
Topology-aware Task Mapping for Reducing Communication Contention on
Large Parallel Machines

Tarun Agarwal, Amit Sharma, Laxmikant V. Kalé
University of Illinois at Urbana-Champaign
{tagarwal, asharma6, kale}@cs.uiuc.edu

Abstract

Communication latencies constitute a significant factor
in the performance of parallel applications. With tech-
niques such as wormhole routing, the variation in no-load
latencies became insignificant, i.e., the no-load latencies for
far-away processors were not significantly higher (and too
small to matter) than those for nearby processors. Con-
tention in the network is then left as the major factor af-
fecting latencies. With networks such as Fat-Trees of hy-
percubes, with number of wires growing as P log P , even
this is not a very significant factor. However, for torus and
grid networks now being used in large machines such as
BlueGene/L and the Cray XT3, such contention becomes an
issue. We quantify the effect of this contention with bench-
marks that vary the number of hops traveled by each com-
municated byte. We then demonstrate a process mapping
strategy that minimizes the impact of topology by heuris-
tically minimizing the total number of hop-bytes communi-
cated. This strategy, and its variants, are implemented in an
adaptive runtime system in Charm++ and Adaptive MPI, so
it is available for a broad class of applications.

1 Introduction
An increasingly large number of scientific pursuits use

computational methods as their backbone. Applications

range from study of molecular behavior, evaluation of phys-

ical properties of materials, to simulations of galaxies and

cosmological phenomenon. The insatiable computational

requirements of such applications have inspired the devel-

opment of massively parallel machines. For example, Blue-

Gene (BG/L) machine from IBM has 64K nodes [1]. The

main resources in a large parallel machine are its compute

nodes and the interconnection network. It is imperative that

techniques for efficient and uniform utilization of these re-

sources be developed.

This work was supported in part by the National Science Foundation (ITR

0205611, ITR 0121357) and Department of Energy ASCI center, CSAR

(B341494, B505214).

A parallel program can be thought of as a collection of

communicating objects. Here, by object, we mean a fine-

grained task. Each object has certain computation and com-

munication characteristics. The object assignment problem

aims at balancing computational load among the processors

in the system and reducing the overhead of communication

between them. This requires partitioning of objects into

groups (which we’ll call tasks) to achieve computational

load balance and appropriate mapping of these tasks onto

processors in the network topology to minimize the over-

head of comunication. In this paper, we present a heuristic

algorithm for solving the mapping problem. We’ll use the

above specified notion of object and task throughout the pa-

per.

Communication is an important factor in determining

performance of parallel programs. Due to the increasing

size of the parallel computers being used, the intercon-

nection network has become the system bottleneck. The

packaging considerations for a large number of proces-

sors often leads to the choice of a mesh or a torus topol-

ogy. For example, the primary network in BlueGene/L is a

3D-Torus which can be converted to 3D-mesh, if required.

Even for a relatively moderate machine size messages might

travel a large number of hops on average. For example,

a (16, 16, 16)3D-Torus on 4k processors has a diameter of

24 hops and the average internode distance of 12 hops. If

packets travel over such a large number of hops, the aver-

age load on the links increases, which increases contention.

Table 1 presents a simple illustration of this effect. We run

a 3D Jacobi-relaxation (7-point stencil) program where el-

ements are logically arranged in a 3D-mesh and each sends

messages to all its neighbours in each iteration. There are

512 elements that are to be mapped onto 512 BG/L proces-

sors connected in a 3D-mesh. We compare the total time

taken to complete 200 iterations under the optimal mapping

(a simple isomorphism mapping) with that taken under a

random mapping for different message sizes. To illustrate

the communication issues, we set the computation time to

zero. Under the optimal mapping, messages travel only one

hop and average load per link is minimized. The reduc-

1-4244-0054-6/06/$20.00 ©2006 IEEE

Message Size Random Mapping Optimal Mapping

1KB 56.93ms 46.91ms

10KB 243.64ms 124.56ms

100KB 2247.75ms 914.72ms

500KB 11.62s 4.44s

1MB 23.50s 8.80s

Table 1: Time for 200 iterations of a Jacobi-like program with
optimal mapping and random mapping

tion in contention leads to faster execution time, with larger

gains as message sizes increase. Therefore, it is desirable to

map communicating objects to nearby processors.

To perform topology-aware task mapping, we need to

carry out four steps. First, we need to know the communi-

cation and computation characteristics of the objects in the

parallel program. Second, we have to characterize the avail-

able system resources (parallel architecture). Third, an eval-

uation function (or metric) has to be developed to evaluate

the solutions. Finally, the mapping technique or heuristic

has to be designed to minimize that metric.

The first and second steps are taken care of by the

CHARM++ [11, 12] virtualization model, the runtime in-

strumentation and the dynamic load balancing frameworks

[19] implemented in it. The metric and the mapping heuris-

tic have been described in detail in later sections.

In this paper, we are only concerned with the process-

based model [5, 17] in which there are no dependencies.

The objects are arranged in undirected graphs and edges

represent total communication between the objects at the

end points rather than precedence or one-way communi-

cation. Further, the objects are persistent processes which

have stable communication patterns between them.

