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Abstract

In both distributed counting and queuing, processors
in a distributed system issue operations which are orga-
nized into a total order. In counting, each processor re-
ceives the rank of its operation in the total order, where
as in queuing, a processor gets back the identity of its
predecessor in the total order. Coordination applica-
tions such as totally ordered multicast can be solved us-
ing either distributed counting or queuing, and it would
be very useful to definitively know which of counting or
queuing is a harder problem.

We conduct the first systematic study of the relative
complexities of distributed counting and queuing in a
concurrent setting. Our results show that concurrent
counting is harder than concurrent queuing on a va-
riety of processor interconnection topologies, including
high diameter graphs such as the list and the mesh,
and low diameter graphs such as the complete graph,
perfect m-ary tree, and the hypercube. For all these
topologies, we show that the concurrent delay complex-
ity of a particular solution to queuing, the arrow pro-
tocol, is asymptotically smaller than a lower bound on
the complexity of any solution to counting. As a con-
sequence, we are able to definitively say that given a
choice between applying counting or queuing to solve a
distributed coordination problem, queuing is the better
solution.

1. Introduction

This paper compares the complexities of two funda-
mental distributed coordination problems, distributed
queuing and distributed counting. In distributed
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counting, processors in a network increment (perhaps
concurrently) a globally unique shared counter. Each
processor in return receives the value of the counter
after its increment operation took effect. Equivalently,
the operations issued by processors are arranged into
a total order, and each processor in return receives the
rank of its operation in the total order. Distributed
counting is a very well studied problem, and many solu-
tions have been proposed, perhaps the most prominent
being Counting Networks [1].

In distributed queuing, similar to counting, proces-
sors issue operations which are organized into a total
order (or a “distributed queue”). However, in contrast
with counting, each processor receives the identity of its
predecessor operation in the total order (see Figure 1).
Distributed queuing has also been studied under many
guises, for example in distributed directories [4], or in
token based mutual exclusion [10]. One of the most ef-
ficient solutions for queuing is the arrow protocol, due
to Raymond [10].

In many situations, distributed coordination can be
achieved using either queuing or counting. For exam-
ple, totally ordered multicast requires that all messages
multicast to a group be delivered in the same order at
all receivers. The conventional solution to totally or-
dered multicast uses distributed counting: the sender
of a multicast message obtains a sequence number from
a distributed counter, and attaches it to the message
being multicast. Different receivers may receive the
same set of messages in different orders, but they de-
liver them to the application in the order of the se-
quence numbers attached to the messages. The co-
ordination part in this application is essentially dis-
tributed counting. Herlihy et al. [8] pointed out that
totally ordered multicast can be solved using queuing
too: the sender of a multicast message obtains the id
of the predecessor message using distributed queuing,
and attaches it to the multicast message. Different re-
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Figure 1. Counting and Queuing. The graph represents the processor interconnection network. Solid
nodes issue counting (or queuing) operations, while the white nodes do not. The total order is a,c,e
and “pred” means predecessor.

ceivers may again receive messages in different orders,
but they deliver them to the application in a consistent
order that is reconstructed by using the predecessor in-
formation that is piggybacked on the messages. Her-
lihy et al. [8] mention that the queuing based solution
to ordered multicast is potentially more efficient than
the counting based solution, but were unable to prove
such a fact. Knowing that counting is inherently harder
than queuing would imply that the queuing based so-
lution is better than the counting based one. It would
also suggest that it is worth reexamining if counting
based solutions to other problems can be replaced with
queuing based ones.

At the heart of both queuing and counting lies the
formation of a total order among operations issued by
processors in a distributed system. But these problems
differ in the information that the nodes learn about the
total order. In counting, each processor receives some
global information about the total order, in the form
of the rank of the operation. In contrast, in queuing,
each processor receives the identity of its operation’s
predecessor in the total order, which gives the proces-
sor only a local view of the total order. This suggests
that counting might be an inherently “harder” coordi-
nation problem than queuing. However, there are no
known efficient reductions between the two problems,
which will help us prove such a result (by an ”efficient”
reduction we mean a reduction that will not introduce
much additional delay). Knowing the identity of an
operation’s neighbors in the total order tells us little
about its rank, and vice versa.

