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Abstract

Clusters of several thousand nodes interconnected
with InfiniBand, an emerging high-performance intercon-
nect, have already appeared in the Top 500 list. The
next-generation InfiniBand clusters are expected to be
even larger with tens-of-thousands of nodes. A high-
performance scalable MPI design is crucial for MPI appli-
cations in order to exploit the massive potential for paral-
lelism in these very large clusters. MVAPICH is a popular
implementation of MPI over InfiniBand based on its reli-
able connection oriented model. The requirement of this
model to make communication buffers available for each
connection imposes a memory scalability problem. In or-
der to mitigate this issue, the latest InfiniBand standard in-
cludes a new feature called Shared Receive Queue (SRQ)
which allows sharing of communication buffers across mul-
tiple connections. In this paper, we propose a novel MPI de-
sign which efficiently utilizes SRQs and provides very good
performance. Our analytical model reveals that our pro-
posed designs will take only 1/10th the memory require-
ment as compared to the original design on a cluster sized
at 16,000 nodes. Performance evaluation of our design on
our 8-node cluster shows that our new design was able to
provide the same performance as the existing design while
requiring much lesser memory. In comparison to tuned ex-
isting designs our design showed a 20% and 5% improve-
ment in execution time of NAS Benchmarks (Class A) LU
and SP, respectively. The High Performance Linpack was
able to execute a much larger problem size using our new
design, whereas the existing design ran out of memory.
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1 Introduction

Cluster computing has become quite popular during the
past decade. The interconnect used in these clusters is very
crucial for attaining the highest possible performance [1].
InfiniBand [7] is an emerging high-performance intercon-
nect, offering low latency (1.5-3.0 microseconds) and high
bandwidth (multiple GigaBytes/second). In addition to
high-performance, InfiniBand also provides many advanced
features like Remote Direct Memory Access (RDMA),
atomic operations, multicast and QoS. As InfiniBand gains
popularity, large scale clusters are being built using it [13].
Clusters of several tens-of-thousands of nodes have now
appeared as the most powerful machines in the Top 500
list [18]. Accordingly, it is expected that the scale of the
InfiniBand clusters to be deployed in the near future will
be even larger. MPI [11] is the de-facto standard in writing
parallel scientific applications. Hence, a scalable and high
performance MPI design is very critical for end HPC appli-
cations which will run on these modern and next generation
very large scale clusters.

MVAPICH [14] is a popular implementation of MPI over
InfiniBand which is used by more than 310 organizations
world-wide. It has enabled several InfiniBand clusters to
achieve Top 500 ranks. MVAPICH is also distributed in
an integrated manner with the emerging OpenIB/Gen2 [15]
software stack for Linux clusters. It implements the Ab-
stract Device Interface (ADI) layer of MPICH [6]. MVA-
PICH was derived from MVICH [8].

MVAPICH uses a reliable connection oriented model
provided by InfiniBand. This model provides superior per-
formance on current generation InfiniBand stacks than the
unreliable connectionless model as well as providing reli-
able transport. However, one of the restrictions of using
a connection oriented model is that messages can be re-
ceived only in buffers which are already available to the
Host Channel Adapter (HCA) or Network Interface Card
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(NIC). In order to achieve this, MVAPICH allocates and
dedicates buffers for each connection (the number of con-
nections increases as the number of processes). Although
the amount of buffers allocated per connection can be tuned
and MVAPICH has scaled quite well for contemporary clus-
ters (up to 1000 nodes and beyond), the challenges imposed
by the scale of next generation very large clusters (up to
10,000 nodes and beyond) is quite hard to meet with the
current buffer management model.

The latest InfiniBand standard (Release 1.2) [7] has pro-
vided a new feature called Shared Receive Queues (SRQ)
which aims at solving this scalability issue at the HCA level.
This new feature removes the requirement that message
buffers be dedicated for each connection. Using this feature,
a process which intends to receive from multiple processes
can in fact provide receive buffers in a single queue. The
HCA uses these buffers in an FCFS manner for incoming
messages from all processes.

