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Abstract

Parallel implementations of scientific applications
involving the simulation of reactive flow on structured
grids are challenging, since the underlying phenom-
ena include transport processes with uniform computa-
tional loads as well as reactive processes having point-
wise varying workloads. As a result, traditional paral-
lelization approaches that assume homogeneous loads
are not suitable for these simulations. This paper
presents “Dispatch”, a dynamic structured partition-
ing strategy that has been applied to parallel uniform
and adaptive formulations of simulations with compu-
tational heterogeneity. Dispatch maintains the compu-
tational weights associated with pointwise processes in a
distributed manner, computes the local workloads and
partitioning thresholds, and performs in-situ locality-
preserving load balancing. The experimental evaluation
of Dispatch using an illustrative 2-D reactive-diffusion
kernel demonstrates improvement in load distribution
and overall application performance.
Keywords: Dynamic load balancing, structured grids,
pointwise processes, computational heterogeneity.

1. Introduction

Simulations of complex physical phenomena, mod-
eled by systems of partial differential equations
(PDEs), play an important role in science and engi-
neering. Dynamic structured adaptive mesh refinement
(SAMR) [1] methods have emerged as attractive formu-
lations of these simulations on structured grids. SAMR
techniques have been used to solve complex systems of
PDEs that exhibit localized features in various applica-
tion domains including computational fluid dynamics,

numerical relativity, astrophysics, combustion simula-
tion, subsurface modeling and oil reservoir simulation.

Structured grids usually employ regular data struc-
tures that are easier to partition and lead to regu-
lar access and communication patterns. Consequently,
structured formulations of parallel scientific simula-
tions can result in relatively simpler, and more efficient
and scalable implementations. Parallelization of these
applications typically consists of partitioning the struc-
tured grid into uniform blocks and allowing processors
to compute on these blocks in parallel. Large-scale
parallel implementations for structured uniform grids
have been widely reported. The parallelization of a
SAMR application, however, tends to be more com-
plex due to the dynamic and heterogeneous nature of
the adaptive grid hierarchy [2]. Several existing struc-
tured grid infrastructures, such as GrACE [12], SAM-
RAI [7], Chombo [4], and Paramesh [8], address SAMR
partitioning challenges and support parallel adaptive
implementations. Furthermore, these frameworks typ-
ically assume that the computational effort at each grid
point is the same and the workload at any level on the
structured grid is uniformly distributed.

However, there exists a class of scientific applica-
tions involving reactive flows, such as the simulation of
hydrocarbon flames with detailed chemistry [13], where
the physical models include transport/structured pro-
cesses with uniform computational loads as well as
reactive/pointwise processes having varying workloads.
In these simulations, the solution of pointwise processes
at each iteration requires a different number of sub-
cycles to complete the computation at each grid point
within a single global timestep. As a result, the com-
putational load varies at different grid points and is
only known locally, and at runtime. Therefore, tradi-
tional parallelization approaches are not suitable for
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these simulations, and their parallel/distributed im-
plementations present significant partitioning and run-
time challenges. Research efforts addressing related is-
sues include the load balancing mechanism by Moon et
al. [11] with no spatial couplings between structured
and pointwise processes for simulations of hydrocarbon
flames, and the measurement-based dynamic load bal-
ancing in Adaptive MPI [6] using virtual processes and
object migration for benchmark applications.

This paper presents the Dispatch dynamic struc-
tured partitioning strategy that has been applied to
parallel uniform and adaptive formulations of scientific
applications with computational heterogeneity. Dis-
patch maintains the computational weights associated
with pointwise processes in a distributed manner. The
Dispatch partitioner is invoked at periodic intervals
during application execution and uses in-situ global
load balancing to determine workload transfers and
data remapping among processors. The Dispatch strat-
egy consists of the following four steps: (1) it maps the
computational weights onto the current grid structure
(represented by distributed grid functions) that may be
organized uniformly on a single level or as a multi-level
SAMR hierarchy with dynamic refinement regions; (2)
it generates intermediate workloads using interpolation
for new refinements in adaptive meshes that correspond
to pointwise processes; (3) it computes the local work-
loads (in parallel) and partitioning thresholds to de-
termine processor allocations proportional to the com-
putational weights; and (4) it performs workload and
data redistribution that preserves application locality.
The experimental evaluation of Dispatch is performed
using an illustrative 2-D reactive-diffusion (R-D) ker-
nel and demonstrates improvement in load distribution
and overall application performance.

