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Abstract

Graph partitioning is an enabling technology for par-
allel processing as it allows for the effective decomposi-
tion of unstructured computations whose data dependencies
correspond to a large sparse and irregular graph. Even
though the problem of computing high-quality partitionings
of graphs arising in scientific computations is to a large ex-
tent well-understood, this is far from being true for emerg-
ing HPC applications whose underlying computation in-
volves graphs whose degree distribution follows a power-
law curve. This paper presents new multilevel graph parti-
tioning algorithms that are specifically designed for par-
titioning such graphs. It presents new clustering-based
coarsening schemes that identify and collapse together
groups of vertices that are highly connected. An experimen-
tal evaluation of these schemes on 10 different graphs show
that the proposed algorithms consistently and significantly
outperform existing state-of-the-art approaches.

1 Introduction

Graph partitioning is an enabling technology for parallel
processing as it allows for the effective decomposition of
unstructured computations whose data dependencies corre-
spond to a large sparse and irregular graph. Effective de-
composition of such computations can be achieved by com-
puting a p-way partitioning of the graph that minimizes var-
ious quantities associated with the edges of the graph sub-
ject to various balancing constraints associated with the ver-
tices [27, 9]. The simpler version of the problem balances
the number of vertices assigned to each partition while min-
imizing the number of edges that straddle partition bound-
aries (i.e., are cut by the partitioning). However, a num-
ber of alternate objectives and constraints have been de-
veloped that are suitable for addressing the characteristics
of different applications and/or parallel computing architec-
tures [12, 3].

Research in the last fifteen years has resulted in a
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number of high-quality and computationally efficient algo-
rithms [27]. Among them, multilevel graph partitioning al-
gorithms [2, 13, 11, 4, 19] are currently considered to be the
state-of-the-art and are used extensively.

One limitation of existing multilevel graph partitioning
algorithms is that they are designed to operate primarily on
graphs that are derived from finite element meshes (they ei-
ther capture the topology of the mesh or the sparsity struc-
ture of the matrices defined on them). These graphs, even
though they are irregular, they do have some level of reg-
ularity. Specifically, the degree distribution of such graphs
is relatively uniform, which is a direct consequence of the
geometric constraints of the underlying meshes. This is be-
cause in order for the numerical methods to converge mesh
elements are required to have good aspect ratios, which im-
poses an overall regularity on the graph.

However, as the field of parallel processing expands to
include a number of emerging applications beyond scien-
tific computing, applications have emerged whose under-
lying data dependencies are described with graphs that are
significantly more irregular. One such example are the par-
allel execution of page-rank-style computations—a method
to rank elements of a network based on the graph structure
of the network [23], that are typically applied on either web-
graphs or other graphs obtained from various social net-
works (co-authorship, citation, protein-protein interactions,
etc). Another example is the execution of the methods for
computing hubs and authorities [21] which are mainly ap-
plied to web-graphs. The degree distribution of these graphs
follows a power-law curve, in which the number of vertices
of a certain degree decreases exponentially with the degree.

As we will see in Section 3 these power-law graphs im-
pose new challenges to multilevel graph partitioning algo-
rithms, as some of the key algorithms that they employ
for their various phases were simply not designed for such
graphs—causing them to produce poor-quality solutions
and also require a relatively high amount of time and more
importantly memory.

In this paper we present new multilevel graph parti-



tioning algorithms that are specifically designed for parti-
tioning graphs whose degree distribution follows a power-
law curve. Our research focuses primarily on the coars-
ening phase of the multilevel paradigm and present new
clustering-based coarsening schemes that identify and col-
lapse together groups of vertices that are highly connected.
We present two classes of clustering schemes. The first uti-
lizes local information while trying to identify the clusters
of vertices whereas the second class also incorporates infor-
mation obtained from a core numbering, which can be con-
sidered as providing non-local information about the graphs
overall cluster structure. We experimentally evaluate our
approaches on 10 different graphs obtained from various
sources and compare their performance against traditional
multilevel and spectral graph partitioning algorithms. Our
results show that the proposed algorithms consistently and
significantly outperform existing approaches.

The rest of this paper is organized as follows. Section 2
provides some key definitions used throughout the paper
and provides a brief overview of the multilevel graph parti-
tioning paradigm. Section 3 discusses the limitations inher-
ent in the current multilevel graph partitioning algorithms
and provides some illustrative examples. Section 4 provides
a motivation and detailed description of the new clustering
algorithms developed in this work. Section 5 provides a de-
tailed experimental evaluation of these schemes and com-
pares them against existing state-of-the-art algorithms. Fi-
nally, Section 6 provide some concluding remarks and out-
lines future research directions.