In this paper, we carry out detailed analysis of the design
alternatives and propose a high-performance MPI design
using SRQ. We propose a novel flow control mechanism
using a “low watermark” based approach. In addition, we
design a mechanism which can help users fine tune our de-
signs on their specific platforms. Further, we come up with
an analytical model which can predict memory usage by
the MPI library on clusters of tens-of-thousands of nodes.
Verification of our analytical model reveals that our model
is accurate within 1% error margin. Based on this model,
our proposed designs will take only 1/10th the memory re-
quirement as compared to the default MVAPICH distribu-
tion on a cluster sized at 16,000 nodes. Performance evalua-
tion of our design on our 8-node PCI-Express cluster shows
that our new design was able to provide the same perfor-
mance as the existing design utilizing only a fraction of the
memory required by the existing design. In comparison to
tuned existing designs, our design showed a 20% and 5%
improvement in execution time of NAS Benchmarks (Class
A) LU and SP, respectively. The High Performance Lin-
pack [4] was able to execute a much larger problem size
using our new design, whereas the existing design ran out
of memory.

The rest of the paper is organized as follows: in Section 2
we provide a background to our research. In Section 3 we
present the motivation for designing MPI with SRQ. In Sec-
tion 4 we propose our designs. In Section 5 we experimen-
tally evaluate our designs. In Section 6 we discuss related
work in this area. Finally in Section 7 we conclude the pa-
per.

2 Background

In this section we provide a detailed background behind
the work done in this paper. Broadly, there are two impor-

tant topics which pertain to this work. First, we present an
overview of the InfiniBand network and its transport mod-
els. Secondly, we describe the existing design of MPI over
InfiniBand, particularly, MVAPICH [14].

2.1 InfiniBand Overview

The InfiniBand Architecture [7] (IBA) defines a switched
network fabric for interconnecting compute and I/O nodes.
In an InfiniBand network, hosts are connected to the fabric
by Host Channel Adapters (HCAs). A queue based model
is used in InfiniBand. A Queue Pair (QP) consists of a send
and a receive queue. Communication operations are de-
scribed in the Work Queue Requests (WQR), or descriptors,
and submitted to the work queue. It is a requirement that all
communication buffers be posted into receive work queues
before any message can be placed into them. In addition,
all communication buffers need to be registered (locked in
physical memory) before any operations can be issued from
there. This is to ensure that memory is present when HCA
accesses the memory. Finally, the completion of WQRs is
reported through Completion Queues (CQ).

IBA provides several types of transport services: Reli-
able Connection (RC), Unreliable Connection (UC), Reli-
able Datagram (RD) and Unreliable Datagram (RD). RC
and UC are connection-oriented and require one QP to be
connected to exactly one other QP. On the other hand, RD
and UD are connectionless and one QP can be used to com-
municate with many remote QPs. To the best of our knowl-
edge, Reliable Datagram (RD) transport has not been im-
plemented by any InfiniBand vendor yet.

On top of these transport services, IBA provides software
services. However, all software services are not defined for
all transport types. Figure 1 depicts which software ser-
vice is defined for which transport, as of IBA specification
release 1.2. As shown in the figure, the send/receive opera-
tions are defined for all classes of transport. For connection-
oriented transport, a new type of software service called
Shared Receive Queue (SRQ) has been introduced. This
allows the association of many QPs to one receive queue
even for connection oriented transport. Thus, any remote
process which is connected by a QP can send a message
which is received in buffers specified in the SRQ.

Apart from the basic send/receive operations, IBA also
defines Remote Direct Memory (RDMA) operations. Using
this service, applications can directly access memory loca-
tions of remote processes. In order to utilize RDMA, the
requesting process is required to know the virtual address
and a memory access key of the remote process. RDMA
is supported on all reliable transports. The only exception
being that RDMA Read is not supported on UC.

In addition to these features, IBA provides a host of other
exciting features like hardware multicast, QoS, Atomic op-
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Figure 1. IBA Transport and Software Ser-
vices

erations. These features are not described here because they
are not related to the research direction discussed in the pa-
per. Additional details on these features can be obtained
from IBA specification [7].