The rest of the paper is organized as follows. Section
2 outlines parallel formulations of simulations on struc-
tured grids. Section 3 illustrates the partitioning chal-
lenges for applications with heterogeneous workloads
using the R-D kernel, and presents related work. Sec-
tion 4 details the design and operation of the Dispatch
strategy. Section 5 describes the experimental evalua-
tion of Dispatch for uniform and adaptive R-D imple-
mentations. Section 6 presents concluding remarks.

2. Parallel Formulations of Simulations
on Structured Grids

2.1. Unigrid Formulations

Structured unigrid [10] methods discretize the ap-
plication problem space onto a single, regular Carte-
sian grid with uniform resolution. The unknowns of

the PDE are then approximated numerically at each
discrete grid point. The resolution of the grid (or grid
spacing) determines the local and global error of the ap-
proximation, and is typically dictated by the features of
the solution that need to be resolved. The resolution of
the grid also defines the computational costs and stor-
age requirements of the formulation. Parallel unigrid
implementations uniformly decompose the structured
grid, assuming homogeneous workloads, to balance the
load across processors. Each processor then performs
computations on its local patches and periodically syn-
chronizes its boundaries with neighboring patches.

2.2. SAMR Formulations

Unigrid formulations can be wasteful for applica-
tions with localized features that require higher grid
resolutions only in a small portion of the computational
domain. In such cases, SAMR techniques yield highly
advantageous ratios for cost/accuracy by dynamically
refining the domain only in regions with large local
solution error [1]. SAMR methods start with a base
coarse grid with minimum acceptable resolution that
covers the entire computational domain. As the solu-
tion progresses, regions in the domain requiring addi-
tional resolution are tagged and finer grids are overlaid
on these tagged regions of the coarse grid. Refinement
proceeds recursively so that regions on the finer grid re-
quiring more resolution are similarly tagged and even
finer grids are overlaid on these regions, thus resulting
in a structured adaptive grid hierarchy.

The grid hierarchy in the SAMR formulation is re-
fined both in space and time. Refinements in space
create finer level grids, which have more grid points
than their parents, and hence greater computational
loads. Refinements in time mean that finer grids take
smaller timesteps, and hence have to be advanced and
synchronized more often. This results in a space-time
heterogeneity in the SAMR adaptive grid hierarchy [2].
Note that even though finer-resolution grids have more
grid points and consequently more work than coarser
grids, the load associated with each grid point through-
out the computational domain is the same since the
formulation assumes homogeneous workloads.

Parallel implementations of SAMR applications typ-
ically partition the dynamic grid hierarchy across par-
ticipating processors, with each processor operating on
its portions of the grid in parallel. Processors perform
computation, boundary synchronization, and inter-
level communication recursively at each level of the
grid hierarchy. Dynamic partitioning and regridding/-
redistribution occurs at regular intervals and results in
refined regions being created, moved, and/or deleted.



3. Parallel Formulations of Simulations
with Heterogeneous Workloads

3.1. Partitioning Challenges for Pointwise
Varying Workloads

Parallel structured implementations of PDE-based
simulations typically assume a uniform workload per
grid point, and use numerical schemes that require all
points to march forward, together in time, in lock-step.
Such an approach is exact since it preserves the spatial
coupling in a straightforward manner. However, there
exist certain classes of problems, such as reactive flows,
which have physical point processes that are coupled to
other similar point processes through a second process.
Reaction/chemistry is such a point process – its models
(and operators in the evolution equations for reactive
flows) do not contain any spatial derivatives. Reactive
processes at a point in space affect others around them
through convective and diffusive processes, which are
separate physical processes and usually operate at dif-
ferent timescales. Thus, over a time period that is far
smaller than the transport (convection and diffusion)
timescale, the reactive processes can be considered as
approximately decoupled. This approximation is ex-
ploited in operator-split [9] integration methods.

