

To exploit parallelism within each conductor, threads are
assigned to nodes at a specific level in the FMM tree (see
Fig. 4). Fewer processes can be assigned to the top part of
the FMM tree to further improve parallel efficiency. With
different sized conductors, one can have more processes as-
sociated with larger conductors. This scheme allows load
balancing to a certain extent. Further details on two-tier
parallelism can be found in [7].

5.1. Parallel Performance

The two-tier parallelization approach provides the dual
advantage of portability and performance across a vari-
ety of platforms. MPI processes are used for conduc-
tor level parallelism, while OpenMP directives are used
to exploit parallelism within a conductor. We present ex-
periments to demonstrate the parallel performance of the
software on multiprocessors with shared, distributed, and
distributed-shared memory architectures. We consider dis-
tributed memory platforms such as the 64-bit AMD Linux
cluster where parallelism can be exploited via MPI pro-
cesses only. Distributed-shared memory platforms such as
the IBM p690 that allow mixed mode parallelization with
both MPI and OpenMP are also considered.

The performance of the software is measured by compar-
ing the processor utilization of the code on a set of bench-
mark problems. We define computational rate (CR) on a
processor as the number of base operations (BOP) executed
per second. A base operation involves computing an inter-
action between a pair of distinct filaments. The computa-
tional rate of the code on a multiprocessor depends on the
number of processors (p), the total execution time (T), and
the number of base operations.

CR(p, BOP, T) =
BOP

p × T

In experiments involving variable number of MPI pro-
cesses (PMPI) and OpenMP processes (POMP), a general-
ized notion of parallel efficiency is used to provide a uni-
form basis to evaluate the code’s performance. We define

Table 4. Parallel performance for the ground plane problem on IBM p690 using OpenMP (d=4, s=32).
No. of Mesh Size

processors 128 × 128 256 × 256 512 × 512
Time (s) %Eff. Time (s) %Eff. Time (s) %Eff.

1 60.4 100 259.7 100 1062.6 100
2 31.3 97 132.5 98 546.0 97
4 15.6 97 66.7 97 275.7 96
8 8.9 85 36.7 88 147.6 90

16 5.5 68 22.3 73 92.6 72

Table 5. Parallel performance for the cross-over problem on IBM p690 using MPI and OpenMP (con-
ductor mesh size=128×1280, d=4, s=32).

PMPI = 1 PMPI = 2 PMPI = 4 PMPI = 8
4195 MBOP1 16798 MBOP1 68316 MBOP1 276077 MBOP1

POMP Time (s) RCR Time (s) RCR Time (s) RCR Time (s) RCR
1 457 1.0 923 0.99 1903 0.98 3868 0.97
2 238 0.96 477 0.96 970 0.96 1957 0.96
4 118 0.96 249 0.92 498 0.93
8 63 0.90 140 0.82

relative computational rate (RCR) as the computational rate
achieved by the code relative to its computational rate on a
single processor.

RCR =
CR(p, BOP, T)

CR(1, BOP, T)
(9)

Ideally, RCR should remain unchanged when the number
of conductors and the filaments per conductor are varied.
With RCR as the metric, it is possible to compare the per-
formance of the code on different benchmarks that require
different number of mutual inductance interactions.

We report the parallel performance of the algorithm for
a fixed number of GMRES iterations. This is indicative of
the actual performance since the dense matrix-vector prod-
ucts account for over 98% of the execution time. The per-
formance of the software depends on various parameters
for FMM, such as the number of particles in leaf nodes
(s), the multipole degree (d), etc. One should note that
the higher multipole degree significantly increases the com-
putional cost compared to the communication cost, which
in turn improves the parallel effficiency (see [6] for details).

5.2. Shared Memory Parallelization

We present the ground plane problem shown in Fig. 1 to
illustrate the parallel performance of the code on a shared
memory multiprocessor. These experiments were con-

1MBOP is equal to 10
6 base operations (BOP)

ducted on a 32-processor IBM p690 multiprocessor with
1.3GHz processor speed and AIX5.1 operating system.

Table 4 shows the execution time and parallel efficiency
of the software for linear systems of order 32K, 128K and
512K unknowns. It can be seen that by increasing the prob-
lem size, parallel efficiency is maintained when the num-
ber of processors are increased. For a fixed size problem,
a modest decrease in parallel efficiency with increase in the
number of processors indicates an efficient parallel imple-
mentation.

5.3. Mixed Mode Parallelization

The benchmark problem presented in this section utilizes
the two-tier parallel implementation of the software. The
cross-over problem shown in Fig. 3 consists of computing
the impedance matrix for the overlapping segments. The ex-
periments were conducted on 16 processors of an IBM p690
at NCSA, Illinois. Due to site restrictions the product of the
number of OpenMP and MPI processes could not exceed
16. Each MPI process was responsible for one conductor,
and OpenMP directives were used to parallelize computa-
tion within the conductor. The cross-over problem leads to
non-uniform point distribution for the dense matrix-vector
multiplication algorithm.

Table 5 shows the parallel performance of the software
on the cross-over problem where each conductor has been
discretized by a mesh of size 128 × 1280. The experiments
were setup to compute the full impedance matrix. For the
given problem size, the linear system includes 320K un-

Table 6. Parallel performance for the cross-over problem using MPI on IBM p690 and AMD-64 Linux
cluster (conductor mesh size=128×1280, d=4, s=32).

Number IBM p690 AMD-64 Linux
PMPI of RHS MBOP1 Time (s) RCR MBOP1 Time (s) RCR

1 1 4323 463 1.0 4365 980 1.0
2 2 17303 938 0.99 17471 2039 0.96
4 4 70050 1921 0.98 70718 4152 0.96
8 8 282294 3868 0.98 284947 8447 0.95

16 16 1135510 7883 0.96 1146072 17120 0.94

Table 7. Parallel performance for the cross-over problem using MPI on AMD-64 Linux cluster (d=4,
s=32).