2.2 MVAPICH Design Overview

MVAPICH [14] is a popular implementation of MPI over
InfiniBand. It uses both Send/Receive and RDMA opera-
tions to achieve high-performance message passing. It has
two modes of data transfer namely Eager and Rendezvous.
Eager mode is used to transmit small messages over ei-
ther the RDMA or send/receive. It is based on copy-in
(sender side) and copy-out (receiver side), thus utilizing
the pre-registered (locks in physical memory) MPI inter-
nal buffers as “communication buffers”. The Rendezvous
mode of communication is utilized for transferring large
messages. The cost of copying large messages into MPI in-
ternal buffers is prohibitive. Instead, the Rendezvous mode
directly registers the application buffer and directly sends
the memory contents to the receiving process’ memory lo-
cation. Thus, the Rendezvous mode can achieve zero-copy
data transfer.

Eager mode communication is divided into RDMA and
send/receive channels. The RDMA channel [10] is the high-
est performing one out of them. This channel dedicates a
certain number of buffers per connection. These buffers are
used in a cyclic manner. These buffers are allocated during
MPI Init and the virtual addresses and memory keys are
exchanged. Each process maintains a window of RDMA
buffers with every other remote process for flow control.
These buffers will be called “RDMA Buffers” in the rest of
the paper.

The Send/Receive channel is used as a backup, in case
the RDMA channel is unavailable for some reason (e.g.,
filled up with unexpected messages). This channel requires
pre-posting a certain number of buffers for each QP con-
nection during MPI Init. When a certain threshold of
messages is exceeded on any connection, a larger set of

buffers are posted for that connection. The buffers used
for Send/Receive are pre-allocated and registered during
MPI Init. These buffers will be called the “Send/Receive
buffers” for the rest of the paper. To facilitate the easy man-
agement and to avoid runtime registration of these buffers,
they are organized in a large pool (which is shared between
all the connections) of typically thousands of small buffers.
These buffers will be referred to as “Buffer Pool” in the rest
of the paper.

3 SRQ Based MPI design: Is it Beneficial?

3.1 Limitations in Current Design

In Section 2.2 we described the design of MVA-
PICH. MVAPICH is based on the connection-oriented re-
liable transport of InfiniBand utilizing both RDMA and
Send/Receive channels. In order to communicate using
these channels, it has to allocate and dedicate buffers to
each remote process. This means that the memory con-
sumption grows linearly with the number of processes. Al-
though the number of buffers per process can be tuned (at
runtime), and MVAPICH has scaled well for contemporary
InfiniBand clusters, the next-generation InfiniBand clusters
are in the order of tens-of-thousands of nodes. In order for
MVAPICH to scale well for these clusters, the linear growth
of memory requirement with number of processes has to be
removed.

Adaptive buffer management is a mechanism by which
the MPI can control the amount of buffers available for
each connection during runtime based on message patterns.
However, there are several problems with this mechanism
when implemented on top of the Send/Receive and RDMA
channels:

• Send/Receive Channel: This channel allows us to
choose how many buffers are posted on it dynamically.
However, buffers once posted on a receive queue can-
not be recalled. Hence, posted buffers on idle connec-
tions lead to wasted memory. This problem exacer-
bates memory consumption issues in large scale appli-
cations that run for a very long time. In addition, if
MVAPICH is very aggressively tuned to run with low
number of buffers per Send/Receive channel, this will
lead to performance degradation. This is because the
Send/Receive channel is based on window-based flow
control mechanism [9]. Reducing the window in order
to reduce memory consumption hampers the message
passing performance.

• RDMA Channel: This channel allows very low-
latency message passing. However, the allocation of
buffers for every connection is very rigid. The cyclic



window of buffers (Section 2.2) needs to be contigu-
ous memory. If not, then another round of address and
memory key exchange (extra overhead) is required.
Recalling of RDMA buffers is possible from any con-
nection, but there is an additional overhead of inform-
ing remote nodes about the reduced memory they have
with the receiving process. This process can lead to
some race conditions which have to be eliminated us-
ing further expensive atomic operations, thus, leading
to high overheads.

Thus, in order to improve the buffer usage scalability of
MPI while preserving high-performance we need to explore
a different communication channel.