Operator-split methods are used in PDEs where
the physical processes can be approximately decoupled
over a global timestep ∆tg. Consequently, the physical
processes can be advanced in time over ∆tg using sep-
arate integrators since they do not have to be marched
in lock-step, and are usually chained in a certain se-
quence for accuracy reasons. If one of these physical
processes happens to be a purely point process, viz. re-
action, then separate (systems of) ordinary differential
equations (ODEs) for different points in space are ob-
tained. While these ODEs are advanced up to ∆tg for
all points, different points (decoupled point processes)
can adopt various independent paths to reach there.
Thus, points in the domain with little reaction take a
few large timesteps to reach ∆tg, while points with sig-
nificant reactive processes take miniscule timesteps in
order to time-resolve the fastest reactive processes. Al-
though such an approach is efficient as the non-reactive
regions do not necessarily march in lock-step with ex-
plosive regions, it results in a highly uneven distribu-
tion of computational load as a function of space. Any
domain partitioner that ignores this uneven load dis-
tribution often incurs a stiff load imbalance penalty.

Since the reactive processes are approximately de-
coupled in space (over ∆tg) and there are no spatial
terms in the reaction operator, a conceptually simple
solution exists. The grid points are distributed arbi-

trarily across all processors as long as the loads are
equalized. Such a solution has no spatial couplings,
and hence does not consider communication costs or
preserve the connections between a point and its neigh-
bors. As a result, this approach incurs significant com-
munication costs as the data is redistributed at every
global timestep. In combusting flows, where one strives
to capture subtle effects of the simulation by preserving
as many chemical species as possible (leading to 50-100
variables per grid point), this communication cost can
be prohibitive. This motivates the requirement to cal-
culate the reactive processes in situ, and achieve load
balance by a prudent domain decomposition that in-
corporates the uneven nature of load distribution.

3.2. Related Work in Partitioning Hetero-
geneous Workloads

In [11], Moon et al. evaluate the performance of
simulations of hydrocarbon flames using the Multi-
block PARTI and CHAOS runtime libraries. The phys-
ical processes are classified as structured (e.g., heat
conduction) or pointwise (e.g., radiation, chemistry,
etc.) processes. As there is no spatial coupling, the
block-partitioned data is redistributed across proces-
sors to balance the load of pointwise processes, and
is then moved back into the original locations for the
next structured process. This results in a substan-
tial amount of communication as the application re-
distributes data at every timestep. Heuristic schemes
partly alleviate redistribution costs by generating a
load balancing plan and reducing the communication
volume. The Dispatch scheme presented in this paper
accounts for heterogeneous workloads in the current
distribution and performs in-situ global partitioning,
without additional data migration for load balancing.

Adaptive MPI (AMPI) [6] extends MPI to sup-
port processor virtualization and provides dynamic
measurement-based load balancing strategies for auto-
matic load redistribution, based on object/thread mi-
gration in CHARM++. AMPI is evaluated using an
artificial benchmark involving non-uniform 2-D stencil
calculations, where the load on 1/16 of the processors
is much heavier than on the other 15/16 processors.
Unlike AMPI, Dispatch addresses adaptive meshing,
domain decomposition, and runtime support for scien-
tific applications with computational heterogeneity.

3.3. Reactive-Diffusion (R-D) Application

Combustion applications modeling the properties of
hydrocarbon flames [13] are highly complex. The phys-
ical processes in such simulations interact in a strongly



Figure 1. 2-D snapshot of R-D kernel’s tem-
perature field with 3 hot-spots at time t=100.

non-linear fashion and accurate solutions can only be
obtained using highly detailed models that include
complex chemistry and transport processes [11]. The
transport (or structured) processes have uniform com-
putational workloads while the chemical/reactive (or
pointwise) processes require different amounts of com-
putation (i.e., “weights”) at each point.

A model problem approximating the ignition of a
CH4-Air mixture is used as an illustrative example to
evaluate the Dispatch partitioning strategy presented
in this paper, and is referred to as the reactive-diffusion
(R-D) application or kernel. Figure 1 is a 2-D snap-
shot of the R-D kernel that illustrates application dy-
namics after 100 timesteps during the ignition of a
CH4-Air mixture in a non-uniform temperature field
with 3 “hot-spots”. The application exhibits high dy-
namism, space-time heterogeneity and varying compu-
tational workloads, and is representative of the class of
simulations targeted by this research. Figure 2 shows
a sample distribution of the heterogeneous computa-
tional workloads associated with pointwise processes
for the R-D kernel on a 128*128 structured grid. The
reactive processes near the flame fronts have high com-
putational requirements that correspond to large val-
ues of workloads at the 3 hot-spots, while the diffusive
processes have uniform loads with a value of 1.