2 Related Work
The problem of scheduling tasks on processors has been

well studied. A large part of the work has concentrated on

balancing compute load across the processors while ignor-

ing any communication all together. The problem here is

the assignment of a set of n jobs or objects (each with some

arbitrary load) on p processors, so as to minimize the max-

imum load (makespan) on the processors. In the next cate-

gory, researchers have worked on communication-sensitive

clustering while still ignoring any topology considerations

[13]. The main objective here is the partitioning of jobs into

balanced groups (equal in number to the number of pro-

cessors) while reducing inter-partition communication. The

more general problem is one of mapping a task graph to a

network topology graph while balancing compute load on

processors and minimizing communication cost (which we

model as Hop-bytes in section 3). This section will present

a brief survey of related works for this general problem.

Bokhari [5] uses the number of edges of the task graph

whose end points map to neighbors in the processor graph

as the cost metric. The algorithm [5] starts with an ini-

tial mapping and performs pairwise exchanges to improve

the metric. Results are given for up to 49 tasks. Lee and

Aggarwal [14] propose a greedy algorithm followed by an

improvement phase. At the first step, the most communi-

cating task is placed on a processor with similar degree.

Subsequent placements are guided by an objective function.

Berman and Snyder [4] present an approach where both car-

dinality variation (difference in number of objects and pro-

cessors) and topological variations (difference in shapes of

the object graph and topology graph) are considered.

Local search techniques have also been proposed.

Bollinger and Midkiff [6] propose a two-phased anneal-

ing approach: process annealing assigns task to processors

and connection annealing schedules traffic along network

links to reduce conflicts. Evolution-inspired Genetic algo-

rithms based search has also been attempted. Arunkumar

and Chockalingam [2] propose a genetic approach where

search is performed using operators such as selection, muta-
tion, and crossover. While these approaches produce good

results, the time required for them to converge is usually

quite large compared to the execution time of the applica-

tion. Orduña, Silla and Duato [16] also propose a variant

of the genetic approach. Their scheme starts with a ran-

dom initial assignment, the seed, and in each iteration an

exchange is attempted and the gain, if any, is recorded. If no

improvement is seen for some iterations a new seed is tried

and eventually the best overall mapping is returned. Bhanot

et al [8] use a simulated annealing approach to optimize task

layout on the BlueGene machine which works well for long

running communication intensive applications.

Strategies for specific topologies and/or specific task

graphs have also been studied. Ercal et al [7] provide a so-

lution in the context of a hypercube topology. Their divide-

and-conquer technique, called Allocation by Recursive Min-
cut or ARM, aims to minimize total inter-processor com-

munication subject to the processor load being within a tol-

erance away from the average. A mincut is calculated on

the task graph while maintaining processor load equal on

the two sides and a partial assignment of the two parts is

made. Repetitive recursive bi-partitioning is performed and

the partition at the kth iteration determines the kth bit of

the processor assignment. Bianchini and Shen [10] con-

sider mesh network topology. Fang, Li and Ni [9] study

the problem of 2-D convolution on mesh, hypercube and

shuffle-exchange topologies only.

Baba, Iwamoto and Yoshinaga [3] present a group of

mapping heuristics for greedy mapping of tasks to proces-

sors. At each iteration a task is selected based on a heuristic,

and then a processor is selected for that task based on an-

other heuristic. One of the more promising heuristic com-

binations they propose is to select the task that has maxi-

mum total communication with already assigned tasks and

place it on the processor where the communication cost is

minimized. The communication cost is modeled similar

to the Hop-bytes metric we use (section 3), although con-

sidering only the communication with previously assigned

tasks. A very similar scheme has also been implemented

in CHARM++ (section 4.4). Taura and Chien [18] propose

a mapping scheme in the context of heterogeneous systems

with variable processor and link capacities. In their scheme

tasks are linearly ordered with more communicating tasks

placed closer, and the tasks are mapped in this order.

3 Definitions
Both the load information and the network topology are

represented as graphs.

Topology Graph The network topology is represented as

an undirected graph Gp = (Vp, Ep) on p (= |Vp|) vertices.

Each vertex in Vp represents a processor, and an edge in Ep

represents a direct link in the network. Our algorithms work

for arbitrary network topologies; however we will present

results on more popular topologies like Torus and Mesh.

Task (Object) Graph The parallel application is repre-

sented as a weighted undirected graph Gt = (Vt, Et). The

vertices in Vt represent tasks (or objects) and the edges in

Et represent direct communication between the tasks (or

objects). Each vertex vt ∈ Vt has a weight ŵt. The weight

on a vertex denotes the amount of computation that the ob-

jects (object) in the vertex represent(s). Similarly, each edge

eab = (va, vb) ∈ Et has a weight cab. The weight cab rep-

resents the amount of communication in bytes between the

tasks (or objects) represented by va and vb.

Task Mapping The task-mapping is represented by a map:

M : Vt −→ Vp

If the objects represented by the vertex vt ∈ Vt of the task-

graph are placed on processor vp, then M(vt) = vp. A

partial task mapping is one where some of the vertices

of the task-graph have been assigned to processors in the

topology-graph while others are yet to be assigned. A par-

tial mapping can be represented by a function :

M : Vt −→ Vp ∪ {⊥}

where M(vt) = ⊥ denotes that vt has not yet been assigned

to a physical processor.

Hop-bytes Metric Hop-bytes is the metric (or evalua-

tion function) used to judge the quality of the solution pro-

duced by the mapping algorithm. Hop-bytes is the total

size of inter-processor communication in bytes weighted by

distance between the respective end-processors. The rel-

evant measure for distance between two processors is the

length of the shortest path between them in the topology-

graph. For processors p1, p2 ∈ Vp, the distance be-

tween them is represented by dp(p1, p2). Let us denote by

HB(Gt, Gp, M) the hop-bytes when the task graph Gt is

mapped on the topology graph Gp, under the mapping M .