3.2 Benefits of SRQ

Since we aim to remove the dependence of number of
communication buffers with the number of MPI processes,
we need to look at connectionless models. As described
in Section 2.1, InfiniBand provides two kinds of connec-
tionless transport. One is Reliable Datagram (RD) and the
other is Unreliable Datagram (UD). Unfortunately, Reliable
Datagram is not implemented in any InfiniBand stack (to
the best of our knowledge), so that rules out this option. UD
can provide the scalable features, but the MPI design would
now have to provide reliability. This will add to the overall
cost of message transfers, and may result in loss of high-
performance. In addition, UD does not support RDMA fea-
tures, which are needed for zero-copy message transfer, thus
further degrading performance.

Shared Receive Queues (SRQ) provides a model to ef-
ficiently share receive buffers across connections whilst
maintaining the good performance and reliability of a con-
nection oriented transport. Thus, the SRQ is a good candi-
date for achieving scalable buffer management.

Figure 2 shows the difference between the buffer organi-
zation schemes for MVAPICH and the new proposed design
based on SRQ.

3.3 Reduced Memory Consumption with
SRQ

In order to fully understand the impact of the memory
usage model of our proposed SRQ based design, we con-
struct an analytical model of the memory consumption by
MPI internal buffers.

There are several components of the memory consumed
during startup. The major components are memory con-
sumed by the Buffer Pool, RDMA channel, Send/Receive
channel and the memory consumed by the InfiniBand RC
connections themselves.

The size of the Buffer Pool is given by the product of the
number of buffers in the pool and the size of each buffer.

Mbp = Npool ∗ Sbuf (1)

Where, Mbp is the amount of memory consumed by the
Buffer Pool, Npool is the number of buffers in the pool and
Sbuf is the size of each buffer.

The memory consumed by MVAPICH-SR (tuned ver-
sion of MVAPICH using only Send/Receive channel) is
composed of three parts, the memory consumed by the
Buffer Pool and the memory consumed by each connection
and the Send/Receive buffers.

Msr = Mbp + (Mrc + Nsr ∗ Sbuf ) ∗ Nconn (2)

Where, Msr is the amount of memory consumed by
MVAPICH-SR, Mrc is the memory needed for each In-
finiBand connection by HCA driver, Nsr is the number of
Send/Receive buffers for each connection and Nconn is the
total number of connections.

MVAPICH-RDMA (default version of MVAPICH us-
ing both RDMA and Send/Receive channels) consumes all
the memory as MVAPICH-SR and in addition, allocates
RDMA buffers for each connection. The RDMA chan-
nel also needs to keep dedicated send buffers per connec-
tion [10]. Hence, the amount of dedicated buffers per con-
nection doubles.

Mrdma = Msr + 2 ∗ Nrdma ∗ Sbuf ∗ Nconn (3)

Where, Mrdma is the amount of memory consumed by
MVAPICH-RDMA and Nrdma is the number of RDMA
buffers per connection.

Finally, the MVAPICH-SRQ (our proposed SRQ based
design) only needs to allocate the Buffer Pool and a fixed
number of buffers for posting to the SRQ.

Msrq = Mbp + Mrc ∗ Nconn + Nsrq ∗ Sbuf (4)

Where, Msrq is the memory consumed by MVAPICH-
SRQ and Nsrq is the number of SRQ buffers.

Analyzing Equations 2, 3 and 4, we observe that the
memory requirement by MVAPICH-SRQ is much lesser if
the number of connections is very large. In section 5.2 we
plug in practical values to the above parameters and analyze
the reduction in memory usage while using a SRQ based
design. Our analysis reveals that for a cluster with 16,000
nodes, Mrdma is around 14 GigaBytes, whereas Msrq is
only 1.8 GigaBytes.

4 Proposed SRQ Based MPI Design

In this section we present the design challenges associ-
ated with SRQ based MPI design. The SRQ mechanism
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achieves good buffer scalability by exposing the same set
of receive WQEs to all remote processes on a first come
first serve (FCFS) basis. However, in this mechanism, the
sending process lacks a critical piece of information: num-
ber of available receive buffers at the receiver. In the ab-
sence of this information, the sender can overrun the avail-
able buffers in the SRQ. To achieve optimal message pass-
ing performance, it is critical that this situation is avoided.
In the following sections, we propose our novel design
which enables the benefits provided by SRQ, while avoid-
ing senders from over-running receive buffers.