2 Background Material

Definitions An undirected graph G = (V, E) consists of
a set of vertices V' and a set of edges F, such that each edge
itself is a set of a distinct pair of vertices. Vertices u and
v of an edge (u,v) are said to be incident to the edge. If
there are functions f and/or g that map each vertex v € V
and/or each edge (v,u) € E to a real number, then the
graph is considered to be weighted with f and g determin-
ing the vertex- and edge-weights, respectively. Throughout
the discussion we will assume that the graph is weighted
and in cases in which the original graph is unweighted, we
assume that each vertex/edge has a weight of one.

A power-law graph is a graph whose degree distribution
follows a power-law function. More precisely, a function
of the form f = ad”, where f is the number of vertices
whose degree is d and 5 < 0 (i.e., an exponentially decay-
ing function). These graphs have a large number of vertices
with very low degree and a few vertices with relatively high
degrees [22]. These types of graphs are also referred to as
scale-free graphs. Examples of such graphs include the In-
ternet graph, instant messenger graphs, biological networks,
and various social networks.

A partitioning of the set of vertices V' into k disjoint sub-

sets {V1,Va,... , Vi } is called a k-way partitioning of V.
Each of these subsets are called the partitions of G. A parti-
tioning is represented by a vector P called the partitioning
vector, such that P|[i] stores the partition-id that the ith ver-
tex is assigned to. A partitioning is said to cut an edge e,
if its incident vertices belong to different partitions. The
edge-cut (or cut) of a partitioning P, denoted by EC(P) is
equal to the sum of the weights of the edges that are being
cut by the partitioning. The partition weight of the ith par-
tition, denoted by w(V;) is equal to the sum of the weights
of the vertices assigned to that partition. The total vertex
weight of a graph, denoted by w(V') is equal to the sum
of the weights of all the vertices in the graph. The load-
imbalance of a k-way partitioning P, denoted by LZ(P) is
defined to be the ratio of the highest partition weight over
the average partition weight.

Graph Partitioning Problem This paper focuses on the
static graph partitioning problem whose input is a weighted
undirected graph G = (V, E) [27]. The weight on the ver-
tices correspond to the (relative) amount of computation re-
quired by the corresponding mesh node/element, whereas
the weight on the edge corresponds to the (relative) amount
of data (or communication time) that needs to be exchanged
in order for the computation associated with a vertex to pro-
ceed. The goal of the static graph-partitioning problem is to
compute a k-way partitioning P, such that for a small posi-
tive number ¢, LZ(P) < 1 + ¢ and EC(P) is minimized.

Overview of the Multilevel Paradigm The key idea be-
hind the multilevel approach for graph partitioning is fairly
simple and straightforward. Multilevel partitioning algo-
rithms, instead of trying to compute the partitioning directly
in the original graph, first obtain a sequence of successive
approximations of the original graph. Each one of these
approximations represents a problem whose size is smaller
than the size of the original graph. This process continues
until a level of approximation is reached in which the graph
contains only a few tens of vertices. At this point, these al-
gorithms compute a partitioning of that graph. Since the
size of this graph is quite small, even simple algorithms
such as Kernighan-Lin (KL) [20] or Fiduccia-Mattheyses
(FM) [7] lead to reasonably good solutions. The final step
of these algorithms is to take the partitioning computed at
the smallest graph and use it to derive a partitioning of the
original graph. This is usually done by propagating the so-
lution through the successive better approximations of the
graph and using simple approaches to further refine the so-
lution. Since the successive finer graphs have more degrees
of freedom, such refinements improve the quality of the re-
sulting partitioning.

In the multilevel partitioning terminology, the above pro-
cess is described in terms of three phases. The coarsening
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Figure 1. The three phases of the multilevel graph parti-
tioning paradigm.

phase, in which the sequence of successively approximate
graphs (coarser) is obtained, the initial partitioning phase,
in which the smallest graph is partitioned, and the uncoars-
ening and refinement phase, in which the solution of the
smallest graph is projected to the next level finer graph, and
at each level an iterative refinement algorithm is used to fur-
ther improve the quality of the partitioning. The various
phases of multilevel approach in the context of graph bisec-
tion are illustrated in Figure 1.