Conductor Mesh Size
Number of 32 × 320 64 × 640

PMPI RHS MBOP1 Time (s) RCR MBOP1 Time (s) RCR
4 4 4827 291 0.94 18072 1066 0.96
8 8 20044 607 0.93 73036 2181 0.94

16 16 83944 1346 0.88 295956 4441 0.94
32 32 364100 2982 0.86 1222530 9268 0.93
64 64 1498175 6525 0.81 4952507 19006 0.92

knowns per conductor. The number of right hand sides re-
quired to compute the complete inductance matrix is equal
to the number of conductors. We use RCR as defined in (9)
to compare the performance of the software for problems of
varying sizes. The experiments show that parallelism within
a conductor is exploited very effectively via the OpenMP
directives.

5.4. Distributed Memory Parallelization

We report the parallel performance of the software on
distributed memory multiprocessors. The experiments were
conducted on IBM p690 at NCSA and a 64-bit AMD
Opteron-240 Tensor cluster at Texas A&M University. The
Tensor cluster consists of 1.4GHz 64-bit AMD Opteron pro-
cessors with SuSE-Linux operating system. PGI compilers
were used on the Tensor cluster for compiling the code.

Table 6 shows the execution time and parallel perfor-
mance of the software for the cross-over problem. The par-
allel implementation uses MPI directives only. Note that
the number of conductors is identical to the number of MPI
processors. In these cases, the total base operations and the
execution time increases with increasing conductors. This
is accompanied by a growth in the communication required
among the processors. However, the parallel performance
defined as the average base operations per second is main-
tained across problem instances. This indicates that the

code utilizes each processor efficiently when the load is
distributed uniformly across processes. Table 7 shows the
parallel performance of the software on up to 64 proces-
sors of Tensor cluster. For the two problem instance with
variable conductor discretization, the linear system includes
20K and 80K unknowns per conductor. Experimental re-
sults demonstrate that the software is able to maintain high
parallel performance, indicating an efficient parallel imple-
mentation.

6. Conclusion

This paper presents a high performance parallel software
package for inductance extraction of VLSI circuits. The
software utilizes solenoidal basis method and an effective
preconditioning scheme to deliver a fast and accurate in-
ductance extraction algorithm. The solenoidal basis method
transforms the system matrix into a reduced system and the
preconditioning scheme reduces the number of iterations of
the iterative method. Fast hierarchical methods are used
for the computationally intensive matrix-vector products
with the dense coefficient and preconditioner matrices. An
efficient parallel implementation of the algorithm reduces
the overall computation time considerably on multiproces-
sors. A two-tier parallelization approach involving MPI and
OpenMP directives is used to achieve portability and par-
allel performance. Experimental results demonstrate high

parallel efficiency on shared-memory, distributed-memory,
and distributed-shared memory multiprocessors.

References

[1] A. Appel. An efficient program for many-body simulation.
SIAM Journal on Scientific and Statistical Computing, 6:85–
103, 1985.

[2] J. Barnes and P. Hut. A hierarchical O(n log n) force cal-
culation algorithm. Nature, 324:446–449, 1986.

[3] A. Grama, V. Kumar, and A. Sameh. Parallel hierarchical
solvers and preconditioners for boundary element methods.
SIAM Journal of Scientific Computing, 20:337–358, 1998.

[4] L. Greengard. The Rapid Evaluation of Potential Fields
in Particle Systems. The MIT Press, Cambridge, Mas-
sachusetts, 1988.

[5] M. Kamon, M. J. Tsuk, and J. White. FASTHENRY:
A multipole-accelerated 3D inductance extraction program.
IEEE Transaction on Microwave Theory and Techniques,
42:1750–1758, September 1994.

[6] H. Mahawar and V. Sarin. Parallel iterative methods for
dense linear systems in inductance extraction. Parallel Com-
puting, 29:1219–1235, September 2003.

[7] H. Mahawar and V. Sarin. Parallel software for inductance
extraction. In Proceedings of the International Conference
on Parallel Processing, pages 380–386, Quebec, Canada,
August 2004.

[8] H. Mahawar, V. Sarin, and A. Grama. Parallel performance
of hierarchical multipole algorithms for inductance extrac-
tion. In Proceedings of the 11th International Conference on
High Performance Computing, pages 450–461, Banglore,
India, December 2004.

[9] H. Mahawar, V. Sarin, and W. Shi. A solenoidal basis
method for efficient inductance extraction. In Proceedings
of the 39th Conference on Design Automation, pages 751–
756, New Orleans, Louisiana, June 2002.

[10] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS
Publishing Company, Boston, 1996.

[11] S. R. Sambavaram and V. Sarin. A parallel solenoidal ba-
sis method for incompressible fluid flow problems. In Pro-
ceedings of the Parallel Computational Fluid Dynamics ’01,
pages 309–314, North-Holland, Amsterdam, May 2002.

[12] F. Sevilgen, S. Aluru, and N. Futamura. A provably optimal,
distribution-independent, parallel fast multipole method. In
Proceedings of the 14th IEEE International Parallel and
Distributed Processing Symposium, pages 77–84, Cancun,
Mexico, May 2000.

[13] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. L. Hen-
nessy. Load balancing and data locality in hierarchical n-
body methods. Journal of Parallel and Distributed Comput-
ing, 27:118–141, 1995.

[14] S. H. Teng. Provably good partitioning and load balancing
algorithms for parallel adaptive n-body simulation. SIAM
Journal of Scientific Computing, 19:635–656, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