4.1 Proposed SRQ Refilling Mechanism

A high-performance MPI design often requires the MPI
progress engine to be polling to achieve the lowest possi-
ble point-to-point latency. MVAPICH is thus based on a
polling progress engine. Ideally, we would like to maintain
the polling nature of the MPI for the SRQ based design.
However, in this polling based design, MPI can only dis-
cover incoming messages from the network when explicit
MPI calls are made. This increases the time intervals in
which MPI can check the state of the SRQ. Moreover, if
the MPI application is busy performing computation or in-
volved in I/O, there can be prolonged periods in which the
state of SRQ is not observed by the MPI. In the meantime,
the SRQ might have become full. In order to efficiently
utilize SRQ feature, we must avoid this situation. Broadly,
three design alternatives can be utilized: Explicit acknowl-
edgement from receiver, Interrupt based progress and Se-
lective interrupt based progress.

4.1.1 Explicit Acknowledgement from Receiver

In this approach, the sending processes can be instructed
to refrain from sending messages to a particular receiver
unless they receive an explicit OK TO SEND message af-
ter every k messages. Arrival of the OK TO SEND message
means that the receiver has reserved k buffers in a dedi-
cated manner for this sender and allows the sender to send
k more messages. Where k is a threshold of messages that
can be tuned or selected at runtime. This scheme can avoid
the scenario in which the sender completely fills up the re-
ceiver queue with messages. This scheme is illustrated in
Figure 3. However, this scheme suffers from a couple of
critical deficiencies:

1. Waste of Receive Buffer: Since in this design alter-
native we reserve k buffers for a specific sender if the
sender does not have more messages to send the mem-
ory resource for the reserved buffers can be wasted.
To prevent this problem, if we reduce the value of k,
we cannot achieve high bandwidth because the sender
should wait the OK TO SEND message for every few
messages.

2. Early throttling of senders: Even though not all
senders may be transmitting at the same time, a par-
ticular sender may send k messages and then be throt-
tled until the receiver sends the OK TO SENDmessage.
If the receiver is busy because of a computation, the
sender blocks until the receiver operates the progress
engine and sends the OK TO SEND message.

4.1.2 Interrupt Based Progress

As mentioned earlier in this section, if the MPI application
is busy performing computation or I/O, it cannot observe
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the state of the SRQ. In this design approach, the progress
engine of the MPI is modified so as to explicitly request
an interrupt before returning execution control to the MPI
application. If there is an arrival of a new message, the
interrupt handler thread becomes active and processes the
message along with refilling the SRQ. Figure 4 illustrates
this design alternative.

This approach can effectively avoid the situation where
the SRQ is left without any receive WQEs. However, this
approach also has a limitation. There is now an interrupt
on arrival of any new message when the application is busy
computing. This can cause increased overhead and lead to
non-optimal performance. In addition, we note that the ar-
rival of the next message as such is not a critical event.
There may be several WQEs still available in the SRQ.
Hence, most of the interrupts caused by this mechanism will
be unnecessary.
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Interrupt &
Buffer Posting

Figure 4. Interrupt Based Progress

4.1.3 Selective Interrupt Based Progress

In this design alternative, we try to minimize the num-
ber of interrupts to the bare minimum. InfiniBand pro-
vides an asynchronous event associated with a SRQ called
SRQ LIMIT REACHED. This asynchronous event is fired
when a low “watermark” threshold (preset by the applica-

tion) is reached. This event allows the application to act
accordingly. In our case, we can utilize this event to trigger
a thread to post more WQEs in the SRQ. Figure 5 demon-
strates the sequence of operations. In step 1, the remote pro-
cesses send messages to the receiver. In step 2, the arrival of
a new message causes the SRQ WQE count to drop below
the limit (as shown by the grayed out region of the SRQ).
In step 3, the thread designated to handle this asynchronous
event (called LIMIT thread from now on) becomes active.
In step 4, the LIMIT thread posts more WQEs to the SRQ.
It should be noted that as soon as a SRQ WQE is consumed
it is directly moved to the completion queue (CQ) by the
HCA driver.
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 .