Alternatively, the overall Hop-bytes is half the sum of Hop-

bytes due to individual nodes in the task graph.

HB(Gt, Gp, M) =
∑

eab∈Et

HB(eab) =
1

2

∑

va∈Vt

HB(va)

where HB(eab) = cab × dp(M(va), M(vb)) and

HB(va) =
∑

vb|(va,vb)∈Et

cab × dp(M(va), M(vb))

Hops per byte This is the average number of network links

a byte has to travel under a task mapping.

Hops per Byte =
HB(Gt, Gp, M)∑

eab∈Et
cab

Hops per Byte =

∑
eab∈Et

cab × dp(M(va), M(vb))∑
eab∈Et

cab

4 The mapping heuristic
The problems of partitioning and mapping can either be

solved together or in separate phases. In the latter approach,

the first phase, called the partitioning phase, involves par-

titioning the objects (oblivious to network-topology) into p
tasks. A partitioning method that reduces inter-task commu-

nication by placing heavily communicating objects in the

same task must be preferred. In the next phase, the map-
ping phase, the p tasks are mapped onto the p processors

such that more heavily communicating tasks are placed on

nearby processors. This would make each message travel

over a smaller number of links leading to a reduction in the

average data transferred across individual links. This two-

phased approach has the advantage of simplicity and clear

separation of the two objectives. A unified approach where

the mapping is performed on an object-by-object basis has

more freedom but becomes more complex due to the ad-

ditional constraint of balancing the compute load on pro-

cessors. We have adopted the two-phased approach in this

paper.

The partitioning in the first phase is accomplished either

using METIS [13] or using some of the existing topology-

oblivious load balancing strategies in CHARM++. The map-

ping phase uses the following algorithm.

4.1 The algorithm

We employ an iterative approach in which the main ques-

tion is the selection of the next processor and the next node

in the task-graph to be placed on it. This is guided by an Es-
timation function. It estimates for each pair of unallocated

tasks and available processors the cost of placing the task on

the processor in the current cycle. The estimation function

has the following form: fest(t, p, M) −→ value where t

is an unassigned task, p is an available processor and M is

the current task mapping. For each task we can find the best

processor, the one where it costs least to place it. However,

for some tasks it may not matter much if they are placed on

their best processor or any other processor. We can approx-

imate how critical it is to place a task by assuming that if it

is not placed in the current cycle it will go to some arbitrary

processor in a future cycle. The estimation function gives

us the cost of placing a task on its best processor and the

expected cost when placed on an arbitrary processor. The

difference in the two values is used as a measure of how

critical it is to place the task in the current cycle. We then

select the most critical task for placement in the current cy-

cle.

Algorithm 1: The Mapping Algorithm

begin
Data: Vt (the set of Tasks),

Vp (the set of processors)

(|Vt| = |Vp| = n)

Result: M : Vt −→ Vp (A task mapping)

T1 ←− Vt;

P1 ←− Vp;

for k ← 1 to n do
//Select the next task and processor (tk, pk);
//Task tk, is the one with max. criticality;

max criticality ← −∞;

for task t ∈ Tk do
criticality(t) =∑

p∈Pk
fest(t,p)

n−k − minp∈Pk
fest(t, p);

if criticality(t) > max criticality
then

tk ← t;
max criticality ← criticality(t);

end
//Processor pk, is the one where tk costs

least;

min cost ← ∞;

for processor p ∈ Pk do
if fest(tk, p) < min cost then

pk ← p;

min cost ← fest(tk, p)
end

M(tk) = pk;

Tk+1 ← Tk − {tk};

Pk+1 ← Pk − {pk};

end

Let us denote by Tk the set of tasks that remain to be

placed at the beginning of the kth cycle. Also denote by

Pk the set of processors that are available at the begin-

ning of the kth cycle. As shown in Algorithm 1, we cal-

culate the estimated criticality for each task if it is placed in

the current cycle. The estimation function should be such

that fest(t, p, M) approximates the contribution of task t (if

placed on processor p) to overall quality of the mapping.

The function is topology-sensitive. Once criticality values

are known for each task, the one with maximum criticality

is selected. It is mapped to the processor where fest esti-

mates it to cost the least.

4.2 Estimation functions

In this section we will motivate and present multiple cost

estimation functions. The function is used for estimating

the cost of placing a task t on an available processor p when

some of the tasks have already been placed. Since our ob-

jective is to reduce hop-bytes, we interpret the contribution

of task t to overall Hop-bytes as the cost of placing t on pro-

cessor p. Let us recall that Gt = (Vt, Et) is the task graph

and Gp = (Vp, Ep) is the network topology graph. We note

that the overall Hop-bytes is additive and is the sum of the

Hop-bytes due to individual tasks.

HB(Gt, Gp, M) =
1

2

∑

ti∈Vt

HB(ti),

where HB(ti) =
∑

j|(ti,tj)∈Et

cijdp(M(ti), M(tj))

During a particular iteration of the mapping algorithm,

we only have a partial mapping because some tasks have not

been placed yet. Let Tk be the set of tasks that remain to be

placed and Pk be the set of processors that are available at

the beginning of the kth iteration. Similarly, let T̄k be the set

of tasks that have already been placed and P̄k be the set of

processors that are no longer available at the kth iteration.