1.1. Our Results

We show that for a large class of interconnection
topologies, concurrent counting has inherently greater
delay than concurrent queuing. Our result shows that

the queuing based solution for ordered multicast is bet-
ter than the counting based one for many interconnec-
tion networks, and suggests that given a choice between
queuing and counting to solve any coordination prob-
lem, queuing is often the better solution.

We study the delay of concurrent queuing and
counting, and analyze the concurrent one-shot sce-
nario, where all the operations are issued at the same
time, and no more operations are issued thereafter. We
use a synchronous model, where the link delays are pre-
dictable. The delay of an operation is the time till it
receives its response. The concurrent delay complex-
ity is the worst case value of the sum of the delays of
all the operations. Our model takes into account the
contention in the network. In order to model practi-
cal networks, we mandate that a node cannot process
more than a constant number of messages in a single
time step.

For the following classes of graphs, we show that
the concurrent delay complexity of any counting al-
gorithm is asymptotically greater than the concurrent
delay complexity of a specific queuing algorithm, the
arrow protocol.

• Any graph which has a Hamilton path. This class
includes the d-dimensional mesh and low diameter
graphs such as the complete graph and the hyper-
cube.

• High diameter graphs: Any graph G which satis-
fies the following conditions.

– G’s diameter is Ω(n1/2+δ) (where n is the
number of vertices and δ > 0 is a constant)

– G has a spanning tree of a constant degree

• Any graph which contains the perfect m-ary tree
as a spanning tree (where m > 1 is a constant in-



dependent of n). In a perfect m-ary tree, each in-
ternal node has exactly m children and the depths
of different leaves differ by at most 1.

Our proofs consist of two parts, a lower bound on
the complexity of counting and an upper bound on the
complexity of queuing.

Lower Bound on Counting. In the synchronous
model, lower bounds are technically challenging, since
information can be obtained by a processor without
actually receiving a message [3] (this point is further
elaborated in Section 3). Our proofs of the lower bound
on counting use two techniques.

The first technique is general, works on any graph,
and relies on a careful analysis of the contention in
the network. The proof uses an information-theoretic
argument: a node that outputs a high value of count
must have received a substantial amount of information
from other nodes, and this takes a minimum amount
of time, even on a completely connected graph.

The second technique works for graphs with a high
diameter. This ignores contention in the network, and
is solely based on the long latencies in receiving any
information from far away nodes. Hence, this is much
simpler to apply than the first, though substantially
less general.

Upper Bound on Queuing. The upper bound uses
an analysis of the upper bound on the arrow queu-
ing protocol, due to Herlihy, Tirthapura and Watten-
hofer [7], who show that the complexity of the arrow
protocol can be upper bounded by the cost of an appro-
priately defined nearest neighbor traveling salesperson
tour (TSP). A crucial technical ingredient in our proofs
is the analysis of the nearest neighbor TSP on different
graphs, including the perfect m-ary tree.

1.2. Related Work

Previous works have studied the distributed count-
ing, queuing and adding problems separately, but have
not attempted to compare them. From the point of
view of solvability under faults, these problems are
equivalent, but from the point of view of latency and
delay, they are not. In this work, we are not concerned
with the fault-tolerance aspects of these coordination
problems.

Wattenhofer and Widmayer [14] give a lower bound
on the contention of any counting algorithm. Their
lower bound is on the maximum delay experienced by
any processor, where as our lower bound is on the sum
of the delays experienced by the processors.

Cook, Dwork and Reischuk [3] study a Parallel Ran-
dom Access Machine (PRAM) model where simultane-
ous writes are disallowed. Our message passing model,
where a processor can send no more than one message
and receive no more than one message in a time step,
bears resemblance to theirs. Cook, Dwork and Reis-
chuk [3] study lower bounds for simple functions, such
as finding the OR of many input bits.