Briefly, the R-D kernel solves an equation of the form

∂Φ
∂t

= ∇2Φ + R(Φ) (1)

where Φ is a vector consisting of the temperature and
the mass fraction of 26 chemical species at a given point

Figure 2. Distribution of heterogeneous loads
for R-D kernel on a 128*128 structured grid.

in space. R(Φ) models the production of heat and
chemical species by 92 reversible chemical reactions [5].
∇2 is approximated using second-order central differ-
ences. Eq. 1 is evolved in the following manner:

1. Over a timestep of ∆tg/2, we advance Φn (solution
at timestep n) using Φt = ∇2Φ to Φ′ with Heun’s
method (second order Runge-Kutta scheme). For
this step, the integration is done either on one level
for a unigrid implementation or in a recursive man-
ner for all levels in case of SAMR, so that the CFL
condition is preserved on each patch of the SAMR
hierarchy for the Berger-Oliger formulation [1].

2. Using Φ′ as initial condition, we solve Φt = R(Φ)
over ∆tg to get Φ′′. Since there are no spatial
coupling terms, this system is solved on a point-
by-point basis. At certain points, especially near
flame fronts and ignition points, this ODE system
exhibits very fast kinetics and has to be advanced
using small timesteps (for accuracy reasons). This
is done using BDF3 from the CVODE [3] package.
This step does not require recursive integration in
the case of SAMR, and accounts for the hetero-
geneity in the application workloads.

3. Using Φ′′ as initial condition, we solve Φt = ∇2Φ
over ∆tg/2 to get Φn+1, exactly as in Step 1.

4. Dynamic Partitioning for Applications
with Computational Heterogeneity

This section presents Dispatch, a dynamic struc-
tured partitioning strategy for scientific applications
with pointwise varying workloads. Dispatch has been
integrated with the GrACE [12] computational frame-
work and enables parallel uniform and adaptive simu-
lations. Dispatch augments the structured grid formu-
lations outlined in Section 2 by combining an inverse



Figure 3. R-D kernel execution illustrates the Dispatch scheme for heterogeneous workloads.

space-filling curve based partitioner (ISP) [12] with in-
situ weighted load balancing using global thresholds.
The reactive-diffusion (R-D) kernel, presented in Sec-
tion 3, is used to illustrate Dispatch. The parallel exe-
cution of the R-D application is shown in Figure 3 and
described in the next section.

4.1. Parallel R-D Application Execution

The execution of the R-D application consists of
three major phases: (i) initialization, (ii) computation
and synchronization at each timestep, and (iii) periodic
load balancing followed by redistribution. The struc-
tured grid domain/hierarchy is constructed at the start
of the simulation based on input parameters. The ini-
tial partitioning is a simple geometric decomposition of
the application domain among the available processors.
The application grid function (U) and workload grid
function (W ) are then initialized. Grid functions are
distributed entities that represent application variables
denoting physical entities (e.g., pressure, temperature,
density, etc.), and use the grid hierarchy as a template
to define their structure and distribution.

The computation component consists of two diffu-
sion integration methods over an application timestep
∆t. These two integration methods are recursively in-
voked for each level of the (single level or adaptive) grid
hierarchy and are separated by a non-recursive chem-
istry integration routine over 2∗∆t for all levels. This is

followed by boundary updates and timestepping. Dur-
ing the redistribution phase, computational weights in
W corresponding to existing grid points are first up-
dated. In case of SAMR, a truncation error estimate is
used to identify regions requiring additional resolution,
which are then clustered and refined. As described in
Section 4.2, a global grid list mapping the entire ap-
plication domain is created and the Dispatch strategy
is invoked to dynamically partition the grid. Since un-
igrid can be viewed as a special case of SAMR with
only one level, the description of Dispatch focuses on
the general SAMR case.