A commonly used method for graph coarsening is to col-
lapse together the pairs of vertices that form a matching. A
matching of the graph is a set of edges, no two of which
are incident on the same vertex. Vertex matchings can be
computed by a number methods, such as random match-
ing, heavy-edge matching [17], maximum weighted match-
ing [8], and approximated maximum weighted matching
(LAM) [24].

A class of partitioning refinement algorithms that are
effective in quickly refining the partitioning solution dur-
ing the uncoarsening phase are those based on variations
of the Kernighan-Lin and Fiduccia-Mattheyses algorithms
[13,1,5,19, 18, 10].

This paradigm was independently studied by Bui and
Jones [2] in the context of computing fill-reducing matrix
reordering, by Hendrickson and Leland [13] in the con-
text of finite element mesh-partitioning, and by Hauck and
Borriello [11] (called Optimized KLFM), and by Cong and
Smith [4] for hypergraph partitioning. Karypis and Kumar
extensively studied this paradigm in [16, 15, 19] for the par-
titioning of graphs. They presented novel graph coarsening
schemes and they showed both experimentally and analyti-
cally that even a good bisection of the coarsest graph alone
is already a very good bisection of the original graph. These
coarsening schemes made the overall multilevel paradigm

very robust and made it possible to use simplified variants
of KL or FM refinement schemes during the uncoarsening
phase, which significantly speeded up the refinement pro-
cess without compromising overall quality.

Multilevel recursive bisection partitioning algorithms are
available in several public domain libraries, such as Chaco
[14], MERS [16], and SCOTCH [25], and are used exten-
sively for graph partitioning in a variety of domains.

3 Motivation

The success of the multilevel graph partitioning algo-
rithms is primarily due to the synergy of the coarsening and
refinement phases. In particular, a good coarsening scheme
can hide a large number of edges on the coarsest graph. By
reducing the exposed edge weight, the task of computing a
good quality partitioning becomes easier. For example, a
worst case partitioning (i.e., one that cuts every edge) of the
coarsest graph will be of higher quality than the worst case
partitioning of the original graph. Also, a random bisection
of the coarsest graph will tend to be better than a random
bisection of the original graph. Similarly, being able to per-
form refinement at different coarse representations of the
same graph significantly increases the power of partitioning
refinement algorithms — allowing them to climb out of local
minima by moving groups of vertices at a time.

However, the effectiveness of the coarsening schemes
employed by current state-of-the-art multilevel graph par-
titioning algorithms dramatically diminishes in the context
of power-law graphs. This is because existing coarsening
schemes depend on being able to find sufficiently large ver-
tex matchings to obtain a non-trivial fractional reduction
on the number of vertices in successively coarser graphs.
Graphs arising in traditional scientific computing applica-
tions tend to produce such matchings. In most cases, the
size of the matching is very close to half the number of ver-
tices (i.e., most of the vertices get matched with other ver-
tices), resulting in graph size reductions that are very close
to a factor of two.

On the other hand, in power-law graphs, because of the
uneven degree distribution, there are a large number of low-
degree vertices attached to a relatively few high-degree ver-
tices that dramatically limits the size of the matchings that
can be computed. This is because as soon as a high-degree
vertex gets matched, it cannot get matched with another
vertex in the current level. This inability of the matching-
based coarsening approach to find sufficiently large match-
ings, has two important implications. First, the number
of exposed edges tend to shrink at a very slow rate—
eliminating a key advantage of the multilevel paradigm.
Second, the size of successively coarser graphs does not re-
duce quickly—increasing the amount of memory required
to store these graphs. As a result, the coarsening is usually
terminated at a much earlier point (otherwise the memory
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Figure 2. The reduction on (a) the number of vertices,
(b) the number of edges, and (c) the exposed edge
weight during the coarsening process for two power-law
graphs (Google and Actor) and a finite element-based
graph.

complexity of these schemes will be quadratic on the num-
ber of vertices), resulting in a graph whose size is smaller

than the original one only by a constant factor.

Figure 2 illustrates these points by comparing three
key parameters of the coarsening history of three graphs
(Google, Actor, and Auto). The parameters are the number
of vertices, number of edges, and the exposed edge weight
of the successively coarser graphs. Among the three graphs,
the first two correspond to power-law graphs whereas the
third one corresponds to a graph obtained from a 3D finite
element mesh. These plots illustrate that unlike the mesh-
based graph for which all three parameters decrease rapidly
during the course of coarsening, these parameters tend to
decrease very slow and only by a small factor for the power-
law graphs.