The problem of one-shot concurrent distributed
queuing was studied in [7], and the connection to their
analysis has been outlined above. Recently, Kuhn and
Wattenhofer [9] have presented an analysis of the long-
lived case, when all queuing requests are not issued
concurrently.

The rest of the paper is organized as follows. In
Section 2, we define our model of computation, and
the concurrent counting and queuing problems pre-
cisely. Section 3 contains the lower bound on concur-
rent counting. Section 4 contains an upper bound on
concurrent queuing as well as a comparison between
the complexities of the counting and queuing complex-
ities on various graphs.

2. Model and Definitions

2.1. System Assumptions

The distributed system is modeled as a point to
point communication network described by a connected
undirected graph G = (V, E), where V is the set of
processors, and E is the set of reliable FIFO commu-
nication links between processors. Each process v ∈ V
can send a message to any of its neighbors in G. Let
n = |V | and V = {1, 2, 3 . . . n}. We assume a syn-
chronous system, where all communication links have
a delay of one time unit. In each time step, a processor
can do all of the following:

• Receive up to one message from a neighbor in G

• Send up to one message to a neighbor in G

• Local computation

Note that the model does not allow a processor to
receive more than one message in a time step. The re-
striction of sending/receiving at most one message per
time step is required to model practical networks, and
rules out trivial algorithms for queuing and counting
that are based on all to all communication. Our results
can be generalized to a synchronous system where dif-
ferent communication links have different delays. They
can also be easily generalized to a model where each
node can send/receive a constant number of messages
in a time step.



2.2. Concurrent Queuing and Counting

We consider the one-shot concurrent problem. In
the one-shot concurrent queuing (counting) setting, a
subset of the processors R ⊂ V issue queuing (count-
ing) operations at time zero. Each processor i ∈ V has
a binary input pi which is private to i. If pi = 1, then
i has a queuing (counting) request, otherwise it does
not. Thus R = {i|pi = 1}.

A computation is a sequence of many rounds, where
processors send messages to each other according to a
protocol. An operation is complete when the processor
receives the return value. We are mainly concerned
with the average delay till the operations complete.

For queuing algorithm alg, the queuing delay of node
v’s operation, denoted by �Q(v, R, alg) is defined as the
time at which v receives the identity of its predecessor
in the total order, when all nodes in R issue queuing
operations at time 0. The queuing complexity of algo-
rithm alg on graph G, denoted by CQ(alg, G) is defined
as the maximum value of the sum of the queuing delays
of all the operations, the maximum being taken over all
possible subsets of nodes R ⊂ V .

CQ(alg, G) = max
R⊂V

{∑
v∈R

�Q(v, R, alg)

}

Finally, the queuing complexity of graph G is de-
fined as the queuing complexity of the best queuing
algorithm for G.

CQ(G) = min
alg

{CQ(alg, G)}

The corresponding definitions for counting are simi-
lar. The counting delay of node v’s operation for count-
ing algorithm alg, denoted by �C(v, R, alg) is the time
till v receives its count, when all the nodes in R start
counting at time 0. The counts received by all the
processors in R must be exactly {1, 2, 3, . . . , |R|}, and
processors which do not belong to R do not receive a
count.

The counting complexity of algorithm alg on graph
G is:

CC(alg, G) = max
R⊂V

{∑
v∈R

�C(v, R, alg)

}

The counting complexity of graph G is:

CC(G) = min
alg

{CC(alg, G)}

Initialization: We allow the counting or queuing
algorithm to perform initialization steps, which are not
counted towards the delay complexity. However, the

set of nodes performing operations (R) is not known
to the algorithm during this step. For example, the
algorithm can build a spanning tree of the graph, or
embed a counting network on the graph during the
initialization step.

3. Lower Bound on Concurrent Counting

We are interested in finding a lower bound for the
cost of any protocol that accomplishes the counting
task. A technical difficulty is that in the synchronous
model, a node may receive information by not receiving
a message. For example, processors p1 and p2 may
agree that if p1 has a counting request, then it will not
send a message to p2 in the fifth round, and otherwise it
will. Thus, p2 may learn that p1 has a counting request
without actually receiving a message.