4.2. Parallel Workload Computation

As depicted in Figure 4, traditional inverse space-
filling curve based partitioners (ISP) [12] preserve ap-
plication locality by indexing the grid blocks that map
the structured grid domain in the order of traversal
of the Hilbert space-filling curve (SFC) [14] to form a
one-dimensional global grid list. The global grid list
consists of simple or composite grid blocks represent-
ing portions of the application domain. Simple grid
blocks are strictly base grid regions while composite
grid blocks contain regions that span multiple levels of
refinement in the grid hierarchy. Decomposing a grid
block entails a geometrical bisection of the block along
all axes as long as the minimum block dimension (gran-
ularity) constraints are satisfied. A grid block that at-



Figure 4. The structured grid domain is mapped to a global grid list for load balancing in Dispatch.

tains minimum block dimension is called a “grain”. As
an example, a 2-D grid block, if divisible, will decom-
pose into 4 smaller blocks. Similarly, a 64*64 size grid
block, when recursively decomposed, will result in 256
grains for a minimum application granularity of 4.

Each simple/composite grid block in the global grid
list is assigned a cost corresponding to its computa-
tional load, which is determined by the load at the
grid points contained in the block at each level and the
level of the block in the SAMR grid hierarchy. Since
the load per grid point is uniform for homogeneous sim-
ulations, the total computational work is proportional
to the number of grid points and is relatively easy to
calculate. However, in the heterogeneous case such as
the R-D kernel, the load of a grid block at a level is
obtained as the sum of the computational weights in
the workload grid function (W ) corresponding to the
grid points in the grid block at that level.

Since the computational weights for existing grid
blocks in W as well as the global grid list may have
been updated during regridding, the Dispatch strategy
first compares the current and previous global grid lists
to identify existing grid blocks and new refinement re-
gions. Each processor then operates on its local grid
list (portions of the global grid list owned by it) in
parallel, and constructs a local work list comprised of
grains obtained by disassembling the simple/composite
grid blocks in the local grid list. This decomposition of
the local grid list is performed to speed up load calcu-
lation using the “sum-of-parts” approach (overall load
of the grid block is simply the sum of the loads of all its
grains) and to fine-tune the load balancing algorithm
(decomposing a grid block during partitioning does not
involve recalculation of loads of the constituent parts).

The owner computes the updated workload for each
grain in the local work list from its corresponding lo-
cal W , and determines the workloads for existing grid
blocks in the list. When a grain contains a newly re-
fined level, the load at each grid point for that level is
interpolated as the average workload of its parent (the
immediate coarser level). Each processor stores the
loads for all grains in its local work list and computes
the total processor workload, in parallel. All processors
then collectively construct a global work distribution
list by concatenating individual local work lists.

4.3. Global Load Balancing

The global work threshold is locally computed at
each processor from the global work distribution list.
Dispatch performs domain decomposition by appro-
priately partitioning the global grid list based on the
global work threshold so that the total computational
load on each processor is approximately balanced. Pro-
cessor allocation is based on a linear assignment of
loads in the order of occurrence in the global grid list.
This is done to preserve application locality which,
in turn, reduces communication and data migration
overheads during redistribution. If the workload for
a grid block in the global grid list exceeds the proces-
sor threshold, the block is decomposed (possibly recur-
sively) and replaced by smaller grid blocks whose loads
are already known. If the load is still high, the block is
assigned to the next available processor and the proces-
sor work thresholds are updated. The load imbalance
generated during this phase is due to application gran-
ularity and aspect ratio constraints for each grid block
that need to be satisfied.
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Figure 5. Execution time for 200 timesteps of
a simulation on a 256 × 256 uniform grid plot-
ted as a function of number of executing pro-
cessors. All times are in seconds.

The application (U) and workload (W ) grid func-
tions are reconstructed after the dynamic partitioning
phase based on the new distribution. This step in-
volves data migration, communication, and synchro-
nization among participating processors, which up-
dates the structure of the grid hierarchy. The new
distribution is used in subsequent computation stages
until the next regridding stage.