Note that Tk∩T̄k = φ and Pk∩P̄k = φ. Also, they partition

the complete sets, which can be stated as : Tk ∪ T̄k = Vt

and Pk ∪ P̄k = Vp.

First order approximation
Since we do not know the placement of some of the tasks

yet, we drop terms corresponding to those tasks. Thus, we

consider the contribution only due to communication with

already assigned tasks:

fest(ti, p, M) =
∑

tj∈T̄k

cijdp(p, M(tj))

This is quite cheap to compute as compared to the other

approximations. This estimation function has been used in

the mapping strategy described in 4.4.

Second order approximation
We will approximate the contribution of communication

with tasks that have not yet been assigned. As we do not yet

know the placement of an unassigned task, say tj , in Tk, we

assume that it will be placed on a random processor. Thus,

we approximate the distance between p and M(tj) by the

expected distance of p to other processors. The distribution

of M(tj) is taken to be uniformly random on Pk. In other

words, for any unmapped task tj ∈ Tk we approximate:

dp(p, M(tj)) ≈
∑

pj∈Vp
dp(p, pj)

|Vp|
Thus we can refine our estimation function to be:

fest(ti, p, M) =
∑

tj∈T̄k

cijdp(p, M(tj))

+
∑

tj∈Tk

cij

∑
pj∈Vp

dp(p, pj)

|Vp|

Third order approximation
While we do not yet know the placement of unassigned

tasks, we do know that they can only be assigned to proces-

sors that are still available. The approximation that an unas-

signed task, say tj , will be mapped to a random processor

in Vp does not capture this constraint. We should rather as-

sume the distribution of M(tj) to be uniformly random on

available processors Pk. In other words, for any unmapped

task tj ∈ Tk we approximate:

dp(p, M(tj)) ≈
∑

pj∈Pk
dp(p, pj)

|Pk|
Since the consideration of running time dominates in the

real-world applications, we will use first and second order

approximation schemes in our implementation and results.

This will be discussed in section 4.3.

4.3 Implementation: TopoLB2

The mapping algorithm with second order approxima-

tion has been implemented in CHARM++ as a strategy

called TopoLB2 under the dynamic load-balancing frame-

work. Initially, the object graph is partitioned into p tasks

using METIS. Any other topology-oblivious partitioner can

also be specified for partitioning. Some of the dynamic load

balancing strategies of CHARM++ like GreedyLB are suit-

able for partitioning. At this point, both the new task graph

and the topology graph have the same size p. During the

iterations of the algorithm, we maintain a p× p table of dy-

namic values of fest(t, p, M). Rows are indexed by task

nodes and columns are indexed by processors. The entry

in the cell (t, p) is the current value of fest(t, p, M). In

addition, we maintain the minimum and average value of

fest for each unassigned task over all unassigned proces-

sors. Let us call these arrays FMin[t] and FAvg[t], respec-

tively. In the kth iteration we need to select the unassigned

task tk, which maximizes the value of FAvg[t]−FMin[t].
This takes a linear pass, taking time O(p). Next we find

the available processor pk, where fest(tk, p, M) attains the

minimum value in time O(p). The task tk is mapped to pro-

cessor pk which is marked unavailable. The main cost is

incurred in updating the table at the end of each iteration,

as fest values might change as a result of the assignment of

tk to pk. Here, we discuss the time-complexity only for the

second and third order approximations. In the second or-

der approximation, only the estimation values of tasks that

have an edge with tk in the task graph are affected. More-

over, updating the fest values for one such task takes a total

of O(p). This makes the total cost of update O(pδ(tk)),
where δ(tk) denotes the degree of the node tk in the task

graph. Thus, the total time in each iteration of the algo-

rithm is O(p) + O(pδ(tk)), which is same as O(pδ(tk)).
The total running time RTII over all p iterations is:

RTII =
∑

t∈Vt

O(pδ(t)) = O(p
∑

t∈Vt

δ(t)) = O(p|Et|)

In the third order approximation, however, the value

fest(t, p) depends on the average distance of processor p to

other free processors. When the status of pk changes from

free to allocated, the average changes for all other proces-

sors. Thus, all fest(t, p, M) values change. By maintaining

the average distance of a processor to free processors, we in-

cur a constant cost per processor in calculating new average

values; this is a total cost of O(p). Once average distances

are known, each value in the fest table can be updated in

constant time. This incurs a total cost of O(p2). Thus total

time in an iteration is O(p)+O(p2) = O(p2). Thus, overall

running time RTIII is:

RTIII =
∑

t∈Vt

O(p2) = O(p3)

From the above calculation we can see that using sec-

ond order approximation (O(p|Et|)) takes less time than

third order approximation (O(p3)). In practice, due to

small constant degree of the nodes of the task graph, the

second order approximation has a running time closer to

O(p2) which is significantly lower than the fixed cost of

O(p3) for the third order appproximation. Scaling consid-

erations lead us to the choice of second order approximation

for our scheme.

4.4 TopoLB1: A simpler strategy

TopoLB1 is a simpler load balancing strategy for

CHARM++ which uses first order approximation scheme of

estimation functions (section 4.2). The placement is most

critical for a task that has maximum communication with

already assigned tasks. This simplifies the task selection

loop of algorithm 1. The algorithm is implemented using

a heap data structure. In the kth iteration, the selection of

task tk involves extraction of tk from the heap and upda-

tion of keys of the neighbors of tk which are in the heap.