These results suggest that in order to leverage the key
concepts and power of the multilevel graph partitioning
paradigm for power-law graphs, new coarsening methods
need to be developed that do not exhibit the limitations of
current matching-based approaches.

4 Clustering Coarsening Schemes

The approach that we took in order to correct the lim-
itations of matching-based coarsening schemes is to allow
arbitrary size sets of vertices to be collapsed together. By
doing so, we try to directly attack the source of the problem
and ensure (up to a point) that the size of each successive
coarser graph will decrease by a non-trivial fraction.

Since our goal is to produce a sequence of successively
coarser graphs that are both smaller and also have a much
smaller exposed edge-weight, the problem of finding the
sets of vertices to be collapsed together can be thought of
as a special case of finding a large number of small and
highly connected subgraphs. Finding such subgraphs is a
well-studied problem in the context of graph-based clus-
tering in data-mining [6] and a number of algorithms have
been developed for solving it.

However, one of our initial design considerations was
to develop coarsening schemes whose complexity is not
significantly higher than that of existing matching-based
schemes. For this reason, the primary focus of our re-
search was on developing rather simple but fast clustering
approaches. Towards this goal we considered extensions of
the heuristic matching-based algorithms that allow the dis-
covery of arbitrary size subgraphs.

The operation of most of the existing matching-based
schemes can be summarized as follows [27]. They use a
certain policy to order the edges of the graph and consider
them for inclusion in the matching based on this ordering.
For each edge (v,u) that they consider, if both v and u
are unmatched, then the pair of vertices gets matched with
each other and are combined in the next level coarser graph.
However, if either v or u has already been matched with an-
other vertex, then this edge is ignored and it does not con-
tribute to the matching. If after considering all edges, some



vertices remain unmatched, then they are just copied to the
next level coarser graph.

Within this framework, all the methods that we consider
in this paper allow an unmatched vertex v to potentially be
matched with one of its adjacent vertices u even if u has
already been matched. By allowing this, we essentially as-
sociate v with the cluster of vertices that v belongs to; thus,
incrementally constructing the various clusters of vertices
that will form the nodes of the next level coarser graph.

Specifically, we consider a number of algorithms that
differ along two orthogonal dimensions. The first is the
overall strategy that is used to visit the edges of the graph
and second is the scheme that is used to order the edges
within each strategy—giving a preference to certain clus-
terings over others.

4.1 Edge Visiting Strategies

We consider two general strategies for visiting the vari-
ous edges of the graph during the process of identifying the
clusters of vertices to collapse together. These strategies
will be referred to as the globally greedy strategy (GG) and
as the globally random-locally greedy strategy (GRLG). For
the rest of the discussion we assume that there is a function
to order a set of edges F in some preference order F(E).
These functions will be described later in Section 4.2, but
the motivation behind them is to allow the coarsening algo-
rithms to identify clusters of highly connected vertices.

Algorithms that follow the GG strategy will order all the
edges of G = (V, E) according to F(E) and then visit them
based on this ordering. The motivation behind this strategy
is to fully take advantage of the information encapsulated in
the selected preference order by allowing the algorithm to
consider for grouping together vertices that are most likely
to be part of a good cluster.

On the other hand, algorithms that follow the GRLG
strategy will visit the vertices of the graph in a random or-
der and for each vertex v they will use F to locally order
the edges I(v) that are incident on v. The motivation be-
hind this strategy is to eliminate the potentially expensive
step of computing a global ordering of all the edges but still
retain key elements of the greedy nature of the GG strategy.

Additional Considerations A potential problem that can
arise with the above schemes is that they may end up con-
structing a relatively small number of rather large clus-
ters. As a result, the number of vertices of the successively
coarser graphs can decrease by a factor that is much greater
than two. Such rapid coarsenings can adversely impact the
effectiveness of multilevel refinement, as the number of lev-
els that it operates on can be small. The GG and GRLG
strategies overcome this problem by employing two con-
straints.

First, during the cluster discovery process, both the GG
and GRLG strategies keep track of the current number of
vertices in the next-level coarser graph. That is, the size of
the graph assuming that no further clustering has been per-
formed and any unmatched vertices were simply copied to
the coarser graph. If that size drops below half of the size of
the current graph, no further clustering gets performed, and
the next-level coarser graph is constructed from the current
information. This constraint ensures that the size of succes-
sive coarser graphs decreases by at most a factor of two.