5. Experimental Evaluation

The experimental evaluation of the Dispatch strat-
egy is performed using unigrid and SAMR implemen-
tations of the 2-D reactive-diffusion (R-D) kernel. The
evaluation is performed on the IBM SP4 “DataStar”
[15] at the San Diego Supercomputer Center (SDSC).
Datastar is SDSC’s largest IBM terascale machine that
is especially suited for data intensive computations,
and has 272 (8-way) P655+ compute nodes with 16-
32 GB of memory. The experiments consist of com-
paring the performance of the Dispatch scheme and
the default GrACE partitioner (Homogeneous) by mea-
suring overall application execution time, load imbal-
ance, synchronization time, and redistribution over-
heads. The Homogeneous strategy assumes that all
grid points have the same workload requirements, and
hence does not consider computational heterogeneity
during load balancing.
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Figure 6. Comparison of compute (µcomp)
and synchronization (µsync) times averaged
across all processors. Error bars (dark: Dis-
patch; light: Homogeneous) are standard devi-
ations of the compute times. All times are in
seconds.

5.1. Unigrid Evaluation

The unigrid (1-level) evaluation for the R-D appli-
cation is performed using Homogeneous and Dispatch
strategies on 8-128 processors on DataStar using 2-
D application base grids with resolutions of 256*256
and 512*512. The application executes for 200 iter-
ations, with all other application-specific parameters
kept unchanged. Figure 5 plots the total execution
time Texec for Homogeneous and Dispatch schemes.
The Dispatch scheme improves overall application ex-
ecution time by 11.23% for 16 processors up to 46.34%
for 64 processors. To further analyze load distribu-
tion and application runtime behavior, Figure 6 plots
the average (across all processors) compute (µcomp)
and synchronization (µsync) times for 8-128 processor
runs. The standard deviation σcomp in compute time is
plotted as error bars. The average compute times are
roughly similar for both strategies while the Dispatch
scheme achieves smaller average synchronization times
than the Homogeneous scheme. Dispatch considers the
weights of pointwise processes while performing load
balancing and achieves a consistently smaller σcomp.
This leads to reduced synchronization times (since pro-
cessors finish computation closer together in time) and
ultimately improved execution times, as compared to
the Homogeneous strategy.
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Figure 7. Execution time for 200 timesteps of
a simulation on a 512 × 512 uniform grid plot-
ted as a function of number of executing pro-
cessors. All times are in seconds.

The Homogeneous scheme does not repartition the
base grid beyond the initial decomposition since it does
not consider computational heterogeneity. Using the
Dispatch strategy does lead to increased partitioning
overheads that include the costs to extract the existing
pointwise weights and interpolate new ones, compute
the weights of local grid blocks for each processor, de-
termine the global workload, and perform an appropri-
ate domain decomposition based on the heterogeneous
loads. However, the cumulative partitioning overheads
are of O(10) seconds, which is an order of magnitude
smaller than the application execution time. Hence,
the partitioning overheads for Dispatch are considered
negligible compared to the performance improvement
in the uniform grid case. Figures 7 and 8 plot the
same metrics for a 512 × 512 uniform grid run, and
similar performance improvement is observed as for the
256*256 uniform grid case. Dispatch improves appli-
cation execution times by about 15-50% and provides
better load balance. The partitioning overheads are,
once again, negligible compared to the overall perfor-
mance gain. Note that application execution times for
512*512 uniform grid in Figure 7 are approximately
4 times larger than the corresponding times for the
256*256 uniform grid, since the domain has been scaled
by a factor of 4. Increasing the resolution on uniform
grids to obtain greater accuracy can be expensive, and
hence SAMR methods are suitable for this class of ap-
plications with localized features.
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Figure 8. Comparison of compute (µcomp)
and synchronization (µsync) times averaged
across all processors. Error bars (dark: Dis-
patch; light: Homogeneous) are standard devi-
ations of the compute times. All times are in
seconds.