Extraction and updation both take log(p) time. Hence,it is

bounded by O(log(p)+ log(p)δ(tk)) where δ(tk) is the de-

gree of tk in the task graph. To place tk on a processor, we

go over all the unassigned processors. For each unassigned

processor pk, we calculate the amount of communication of

tk with its assigned neighbors to finally arrive at the mini-

mum value of communication. Hence the cost involved is

bounded by O(pδ(tk)). So, the total running time RTI is:

RTI =
∑

t∈Vt

O(pδ(t)) = O(p
∑

t∈Vt

δ(t)) = O(p|Et|)

Thus, the running time for first order approximation

(RTI) and for second order approximation (RTII : see sec-

tion 4.3) are asymptotically similar, though the constant fac-

tor is higher for TopoLB2. Hence, a more informed decision

is made without any additional asymptotic cost. A similar

strategy has been described by T. Baba et.al. [3]; where

TopoLB1 corresponds to the (P3, P4) scheme.

5 Experiments
We now discuss and compare the performance of the

load balancing schemes described earlier to a load balancer

which places the tasks on the processors at random. Section

5.2 will describe the performance of TopoLB2 in reducing

the hops-per-byte metric in different scenarios. The effect

of this reduction on average message latencies in the net-

work is analyzed via detailed simulations in section 5.3.

Performance results on BlueGene/L [1] are presented in

section 5.4.

5.1 Evaluation mechanism

The CHARM++ programming model involves breaking

up the application into a large number of communicating

objects which can be freely mapped to the physical pro-

cessors by the runtime system. Furthermore, these objects

are migratable, which allows the runtime system to per-

form dynamic load balancing based on measurement of load

and communication characteristics during actual execution.

The load balancing framework automatically instruments

all CHARM++ objects, collects computation and communi-

cation load during execution and stores it into a load balanc-

ing database. Based on the information from the database,

the load balancing strategies decide on a new mapping of

objects to processors. This works well when the compu-

tational loads and communication patterns of applications

tend to persist over time, which is the case for many paral-

lel applications, especially physical simulations which are

iterative in nature.

The CHARM++ load balancing framework allows the

runtime to log load information from an actual parallel ex-

ecution into a file for off-line analysis. The effect of differ-

ent load balancing strategies can then be studied on the load

balancing database present in these log files by running any

CHARM++ program sequentially in simulation mode and

specifying the log file and the load balancing step. In sim-

ulation mode, the load balancing framework uses the load

information from the log files rather than from the current

run. Relevant metrics can be studied as needed.

This mechanism provides an efficient way of testing load

balancing strategies as their effects on a given load scenario

can be studied without repeated runs of the actual parallel

program. Moreover, different strategies can be compared

on exactly the same load scenarios, which is not possible

in actual execution because of non-deterministic interleav-

ing of events. Thus, we will use this mechanism to study

the performance of the load balancing schemes described

earlier.

5.2 Reduction in hop-bytes

As described in section 4, the metric that the mapping

heuristic (TopoLB2) aims to reduce is hop-bytes, or equiv-

alently, hops-per-byte. We will present the performance in

terms of hop-bytes reduction.

To study the quality of mapping independent of the par-

titioning method, we can start with object graphs that have

just p objects (equal to the number of processors) so that

no clustering is needed. We use a CHARM++ benchmark

program which has a jacobi-like communication pattern for

this purpose. The benchmark program creates objects (or

tasks) which communicate in a 2D-Mesh pattern. Each ob-

ject communicates with its four neighbors (three or two for

boundary and corner objects, respectively) in each iteration.

The number of objects to be created is a parameter to the

benchmark.

The number of processors involved in our study is quite

high. We emulate this large number of processors using the

BlueGene version of CHARM++. CHARM++ can be built

such that all the CHARM++ application programs run on top

of a BlueGene emulator. This emulator allows us to emulate

a large number of processors and gives us the flexibility of

connecting the processors in many different topologies.

5.2.1 2D-Mesh pattern on 2D-Torus

Figure 1 compares the performance of random placement,

TopoLB2 and TopoLB1 in mapping a 2D-Mesh pattern onto

a 2D-Torus topology. It can be seen that random placement

produces mappings that have very large values of hops-per-

byte. We can analytically compute the expected hops-per-

byte for random placement, which is same as the expected

distance between two random processors. Each dimension

has a span of
√

p, and with a wrap-around link the expected

distance in each dimension is
√

p

4 . Thus, the total expected

distance between two random processors is 2
√

p

4 , or
√

p

2 . As

seen in Figure 1, the value of hop-bytes for random place-

ment matches closely with this expected value.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 H
op

s
pe

r
B

yt
e

Number of Processors

 2D-Mesh communication pattern mapped onto a 2D-Torus network

Random Placement

E[hops] for Random = sqrt(p)/2

TopoLB2

TopoLB1

Figure 1: Mapping 2D-Mesh communication pattern onto a
2d-Torus. Random placement matches expected value.