3.1. General Lower Bound for Arbitrary
Graphs

We first consider the case when G = Kn is the com-
plete graph, since that is the most powerful communi-
cation graph possible. A lower bound for the complete
graph will apply to any graph, for the following rea-
son. Consider any counting algorithm for a graph on n
vertices G′ �= Kn. Since graph G′ can be embedded on
Kn, the same algorithm can run on the complete graph
with exactly the same complexity. Thus, if α is a lower
bound on the counting complexity of Kn, then α must
also be a lower bound on the counting complexity of
any graph.

Consider a counting algorithm alg on Kn. When all
processors are executing algorithm alg, for processor i
and time step t, let A(alg, i, t) denote the “processors
affecting i at time t”, which is informally the set of all
processors which can influence the state of processor
i at the end of round t. More formally, we have the
following definitions.

Definition 3.1 The state of processor i at any time
step is the contents of its local memory.

Definition 3.2 For a counting algorithm alg, proces-
sor i and time t, A(alg, i, t) is the smallest set A such
that changing the inputs of some or all of the processors
{1, 2, . . . , n} − A will not change the state of processor
i at the end of time step t in algorithm alg.

Lemma 3.1 Suppose processor i outputs a count of
k. If time t is such that |A(alg, i, t)| < k, then
�C(i, R, alg) > t.



Proof: Suppose there exists t such that
|A(alg, i, t)| < k and �C(i, R, alg) ≤ t. Thus
processor i has output a count of k at or before time t.

We change the inputs to the processors without af-
fecting the state of processor i as follows. For every
processor j �∈ A(alg, i, t), we set pj = 0. By the def-
inition of A(alg, i, t), the state of i at the beginning
of time t is not affected by this change. Even if the
inputs are changed as above, processor i would still
output a count of k, since the system is the same in
its view. This is clearly incorrect, since the number of
processors which are counting is less than k (none of
the processors outside A(alg, i, t) are counting), and no
processor can output a count of k.

Definition 3.3 For processor i and time t, define
B(alg, i, t) = {j|i ∈ A(alg, j, t)}.

For every processor i, A(alg, i, 0) = {i}. Clearly,
changing the inputs of the rest of the processors will
have no effect on the state of i at time 0. Thus, it is
also true for every processor i, B(alg, i, 0) = {i}. Let
a(t) = maxi |A(alg, i, t)| and b(t) = maxi |B(alg, i, t)|.

Lemma 3.2 a(t + 1) ≤ a(t) + {a(t)}2 · b(t)

Proof: For algorithm alg, a candidate for sending a
message to processor i in round τ is defined to be a pro-
cessor that in some execution of protocol alg, can send
a message to processor i in round τ . Each processor
k which can get added to A(alg, i, t + 1) that was not
already in A(alg, i, t) must satisfy the following condi-
tion: there exists j such that k ∈ A(alg, j, t) and j is a
candidate for sending a message to i in round t + 1.

Suppose there were two processors j1 and j2 such
that A(alg, j1, t)∩A(alg, j2, t) = φ. Then, both j1 and
j2 cannot be candidates for sending a message to i in
time t+1. The reason is that the states of processors j1
and j2 at the end of time t are completely independent
of each other (there is no processor which could have
influenced both j1 and j2), so there exists an input
where both processors send a message to processor i in
timestep t + 1, and this is not allowed by the model.

Consider processor j that is a candidate for sending
a message to i in time t+1. The number of processors k
such that A(alg, j, t)∩A(alg, k, t) �= φ is no more than
a(t) · b(t). The reason is as follows. For each processor
m ∈ A(alg, j, t), |B(alg, m, t)| ≤ b(t). The number of
sets A(alg, k, t), k �= j that intersect A(alg, j, t) is no
more than the number of elements times the number
of intersecting sets per element, which is bounded by
a(t) · b(t).

Thus, the number of candidate processors which can
send a message to i in time step t + 1 is no more than

a(t) · b(t). Each such candidate processor j has no
more than a(t) elements in A(alg, j, t). Thus the to-
tal number of elements added to A(alg, i, t + 1) that
were not already present in A(alg, i, t) is no more than
{a(t)}2 · b(t).