5.2. SAMR Evaluation

2-level SAMR: The Dispatch strategy is evaluated
using SAMR implementation of R-D kernel on 8-128
processors of DataStar for an application base grid
of resolution 512*512 with 2 levels of factor 2 space-
time refinements. The application uses a timestep (∆t)
value of 2.1875e-9 and executes for 200 iterations, per-
forming 10 regrids. All other application-specific and
refinement-specific parameters are kept constant. The
minimum block size for this set of experiments is set
to 4. Figures 9 and 10 respectively plot the execution
time Texec and the compute µcomp and synchronization
times µsync averaged across processors. Error bars in
Figure 10 are the standard deviation of the compute
times across processors. The Dispatch strategy im-
proves application execution time (upto 32 processors)
and achieve a more uniform load balance, though the
overall improvement obtained using Dispatch reduces
as the computation-to-communication ratio (roughly,
the ratio of average compute to average synchroniza-
tion times) for the R-D application decreases. Since the
R-D application has localized spiked loads, Dispatch
generates more patches to yield a better load balance.
If there is not enough computation per grid block on
each processor and the application is communication-
dominated, the Dispatch strategy can, in fact, perform



Table 1. Dispatch 2-level SAMR granularity evaluation for 512*512 base grid R-D application on 64
and 128 processors on DataStar.

Number of Grain Homogeneous Dispatch Grain Homogeneous Dispatch
processors size Time (sec) Time (sec) size Time (sec) Time (sec)

64 4 1155.53 1167.35 32 1742.11 1436.36
128 4 691.13 814.32 16 765.63 664.15
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Figure 9. Execution time of the R-D kernel on
a 512 × 512 base grid with two refinement lev-
els plotted as a function of number of execut-
ing processors. All times are in seconds.

worse than the Homogeneous scheme. This is seen in
the case of 64 and 128 processors due to the large num-
ber of grid blocks created, since the granularity is 4.
However, if an appropriate granularity is chosen so that
the domain does not contain a large number of tiny
blocks, the Dispatch strategy can be expected to per-
form better. Note that this performance variation is
a direct result of the application and workload charac-
teristics and the “computation-communication trade-
off” and not a restriction for the Dispatch strategy.
Furthermore, Table 1 shows that Dispatch gives bet-
ter runtime performance as compared to Homogeneous
for the 2-level SAMR evaluation on 64 and 128 pro-
cessors with a base grid resolution of 512*512, if the
granularity is set to 32 or 16 instead of 4.

3-level SAMR: The Dispatch strategy is evalu-
ated for the R-D application on 16 and 64 processors
of DataStar using an application base grid of resolu-
tion 256*256 with 3 levels of factor 2 space-time refine-
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Figure 10. Comparison of compute (µcomp)
and synchronization (µsync) times averaged
across all processors. Error bars (dark: Dis-
patch; light: Homogeneous) are standard devi-
ations of the compute times. All times are in
seconds.

ments. The application uses a timestep (∆t) value of
8.75e-9 and executes for 200 iterations, performing 10
regrids. All other application-specific and refinement-
specific parameters are kept constant. The minimum
block size for this set of experiments is set to 4 for the
16 processor run and 16 for the 64 processor run. The
application execution times are listed in Table 2. The
improvements are lower for the 64 processor run due
to the higher synchronization costs. However, the 16
processor evaluation has more computational load, and
its performance is improved by the Dispatch strategy.

6. Conclusion

This paper presented Dispatch, a dynamic par-
titioning strategy for parallel structured scientific
applications with computational heterogeneity. The



Table 2. Dispatch 3-level SAMR evaluation for R-D application with 256*256 base grid on 16 and 64
processors on DataStar.

Number of Grain Homogeneous Dispatch Percentage
processors size Time (sec) Time (sec) Improvement

16 4 1324.57 1120.1 15.44
64 16 678.55 668 1.55

research was motivated by the observation that
accurate solutions to simulations with pointwise
varying workloads, such as reactive flows, require
an appropriate domain decomposition that considers
the load heterogeneity at each grid point. Dispatch
maintains computational weights as distributed grid
functions, computes local workloads and partitioning
thresholds, and performs in-situ locality-preserving
load balancing. The experimental evaluation of Dis-
patch using an illustrative 2-D reactive-diffusion kernel
demonstrated improvement in load distribution and
overall application performance. Future work aims to
analyze the scalability of Dispatch for larger number
of processors, and to develop decentralized load
balancing and synchronization schemes for Dispatch
that use local workload information within processor
neighborhoods to adapt partitioning behavior during
application execution.
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