Second, they set a limit on the size of the cluster that can
be formed anywhere during the coarsening process. This
limit is specified in the form of a maximum vertex weight
(MaxVWgt) that any cluster can have. During the coarsen-
ing phase, if an edge will result in the creation of a cluster
whose size is greater than MaxVWgt, then that particular
cluster does not get formed and the edge is skipped. The
value of MaxVWgt is set to be 1/20th of the total vertex
weight of the original graph, which essentially limits the
size of the coarsest graph at least 20 vertices. The effect
of this constraint is two fold: (i) it throttles the coarsening
rate, and (ii) it ensures that the size of the coarsest vertices
do not become so large so that it will be infeasible to com-
pute a balanced two-way partitioning.

4.2 Edge Ordering Criteria

Our experience with multilevel graph partitioning al-
gorithms in the context of scientific computing applica-
tions [15] showed that the effectiveness of the various
matching schemes was related with (i) their ability to col-
lapse together regions of the graph that corresponded to
well-connected subgraphs and (ii) their ability to produce
coarser graphs whose vertices have a relatively uniform size
distribution.

Guided by these two principles we developed a number
of different ordering criteria that combine various pieces of
information. This information is obtained by either analyz-
ing each edge in the context of its local environment (i.e.,
the edge and its incident vertices) or in a somewhat larger
context derived by taking into account certain aspects of its
nearby topology.

Local Environment For each edge ¢ = (v,u) we con-
sidered three pieces of information that can be obtained by
analyzing e, v, and u. These are the weight of the edge
(w(e)), the weight of the vertices (w(v) and w(u)), and the
degree of the vertices (d(v), d(u)).

The weight of the edge is important because it provides
information about the strength of the connection between
vertices v and w. In addition, since during the coarsening
process, the weights of the edges are set to be equal to the
sum of the weights of the edges of the original graph that



connect vertices encapsulated in v with vertices encapsu-
lated in u, they provide important information on whether
or not the subgraph obtained by combining v and u is well-
connected. Thus, everything else being equal, we will pre-
fer edges that have high edge-weight over edges that do
not. Note that this is also the primary motivation behind
the heavy-edge matching scheme used in existing matching-
based coarsening schemes.

The sum of the weights (w(v) + w(u)) is important as
it affects the size distribution of the vertices in the coarser
graphs. In particular, if w(v) + w(u) is very high, then
this will decrease the effectiveness of the KL/FM-type re-
finement algorithms as it will prevent them from moving
it across the partition boundary (assuming that such moves
improve the cut). The reason for this is that due to its size,
such a move may lead to a highly unbalanced (i.e., infeasi-
ble) bisection. Thus, everything else being equal, we will
prefer edges whose sum of vertex weights is small.

The degree of each vertex is important as it provides in-
formation as to how many other edges exist in the graph
that can be used to cluster either v or u. For example, if
min(d(v),d(u)) is one, then this edge is the only way by
which one of the vertices can be included in a cluster. Ev-
erything else being equal, we should prefer edges that have
at least one vertex with a very small degree as such edges
provide the best (and in many cases the only) opportunity
for the low degree vertex to be included in a cluster. Note
that if such edges are not been given priority, by the time
they will end up being considered, it may be that the size of
the resulting cluster will have grown too large, preventing
the formation of this cluster.

Non-local Environment To obtain information about the
non-local environment of each edge we use the concept of
the graph core, which was first introduced by Seidman [26].
Given a graph, G = (V, E), a subgraph H induced by C' C
V' is a core of order k, written as Hy, iff for every v &€
C,dg(v) > k, where dy(v) is the degree of vertex v in
H. The core number of a vertex v (I'(v)) is the maximum
order of a core that contains that vertex. Cores exhibit the
following two properties [29]: (i) for i < j, H; C H;
(nested relation), and (ii) for each core 4, H; can contain
more than one connected component.

The core number of a vertex v and the properties of the
cores provide information as to whether an edge e = (v, u)
is part of well-connected subgraph or not. In particular, due
to the nested relation, for every edge e = (v,u) we know
that there is an induced subgraph that contains e whose min-
imum degree is at least min(I'(v), I'(u)). Thus, everything
else being equal, we will prefer edges that have high core
numbers, or edges whose core numbers are comparable.
The reason why the second set of edges are of interest is
because they represent some of the best potential clusters of

Globally Greedy Strategies
Ordering schemes for edges e = (v, u)