Since a 2D-Torus contains a 2D-Mesh, the ideal place-

ment can preserve neighborhood relationships and achieve

the hops-per-byte value of 1. It is interesting to note that

TopoLB2 actually produces an optimal mapping in most

cases. Figure 2 shows the comparison of TopoLB2 and

TopoLB1 and is essentially a zoomed-in version of figure

1. It is also seen that TopoLB1 also results in small values

of hops-per-byte, though TopoLB2 produces a better map

than TopoLB1 in all tested cases.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 H
op

s
pe

r
B

yt
e

Number of Processors

 2D-Mesh communication pattern mapped onto a 2D-Torus network

Ideal

TopoLB2

TopoLB1

Figure 2: Mapping 2D-Mesh communication pattern onto a
2d-Torus. Zoomed in to compare TopoLB2 and TopoLB1.

The comparison of the time taken by the mapping strate-

gies is shown in Table 2. The experiments were conducted

on an Intel Pentium 4 machine running at 3.00 GHz with

1GB memory and 512KB cache. We can see that the

decision-making times for both the strategies are compa-

rable.

5.2.2 2D-Mesh pattern on 3D-Torus

Next we map the 2D-mesh communication pattern on a 3D-

Torus topology of the same size. A comparison of the aver-

age hops-per-byte values resulting from different mapping

strategies is shown in figure 3. For a 3D-Torus, the expected

Processors Time for TopoLB2 Time for TopoLB1

64 2.24ms 1.99ms

256 37.96ms 29.32ms

400 99.68ms 68.26ms

900 551.28ms 320.07ms

1600 2.03s 0.98s

2500 5.30s 2.37s

3600 10.86s 4.88s

4900 24.14s 9.34s

6400 47.47s 15.99s

Table 2: Comparison of time taken in mapping a 2D-Mesh
pattern on a 2D-Torus topology

 0

 2

 4

 6

 8

 10

 12

 14

 0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 H
op

s
pe

r
B

yt
e

Number of Processors

 2D-Mesh communication pattern mapped onto a 3D-Torus network

Random Placement

E[hops] for Random = 3*sqrt(p)/4

TopoLB2

TopoLB1

Figure 3: Mapping 2D-Mesh communication pattern onto a
3d-Torus. Random placement matches expected value.

distance between two random processors is 3
3
√

p

4 . As seen in

figure 3, the actual value of hops-per-byte obtained by ran-

dom mapping matches this analytical formula closely. The

other two mapping strategies, TopoLB2 and TopoLB1, lead

to considerable reduction in hops-per-byte when compared

to a random mapping.

In general, the task graph (2D-Mesh) is not a subgraph

of the topology graph (3D-Torus). Hence, it is not always

even feasible to preserve neighborhood relation when map-

ping a 2D-Mesh onto a 3D-Torus with the same number of

nodes. Consequently, the optimal value of hops-per-byte is,

in general, larger than 1. However, for specific cases, it is

possible to preserve the neighborhood relation. For exam-

ple, a (8,8)2D-Mesh is a subgraph of a (4,4,4)3D-Torus, so

it is possible to preserve neighborhood relation. We can see

from figure 3 that in this case, TopoLB2 is able to reduce

hops-per-byte to its optimal value of 1 (the value when num-

ber of processors is 64 in the figure). For a larger number

of processors, TopoLB2 leads to a small value of hops-per-

byte. TopoLB1 also results in small values of hops-per-byte

which are about 10% higher than those from TopoLB2.

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

A
ve

ra
ge

 H
op

s
pe

r
B

yt
e

Number of Processors

leanMD mapped onto 2D-Torus

Random Placement

TopoLB1

TopoLB2

Figure 4: Comparison of different mapping strategies on 2D-
tori for LeanMD data

5.2.3 LeanMD mapped onto different topologies

This section will describe the results of mapping commu-

nication pattern from a real molecular dynamics simulation

program called LeanMD [15]. We have load information

dumps for LeanMD on different numbers of processors.

The total number of objects is 3240+p where p is the num-

ber of processors. This gives virtualization ratios of 180 for

p = 18, 6 for p = 512 and 3 for p = 1024. Since the

number of objects is greater than the number of processors,

we need to perform clustering of objects into p tasks with

balanced computation load. We use METIS for this initial

grouping.

Figure 4 shows the average hops-per-byte when

LeanMD is mapped onto 2D-Tori of various sizes. For

p = 18, the virtualization ratio is 180, which is quite high.

Consequently, with such a large number of objects in each

task, almost all pairs of tasks communicate with each other.

The average degree of the coalesced task-graph obtained

from METIS is 12.7, which means that each task commu-

nicates with 70% of the tasks. Hence it is difficult for any

strategy to reduce hop-bytes as almost all the tasks com-

municate. For 512 processors, the virtualization ratio is 6
and the average degree of the coalesced task graph is 19.5
which means that each task communicates with about 4%
of the other tasks. This creates some avenues for intelligent

placement of tasks to keep the communication local. As

seen from figure 4, TopoLB2 leads to a 34% reduction in

average hops-per-byte over random placement on 512 pro-

cessors. TopoLB1 also performs well, leading to a 30%
reduction; similar trend is seen for 1024 processors.

Figure 5 shows the results for mapping onto 3D-Tori.

The relative performance of the different schemes in this

case is similar to the last case.