Buffer Posting

SRQ WQE
count drops
below low
watermark

Figure 5. SRQ Limit Event Based Design

This design alternative meets our design criteria and
causes minimum interference with the MPI application.
Hence, we choose this design alternative for our SRQ based
MPI design.

4.2 Proposed Design of SRQ Limit
Threshold

As mentioned in Section 4.1.3, we utilize the
SRQ LIMIT REACHED asynchronous event provided by
InfiniBand. This event is fired when a preset limit is reached
on the SRQ. In order to achieve an optimal design, we need
to make sure that the event is: a) not fired too often and
b) has enough time to post buffers so that SRQ is not left
empty.

In order to calculate a reasonable low watermark limit,
we need to find out the rate at which the HCA can fill up
receive buffers. We can find out this information in a dy-
namic manner by querying the HCA. In addition to that,
we need to find out the time taken by the LIMIT thread to
become active. For finding out this value, we design an ex-
periment, as illustrated in Figure 6. In this experiment, we
measure the round-trip time using SRQ (marked as t1). The
subsequent message triggers the SRQ LIMIT thread which
replies back with a special message. We mark this time as



t2. The LIMIT thread wakeup latency is given by: (t2− t1).
On our platform, this is around 12µs.
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Figure 6. LIMIT Thread Wakeup Latency

Thus, we can calculate the minimum low watermark
limit as:

Watermark =
BW ∗ 103

MinPacketSize
∗ twakeup (5)

Where, BW is the maximum bandwidth supported by
the HCA is Gb/s, MinPacketSize is the minimum packet
size of MPI messages in bits and twakeup is the time taken
by the LIMIT thread to wake up in microseconds. For
our experimental platform (described in Section 5), the
Watermark value is 300. In addition to the MPI library,
another utility will be distributed which can automatically
calculate the value of the Watermark value on the MPI li-
brary user’s platform. The user can then simply plug in this
value in the MPI application’s environment, from where it
will be picked up by the MPI library.

5 Experimental Evaluation

In this section we evaluate the memory usage and per-
formance of our MPI with SRQ design over InfiniBand. We
first introduce the experimental environment, and then com-
pare our design with MVAPICH in terms of memory usage
and application performance. We also show the importance
of flow control in using SRQ.

The default configuration of MVAPICH is to use a set
of pre-registered RDMA buffers for small and control mes-
sages as described in section 2. In our performance graphs
we call this configuration “MVAPICH-RDMA”. MVAPICH
can also be configured to use “Send/Receive” buffers for
small and control messages. We also compared with
this configuration, and it is called “MVAPICH-SR” in the
graphs. We have incorporated our design into MVAPICH,
and it is called “MVAPICH-SRQ”.

5.1 Experimental Environment

Our testbed cluster consists of 8 dual Intel Xeon 3.2GHz
EM64T systems. Each node is equipped with 512MB of
DDR memory and PCI-Express interface. These nodes have
MT25128 Mellanox HCAs with firmware version 5.1.0.
The nodes are connected by an 8-port Mellanox InfiniBand
switch. The Linux kernel used here is version 2.6.13.1.
Open-IB Gen2 [15] is installed on all nodes.

5.2 Startup Memory Utilization

In this section we analyze the startup memory utiliza-
tion of our proposed designs as compared to MVAPICH-
RDMA and MVAPICH-SR. In our experiment, the MPI
program starts up and goes to sleep after MPI Init. Then
we use the UNIX utility pmap to record the total memory
usage of any one process. The same process is repeated for
MVAPICH-RDMA, MVAPICH-SR and MVAPICH-SRQ.
The results are shown in Figure 7.
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Observing Figure 7, we can see that MVAPICH-RDMA
scheme consumes the most memory. Since the RDMA
buffers are dedicated to each and every connection, the
memory requirement grows linearly as number of pro-
cesses. On the other hand, the MVAPICH-SR, as de-
scribed earlier in this section is a highly-tuned version of
MVAPICH using Send/Receive channel. This uses the
same amount of memory as MVAPICH-SRQ. This is be-
cause the number of actual processes running is not enough
for the per connection buffer posting to empty the Buffer
Pool. If the number of processes is increased to a few hun-
dred, then MVAPICH-SR will consume more memory than
MVAPICH-SRQ. MVAPICH-SRQ just requires the same
Buffer Pool and a fixed number of buffers which are posted
on the SRQ. This number does not grow with the number of
processes.