Coarsen Scheme Description Order
Sort list of edges by
GDCS 1. d(v) + d(u) Asc
2. w(e) Desc
GFC 1. w(e) Desc
2. w(u) + w(v) Asc
GHELD 1. w(e) Desc
2. d(v) + d(u) Asc
GCORE 1. /(T(u)) + /(T(v)) Desc
2. w(e) Desc
GFCDC 1. w(e) Desc
2. w(v) + w(u) Asc
3. |D(u) — I'(v)| Asc
GFCC 1. w(e) Desc
2. w(u) + w(v) Asc
3.T(u) +T'(v) Desc

Globally Random, Locally Greedy Strategies
Schemes to order the edges e = (v, w) incident on v

Coarsen Scheme Description Order
LDHE L d(w) Minimum
2. w(e) Maximum
HELD 1. w(e) Maximum
2. d(u) Minimum
FC 1. w(e) Maximum
2. w(u) Minimum
FCC 1. w(e) Maximum
2. w(u) Minimum
3. T(u) Maximum
FCDC 1. w(e) Maximum
2. w(u) Minimum
3. |P(u) —T'(v)| Minimum
CORE 1. /(T (u)) + /(T (v)) Maximum
2. w(e) Maximum

Table 1. The various coarsening schemes developed by
combining different edge visiting strategies and order-
ing criteria.

the vertices involved.

Note that the notion of the graph core has been extended
beyond just the degree of a vertex to also include more
general functions such as the sum-of-the-edge-weights [29].
Since we are dealing with weighted graphs, we used this lat-
ter core numbering definition. Note that there is a O(|E)|)-
time algorithm to compute the core numbering in the con-
text of degrees [28] and a O (|E| max (A, log |V]))-time al-
gorithm, where A is the maximum degree of the graph, for
the case of the sum-of-the-edge-weights [29].

4.3 Putting Everything Together

A large number of coarsening approaches can be devel-
oped by combining the two edge visiting strategies and the
four edge ordering criteria. Due to space constraints, in this
paper we focus on a subset of them that our initial studies
showed to represent some of the best combinations. The key



characteristics of these schemes are summarized in Table 1.
Note here that the order of the criteria determines their role
as the primary, secondary, or tertiary importance

5 Experimental results
5.1 Dataset Description

We evaluated the performance of the new coarsening
schemes on ten different graphs obtained from various
sources. The characteristics of these graphs are shown in
Table 2.

fit of

Degree f=ad’
Dataset #vertices  #nedges I o max o Ié]
Citations 27400 352504 25.73 45.56 2468 334  -7.92
DBLP 310138 1024262 6.61 9.94 344 633  -8.8l
Actor 498925 1460791 5.86 11.39 646 2.51 -1.89
Google 198782 295063 2.97 12.14 1471 135  -2.28
NDwww 325729 1090107 6.69 42.82 10721 1.62  -5.83
Overture 75002 411013 10.96 53.93 6619 3.51 -1.43
PPI 59191 160737 5.43 1230 1116 242  -1.55
Scan 228263 320149 2.81 8.36 1937 1.34 -1.77
Lucent 112969 181639 322 4.93 423 437  -1.19

Scan+Lucent 284772 449228 3.16 9.05 1978 147 -5.36

Table 2. Characteristics of the different graphs used to
evaluate the multilevel partitioning algorithm.

The Citation dataset was created from the citation graph
used in KDD Cup 2003'. Each vertex in this graph cor-
responds to a document and each edge corresponds to a
citation relation. Because the partitioning algorithms deal
with undirected graphs, the direction of these citations was
ignored. The DBLP dataset was created from the co-
authorship information from Computer Science research
publications®. Vertices in the graph represent authors and
edges exist if a pair of authors have co-authored at least
one publication. The Google dataset was obtained from the
2002 Google Programming Contest®. The original dataset
contains various web-pages and links from various “edu”
domain. We converted the dataset into an undirected graph
in which each vertex corresponds to a web-page and an
edge to a hyperlink between web-pages. In creating this
graph, we kept only the links between “edu” domains that
connected sites from different subdomains. The NDwww
dataset is a complete map of the nd.edu domain®*. Each ver-
tex represents a web page and an edge represents a link be-
tween two pages. The Overture dataset was obtained from
Overture Inc (now part of Yahoo!) and is similar in nature
to the Google dataset and corresponds to a three-level deep
crawl out of ten seed CS homepage of major Universities.