5.3 Network Simulation

In section 5.2 we discussed the reduction in the average

number of hops that each byte travels over the network. In

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000

A
ve

ra
ge

 H
op

s
pe

r
B

yt
e

Number of Processors

leanMD mapped onto 3D-Torus

Random Placement

TopoLB1

TopoLB2

Figure 5: Comparison of different mapping strategies on 3D-
tori for LeanMD data

this section we will discuss how this reduction in the hops-

per-byte metric translates into gains in execution time and

and other characteristics on the network.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

A
ve

ra
ge

 m
es

sa
ge

 ti
m

e(
in

 u
s)

Channel bandwidth (in 100s of MB/s)

 2D-Mesh communication pattern mapped onto a 3D-Torus network (64 processors)

Random Placement(greedyLB)

TopoLB2

TopoLB1

Figure 6: 2D-mesh on 64-node 3D-Torus: Average message
latency using different mappings

We performed simulations using BigNetSim [20], which

is an interconnection network simulator. One of the fea-

tures of BigNetSim is that it can simulate application traces

on different kinds of interconnection networks. We will

be using a 3D-Torus network to simulate a 2D-jacobi like

program. In this benchmark program, each object per-

forms some computation and then sends messages to its

four neighbors in each iteration. The amount of computa-

tion is kept low so that communication is a significant factor

in overall efficiency. This benchmark program is executed

with TopoLB2, TopoLB1, and GreedyLB (a CHARM++

load-balancer with essentially random placement) and event

traces are obtained. These event traces contain timestamps

for message sending and entry point (message receiving)

initiation. Event-dependency information is also available

in the traces so that these timestamps can be corrected de-

pending on the network being simulated while honoring

event ordering. Thus, we can vary the parameters for the

underlying interconnection networks and examine the ex-

pected effect on the execution of the traced program.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.5 1 1.5 2 2.5 3 3.5

T
ot

al
 ti

m
e

fo
r

ex
ec

ut
io

n
(in

 m
s)

Channel bandwidth (in 100s of MB/s)

 2D-Mesh communication pattern mapped onto a 3D-Torus network (64 processors)

Random Placement(greedyLB)

TopoLB2

TopoLB1

Figure 7: Completion time for the execution of 2000 iterations

The execution of application traces is simulated on a

(4,4,4)3D-Torus interconnection network. A smaller net-

work is chosen due to fine-grained computation of the ob-

jects and time taken by the network simulator to run the

application traces. Since TopoLB2 and TopoLB1 lead to a

reduction in the average hops that a packet travels, the ac-

tual network load (and contention) generated for the same

application is reduced. Hence, it is expected that an appli-

cation mapped using these schemes would be able to tol-

erate reduction in link bandwidth better than a naive ran-

dom mapping. Figure 6 shows the average message latency

for different values of link bandwidth. It can be seen that

in the case of a random placement, the average latency in-

creases dramatically as congestion sets in due to a reduc-

tion in bandwidth. TopoLB1 can tolerate a further reduction

in network bandwidth while TopoLB2 is the most resilient;

this is because a smaller value of hops-per-byte leads to a

smaller number of packets on each link. Consequently, the

links can service the traffic with a smaller bandwidth.

The total time for the entire execution to finish is also

improved by using intelligent mapping. Figure 7 shows the

total time required for the completion of 2000 iterations of

the benchmark. For smaller bandwidth, optimizations ob-

tained by TopoLB2 and TopoLB1 show a very large gain.

In this region, random placement leads to congestion which

causes communication to be delayed and iterations progress

much slower. Total execution time under random placement

can be more than double the time required under TopoLB2.

TopoLB1 also leads to a large reduction over random place-

ment. However, TopoLB2 outperforms TopoLB1 by about

10-25%.

5.4 Results on BlueGene/L

As earlier, we use a 2D Jacobi-like benchmark program.

Elements are arranged logically in a 2D Mesh. In each it-

eration, every object performs some computation and sends

a message to each of its four neighbors. The actual net-

work topology in which the physical BG/L processors are

connected can be configured as either a 3D-Mesh or a 3D-

Torus. We present results on both these network topologies.

Figures 8 and 9 compare the time required to complete

4000 iterations of the benchmark for different mapping

strategies. The size of messages sent in each iteration is

100KB. This makes the communication to computation ra-

tio high. We can see that both TopoLB2 and TopoLB1 lead

to reductions in time when compared to random mapping.

Note that the number of objects is same as the number of

processors, so the computational load on processors is bal-

anced. The reduction in execution time can be attributed to

communication optimizations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800

T
im

e
fo

r
40

00
 it

er
at

io
ns

 (
in

 s
)

Number of Processors

 2D-Mesh communication pattern mapped onto a 3D-Torus network of BlueGene

TopoLB2

TopoLB1

Random Placement

Figure 8: Comparison of mapping strategies on BG/L 3D-
Torus network.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600

T
im

e
fo

r
40

00
 it

er
at

io
ns

 (
in

 s
)

Number of Processors

 2D-Mesh communication pattern mapped onto a 3D-Mesh network of BlueGene

TopoLB2

TopoLB1

Random Placement

Figure 9: Comparison of mapping strategies on BG/L 3D-
Mesh network.

It can be seen from the figures that the total time re-

quired under Mesh connection is generally higher than that

for Torus connection. This is because there are additional

wrap-around paths in a torus network which help in keep-

ing average load on links lower. However, the effect is

more pronounced for random placement than the other two

strategies. This may be because random placement leads

to long-range messages while TopoLB2 and TopoLB1 map

elements such that most messages travel over only a small

number of hops. If messages travel over a very small num-

ber of hops, removal of wrap-around links does not affect

the distance travelled by messages in most cases.