In Section 3.3, we have developed an analytical model
for predicting the memory consumption by MVAPICH-
RDMA, MVAPICH-SR and MVAPICH-SRQ on very large



scale systems. In this section, we will first validate our ana-
lytical model and then use this to extrapolate memory con-
sumption numbers on much larger scale systems.

On our experimental platform and MVAPICH configura-
tion, the values of these parameters are: Nrdma = 32, Nsr

= 10, Npool = 5000, Sbuf = 12KB, Mrc = 88KB. In addi-
tion, we have measured a constant overhead of 20MB which
is contributed by various other libraries (including lower-
level InfiniBand libraries) required by MVAPICH. It is to
be noted that in the experiment, Nsr is simply taken from
the Buffer Pool, so this factor does not show up. In Figure 8
we show the error margin of our analytical model with the
measured data. We observe that our analytical model is in-
deed quite accurate.
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Now we use this model to predict the memory consump-
tion on much larger scale clusters. By increasing the num-
ber of connections and using the above mentioned parame-
ter values, we extrapolate the memory consumption for each
of the three schemes. The results are shown in Figure 9.
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5.3 Flow Control

In this section we present the importance of having flow
control in using SRQ. We designed a micro-benchmark to

illustrate it. The benchmark includes two nodes. The re-
ceiver first posts non-blocking receives (MPI Irecv), and
then starts computing. While the receiver is busy comput-
ing, the sender sends a “burst size” number of messages to
the receiver. After the receiver finishes computing, it calls
MPI Waitall to finally get all the messages. We record
the time the receiver spends in MPI Waitall as an indi-
cation of how well the receiver can handle the incoming
messages while it is computing.

Figure 10 shows the experimental results. We used the
selective interrupt based approach for flow control as de-
scribed in section 4.1.3. We can easily see from the graph
that MVAPICH-SRQ without flow control can handle mes-
sages as well as MVAPICH-SRQ with flow control up to
burst size around 250. After that, the line of MVAPICH-
SRQ without flow control goes up steeply, which means
the performance becomes very bad. As we discussed in
section 4.1, without flow control the receiver can only up-
date (refill) the SRQ when it calls the progress engine. In
this benchmark, since the receiver is busy computing, it
has no means to detect the SRQ is full, so the incoming
messages get silently dropped. Only after computation,
the receiver can resume to receive messages, but it has al-
ready lost computation/communication overlap and the net-
work traffic becomes messy because of the sender retries.
MVAPICH-SRQ with flow control, however, can handle a
large “burst size” number of messages, and it doesn’t add
much overhead. In later sections MVAPICH-SRQ refers to
MVAPICH-SRQ with selective interrupt based flow control.
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Figure 10. MPI Waitall Time comparison

5.4 NAS Benchmarks

In this section we present the performance of
MVAPICH-SRQ by using NAS Parallel Benchmarks [2],
Class A. We conducted experiments on 16 processes. Fig-
ures 11 and 12 show the total execution time of MVAPICH-
RDMA, MVAPICH-SR, and MVAPICH-SRQ.

From these two graphs we can see that for all bench-
marks MVAPICH-SRQ performs almost exactly the same



as MVAPICH-RDMA, which means using MVAPICH-
SRQ we can dramatically reduce memory usage while not
sacrificing performance at all. Looking at MVAPICH-SR,
however, we can see that for LU, it performs 20% worse
than MVAPICH-SRQ. This is because LU uses a lot of
small messages, and in MVAPICH-SR, the sender will
be blocked if it doesn’t have enough credits from the re-
ceiver, as described in section 3.1. This is not a problem in
MVAPICH-SRQ, because the sender can always send with-
out any limitations. Similarly we can see a 5% performance
difference between MVAPICH-SR and MVAPICH-SRQ for
SP.