Uhttp://www.cs.cornell.edu/projects/kddcup/datasets.html
Zhttp://www.informatik.uni-trier.de/ ley/db/index.html
3hitp://www.google.com/programming-contest/
“http://www.nd.edu/ networks/resources.htm

The PPI dataset is created from Database of Interacting Pro-
teins (DIP)3. Each vertex in this graph corresponds to a par-
ticular protein and there is an edge between a pair of pro-
teins if these proteins have been experimentally determined
to interact with each other. The SCAN dataset corresponds
to the Internet map obtained using the Mercator software.
Each vertex represents an Internet router and an edge im-
plies that the two routers at the endpoints are adjacent. The
Lucent dataset was constructed via tracerouters collected by
the Internet Mapping project at Lucent laboratories. Each
vertex represents a router and an edge indicates adjacency
between the routers. The SCAN+Lucent dataset was ob-
tained by the merging of information from the Lucent and
SCAN datasets®. The Actor dataset was constructed from
the actor data of the Internet Movie Database (IMDB)’. Ver-
tices represent actors and movies. Each edge has an actor
as one endpoint and a movie as the other and indicates that
the actor played in the movie.

Since the original version of the above datasets contained
a large number of singleton vertices and/or very small con-
nected components, we first extracted from each dataset the
largest connected component and used it for our evaluation.
The statistics presented in Table 2 correspond to the largest
connected component and not the original dataset.

5.2 Experimental Methodology

Since many of the schemes under consideration are ran-
domized in nature, in order to ensure that the results are not
biased in any way, we computed 100 different bisections for
each graph and report the average cuts. In the case of the
schemes following the GRLG strategy, each different run
was performed using a different randomly obtained order-
ing of the vertices. In the case of the GG strategies, ran-
domization was introduced as a tie-breaking mechanism.

Furthermore, in running the experiments we set the load
imbalance to zero thus ensuring a perfect balance among
the partitions (i.e. equal partition weights). For example,
for two-way partitioning, the weight of each partition will
equal half the total vertex weight.

The performance of the different schemes presented in
this paper were compared against two existing partition-
ing algorithms. The first is the bisection algorithm pro-
vided by MEIS [16] (using the pmetis program) and the
second is the spectral partitioning algorithm provided by
Chaco [14]. Note that the bisections produced by spectral
were further refined by using a KL refinement algorithm
(i.e., the SPECTRAL-KL option of Chaco).

Note that due to space constraints, our experimental eval-
uation was limited to only two-way partitionings. However,

Shttp://dip.doe-mbi.ucla.edu/

OAll three of these datasets can be
http://www.isi.edu/div7/scan/mercator/maps.html.

http://www.nd.edu/ networks/resources.htm.

obtained  from



the relative performance of the different schemes remains
the same for larger number of partitions.

5.3 Results

The cuts obtained by the various schemes across the dif-
ferent datasets are shown in Table 3. This table shows the
performance of 12 different schemes, the ten introduced in
this paper and described in Table 1 along with the perfor-
mance achieved by MEINS and Spectral. The last row of
the table contains the minimum cut achieved over the dif-
ferent schemes, whereas the last column (labeled “ACRB”)
shows the Average Cut Relative to the Best. For a particular
scheme, this measure is obtained by computing the ratio of
the cut obtained on a particular graph over the minimum cut
obtained by the different schemes, averaged over the differ-
ent datasets. The value of ACRB will be greater than or
equal to one. A value close to one indicates that a particular
scheme obtains cuts that are either the smallest or very close
to the smallest obtained, whereas a large value indicates that
the cuts obtained by a scheme are much worse than the best
cuts obtained by the different schemes.

In addition to the direct cut-based comparisons, Table 4
compares the various schemes by analyzing the extent to
which the difference in performance between each pair of
schemes is statistically significant or not. For our statistical
significance testing we used the Wilcoxon’s paired signed
rank test at 5% significance level. The entries marked with
“<” (“>”) indicate that the scheme of the row performs sta-
tistically worse (better) than the scheme of the column. En-
tries marked with “="" indicate that the difference between
the two schemes is not statistically significant. Note that
the last column (labeled “Win-Loses”) displays the differ-
ence between the number of schemes in which a particular
scheme is statistically better and the number of schemes in
which the scheme is statistically worse. Thus, a positive
value indicates a scheme that does well whereas a negative
value represents a scheme that does poorly.

Discussion Looking at the results from these tables we
can make a number of observations. First, comparing the
GG with the GRLG strategies we can see that the GG
schemes do not perform as well as the GRLG ones. The
best globally greedy scheme has an ACRB value of 1.57 as
compared to the best locally greedy ACRB value of 1.06.
Moreover, the advantage of GRLG over GG is also statisti-
cally significant. In fact almost all GRLG schemes outper-
form the GG schemes.