6 Conclusions and future work
We presented a heuristic algorithm that provides a solu-

tion to the problem of mapping tasks onto physical proces-

sors connected in a given topology, so that most of the com-

munication occurs between nearby processors. We show

that TopoLB2 provides a good mapping in terms of av-

erage number of hops travelled by each byte, and com-

pares favorably with some other schemes. We also devel-

oped another similar, but simpler and faster, scheme called

TopoLB1 for the purpose of comparison of its results with

TopoLB2. We have shown, via simulations, that an efficient

mapping which reduces the total communication load on

the network, or hop-bytes, leads to lower network latencies

on average, and provides better tolerance to network band-

width constraints and network contention. We validate this

conclusion with experiments on BlueGene where we find

that communication-intensive programs can be made more

efficient with good mappings.

Detailed simulations (section 5.3) and real-machine

studies (section 5.4) serve distinct purposes in this work.

With simulation, one can vary physical parameters (such as

channel bandwidth), but one is limited to smaller config-

uration due to the time complexity of detailed simulation.

In contrast, real-machine studies allow us to demonstrate

utility in realistic settings. In future, we hope to use paral-

lel simulation to bridge the gap and validate the predictive

power of the simulations.

Due to the massively large sizes of machines like Blue-

Gene, a distributed approach toward keeping communica-

tion localized in a neighborhood may be needed for scala-

bility in the future. Hybrid approaches, such as that in [19],

may also prove effective and need to be investigated further.

References
[1] An Overview of the BlueGene/L Supercomputer. In Su-

percomputing 2002 Technical Papers, Baltimore, Maryland,

2002. The BlueGene/L Team, IBM and Lawrence Livermore

National Laboratory.

[2] S. Arunkumar and T. Chockalingam. Randomized heuris-

tics for the mapping problem. International Journal of High

Speed Computing (IJHSC), 4(4):289–300, Dec. 1992.

[3] T. Baba, Y. Iwamoto, and T. Yoshinaga. A network-topology

independent task allocation strategy for parallel computers.

In Supercomputing ’90: Proceedings of the 1990 ACM/IEEE

conference on Supercomputing, pages 878–887, Washing-

ton, DC, USA, 1990. IEEE Computer Society.

[4] F. Berman and L. Snyder. On mapping parallel algorithms

into parallel architectures. J. Parallel Distrib. Comput.,

4(5):439–458, 1987.

[5] S. H. Bokhari. On the mapping problem. IEEE Trans. Com-

puters, 30(3):207–214, 1981.

[6] S. W. Bollinger and S. F. Midkiff. Processor and link assign-

ment in multicomputers using simulated annealing. In ICPP

(1), pages 1–7, 1988.

[7] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation

onto a hypercube by recursive mincut bipartitioning. In Pro-

ceedings of the third conference on Hypercube concurrent

computers and applications, pages 210–221, New York, NY,

USA, 1988. ACM Press.

[8] G. B. et al. Optimizing task layout on the bluegene/l su-

percomputer. IBM Journal of Research and Development,

49(2/3):489, 2005.

[9] Z. Fang, X. Li, and L. M. Ni. On the communication com-

plexity of generalized 2-d convolution on array processors.

IEEE Trans. Comput., 38(2):184–194, 1989.

[10] R. P. B. Jr. and J. P. Shen. Interprocessor traffic schedul-

ing algorithm for multiple-processor networks. IEEE Trans.

Computers, 36(4):396–409, 1987.

[11] L. V. Kalé. The virtualization model of parallel program-

ming : Runtime optimizations and the state of art. In LACSI

2002, Albuquerque, October 2002.

[12] L. V. Kale and S. Krishnan. Charm++: Parallel Program-

ming with Message-Driven Objects. In G. V. Wilson and

P. Lu, editors, Parallel Programming using C++, pages

175–213. MIT Press, 1996.

[13] G. Karypis and V. Kumar. Multilevel k-way partitioning

scheme for irregular graphs. Journal of Parallel and Dis-

tributed Computing, 48:96 – 129, 1998.

[14] S.-Y. Lee and J. K. Aggarwal. A mapping strategy for par-

allel processing. IEEE Trans. Computers, 36(4):433–442,

1987.

[15] V. Mehta. Leanmd: A charm++ framework for high per-

formance molecular dynamics simulation on large parallel

machines. Master’s thesis, University of Illinois at Urbana-

Champaign, 2004.

[16] J. M. Orduña, F. Silla, and J. Duato. A new task map-

ping technique for communication-aware scheduling strate-

gies. In 30th International Workshops on Parallel Process-

ing (ICPP 2001 Workshops), Valencia, Spain, pages 349–

354, 3-7 September 2001.

[17] H. Stone. Multiprocessor scheduling with the aid of network

flow algorithms. IEEE Trans. Software Engineering, 3:85–

93, Jan. 1977.

[18] K. Taura and A. Chien. A heuristic algorithm for map-

ping communicating tasks on heterogeneous resources. In

HCW ’00: Proceedings of the 9th Heterogeneous Comput-

ing Workshop (HCW ’00), page 102, Washington, DC, USA,

2000. IEEE Computer Society.

[19] G. Zheng. Achieving High Performance on Extremely Large

Parallel Machines. PhD thesis, Department of Computer

Science, University of Illinois, Urbana-Champaign, 2005.

[20] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé.

Simulation-based performance prediction for large parallel

machines. In International Journal of Parallel Program-

ming, number to appear, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00490045004500450020005300740061006e00640061007200640073>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