Comparing the performance of MVAPICH-SRQ and
MVAPICH-SR, we find that although MVAPICH-SR can
also reduce memory usage compared with MVAPICH-
RDMA, it leads to performance degradation, so MVAPICH-
SRQ is a better solution.
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Figure 12. NAS Benchmarks Class A Total Ex-
ecution Time (CG, EP, FT, IS, MG)

5.5 High Performance Linpack

In this section we carry out experiments using the stan-
dard High Performance Linpack (HPL) benchmark [4].
HPL stresses various components of a system including
memory usage. For every system there is a limit for prob-
lem size based on the total amount of physical memory. The
benchmark cannot run if the problem size goes beyond the
limit. Figure 13 shows the performances of MVAPICH-
RDMA, MVAPICH-SR, and MVAPICH-SRQ, in terms of
Gflops.

From this graph we can see that MVAPICH-SR and
MVAPICH-SRQ perform comparably with MVAPICH-
RDMA for problem size from 10000 to 15000. For
some problem sizes, such as 11000, 12000, and 13000,
MVAPICH-SR and MVAPICH-SRQ perform even 10%
better than MVAPICH-RDMA. This is because MVAPICH-
RDMA needs to poll RDMA buffers of each connection
when it makes communication progress. This polling
wastes CPU cycles and pollutes cache content.

It is to be noted that for problem size 16000, the result for
MVAPICH-RDMA is missing. This is because the mem-
ory usage of MVAPICH-RDMA itself is so large that the
benchmark doesn’t have enough memory to run. In other
words, the problem size limit for MVAPICH-RDMA is
around 15000. MVAPICH-SR and MVAPICH-SRQ, how-
ever, continue to give good performance as the problem
size increases. Our system size is not large enough to
show that MVAPICH-SRQ scales better than MVAPICH-
SR. On a much larger cluster we will also be able to show
that MVAPICH-SR has a smaller problem size limit than
MVAPICH-SRQ.
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Figure 13. High Performance Linpack

6 Related Work

To reduce resource usage, P. Gilfeather and A. Maccabe
proposed connection-less TCP [5]. They discussed issues
in dynamically activating and deactivating TCP connections



based on the need. But their paper mainly focused on con-
nection management while this paper focuses on designing
a Shared Receive Queue based buffer management.

Scalability limitations of VIA-based technologies in sup-
porting MPI are discussed in [3]. In that paper the au-
thors analyzed various issues that might prevent the system
to scale. In this paper we propose to use Shared Receive
Queue as a solution to improve memory usage scalability.

Many messaging libraries provide connection-less ser-
vices to minimize memory resource allocation, such as
GM [12], AM [17], and VMI [16]. But to the best of our
knowledge they don’t provide Shared Receive Queue.

7 Conclusion and Future Work

In this paper, we have proposed a novel Shared Receive
Queue based Scalable MPI design. Our designs have been
incorporated into MVAPICH which is a widely used MPI li-
brary over InfiniBand. Our design uses selective interrupts
to achieve efficient flow control and utilizes the memory
available to the fullest extent, thus dramatically improving
the system scalability. In addition, we also proposed an an-
alytical model to predict the memory requirement by the
MPI library on very large clusters (to the tune of tens-of-
thousands of nodes).

Verification of our analytical model reveals that our
model is accurate within 1%. Based on this model, our pro-
posed designs will take 1/10th the memory requirement as
compared to the default MVAPICH distribution on a cluster
sized at 16,000 nodes. Performance evaluation of our de-
sign on our 8-node PCI-Express shows that our new design
was able to provide the same performance as the existing
design utilizing only a fraction of the memory required by
the existing design. In comparison to tuned existing de-
signs our design showed a 20% and 5% improvement in
execution time of NAS Benchmarks (Class A) LU and SP,
respectively. The High Performance Linpack [4] was able
to execute a much larger problem size using our new design,
whereas the existing design ran out of memory.

We will continue working in this research area. We want
to evaluate our design on a larger InfiniBand cluster. In ad-
dition to that we want to explore reliable data transfer mech-
anisms over unreliable datagram to achieve scalability for
ultra-scale clusters (hundreds-of-thousands of nodes).
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