Second, comparing ordering schemes that use local in-
formation against schemes that also incorporate non-local
information provide by the core numbering, we can see that
core numbering alone leads to poorly performing schemes
(e.g., CORE/GCORE). However, the combination of local
information with core numbering leads to improved results.

In fact, the FCDC, which is the best performing scheme
in terms of ACRB combines information about the edge
weight, vertex weights, and cores. However, the difference
between FCDC and FC (which uses only edge- and vertex-
weights) is not statistically significant.

Third, comparing the performance achieved by the vari-
ous schemes proposed in this paper, we can see that three of
them, FCDC, FC, and HELD produce results that are quite
comparable (the schemes are not statistically different from
each other) and are the best performing schemes.

Fourth, comparing the performance achieved by the
above three schemes against that achieved by MELS and
Spectral, we can see that all three of them produce results
that are substantially better than either one of them. Also, in
addition to the above three schemes, MEIIS is also being out-
performed by FCC, whereas Spectral is also outperformed
by FCC and LDHE.

Finally, to illustrate how the coarsening schemes devel-
oped in this paper overcome the limitations of the matching-
based coarsening schemes described in Section 3, Figure 3
shows the rate at which the number of vertices, number
of edges, and the exposed edge-weight decreases for the
FC coarsening scheme and the heavy-edge matching-based
(HEM) scheme for Google and Actor. Note that the results
for HEM are identical to those shown in Figure 2. As we
can see from these plots, the coarsening schemes are quite
effective in producing successive coarser graphs in which
all three of these quantities reduce at a much higher rate
than HEM.

6 Conclusions and Directions for Future Re-
search

This paper focused on the problem of developing graph
partitioning algorithms for power-law graphs. Towards this
goal it presented a number of new algorithms based on the
multilevel graph partitioning paradigm that were designed
to leverage the strengths inherent to these approaches and
to address the challenges imposed due to the uneven degree
distribution of these graphs.

The comprehensive experimental evaluation presented in
this paper showed that three of the methods introduced in
this paper achieve consistently some of the best results, out-
performing both existing state-of-the-art multilevel meth-
ods as well as more traditional partitioning approaches
based on spectral methods.

The research in this paper can be extended along a num-
ber of directions including the development of even better
coarsening schemes as well as the development of effective
parallelization strategies for them. We expect that existing
approaches used to parallelize serial multilevel graph parti-
tioning algorithms can be easily extended for the context of
the new coarsening schemes. In addition, one of the issues
that need to be further investigated is the extent to which the



Citations DBLP  Actor Google NDwww Overture ~ PPI  Scan Lucent Scan+Lucent ACRB
FC 17122 51972 42376 6791 1813 25855 9286 4404 2378 7779 1.07
FCDC 15868 52405 42404 6867 1866 26029 8926 4560 2387 7594 1.06
HELD 20264 51967 40000 6725 1863 25740 8845 4370 2490 7762 1.08
FCC 17836 53246 42985 6913 1827 26498 9226 4537 2464 7829  1.09
LDHE 22829 55387 39762 7159 3546 26321 9772 6019 2904 10176 1.31
GCORE 15196 56923 57796 10934 8121 30752 11535 5817 3754 10291 1.69
GDCS 23786 56628 40809 8006 6425 28044 10177 7096 3142 11889  1.57
GFC 15191 71846 51568 8922 5410 30073 10552 7847 3699 12343 1.59
GFCDC 15503 71347 51776 10395 9480 27992 10272 7409 3673 11905 1.80
GHELD 28395 61672 49103 7540 6270 32046 10529 7953 3096 12563 1.66
CORE 23466 80620 47579 13506 9505 33141 12629 7604 4908 13957 2.05
GFCC 14914 85087 50714 19596 10610 34036 13788 15747 5039 24463  2.54
METIS 14925 61242 113962 14758 6638 34973 12853 11575 4323 6411  1.94
Spectral 25765 72450 78342 7144 8120 33588 7469 4950 3874 22047 191
Minimum 14914 51967 39762 6725 1813 25740 7469 4370 2378 6411

Table 3. The edge-cuts of the different coarsening schemes averaged over 100 runs.
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Table 4. Results of statistical significance testing using Wilcoxon’s paired signed rank test using 5% significance

level.

information provided by the cores can also be used to im-
prove the performance of traditional matching-based coars-
ening schemes.
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