Lemma 3.3 b(t + 1) ≤ b(t) · (1 + 2a(t))

Proof: Consider processor i at the beginning of time
step t. We know |A(alg, i, t)| ≤ a(t). Depending on its
state at the start of step t, processor i may send a mes-
sage to one of many different processors. Let R(alg, i, t)
denote the set of all possible destination processors for
a message from processor i at time t.

We now argue that |R(alg, i, t)| ≤ 2|A(alg,i,t)|. Sup-
pose this was not true, and |R(alg, i, t)| > 2|A(alg,i,t)|.
Any processor outside A(alg, i, t) has no influence on
the state of i at the beginning of time t. The number
of different inputs for all processors in A(alg, i, t) is
no more than 2|A(alg,i,t)|. By the pigeonhole principle,
there must be some input to processors in A(alg, i, t)
such that there are two different executions for proces-
sor i (the two executions differ since i sends messages
to different processors in time step t in the executions).
Since we are concerned with deterministic algorithms,
this is impossible. Thus, |R(alg, i, t)| ≤ 2|A(alg,i,t)| ≤
2a(t).

Each processor j ∈ B(alg, i, t) similarly has
|R(alg, j, t)| ≤ 2a(t). By the definition of b(t),
|B(alg, i, t)| ≤ b(t). Thus the total number of poten-
tial additions to B(alg, i, t + 1) that were not already
in B(alg, i, t) is no more than b(t) · 2a(t).

Let tow(j) = 222... j times
.

Lemma 3.4

a(t) ≤ tow(2t)
b(t) ≤ tow(2t)

Proof: The proof is by induction. The base case is
easily checked since a(0) = b(0) = 1. For the inductive
case, suppose that the lemma is true for some value of
t. It remains to prove the lemma for time t + 1.

From Lemma 3.2 we have

a(t + 1) ≤ a(t) · (1 + a(t) · b(t))
≤ tow(2t) · (1 + tow(2t) · tow(2t))
≤ 2tow(2t)

= tow(2t + 1)



From Lemma 3.3 we have

b(t + 1) ≤ b(t) · (1 + 2a(t))
≤ tow(2t) · (1 + 2tow(2t))
= tow(2t) · (1 + tow(2t + 1))
≤ tow(2t + 2)

Thus the inductive cases: a(t+1) ≤ tow(2t+2) and
b(t + 1) ≤ tow(2t + 2) are proved.

Theorem 3.5 The cost of concurrent counting is at
least Ω(n log∗ n) for any counting protocol on any graph
G on n vertices.

Proof: For any protocol, consider the case when all
the processors start counting at time 0. From Lem-
mas 3.4 and 3.1, it follows that any processor that out-
puts a count of k must have latency at least t where
tow(2t) ≥ k. Thus, the latency of a processor that out-
puts a count of k must be at least log∗ k

2 . Summing this
over all processors which output a count of at least n/2
(there are �n/2 + 1� such processors), we get a lower
bound of Ω(n log∗ n).

3.2. Better Bounds for High Diameter
Graphs

Thus far, our lower bound for counting applies to
any graph, and the bound relies on a delicate analysis
of the contention in the network. We now use argu-
ments based on latency to obtain better lower bounds
for graphs with a high diameter.

The proof of the lower bound for high-diameter
graphs relies on the following argument. A node u
which receives a high count must know the existence
of at least one far away node which wants to count, so
that its counting latency must be high.

Theorem 3.6 If graph G has diameter α then
CC(G) = Ω(α2).

Proof: Consider the case when all the nodes in V
decide to count, i.e. R = {1, 2, . . . , n}. Each node
receives a different value in the range 1, 2, . . . , n. Let
node vi receive count i, for i = 1 . . . n.

Consider node vk, where k > n − α/2. It must be
that vk’s latency is at least α/2 + k−n. We will prove
this statement by contradiction. Suppose vk’s counting
latency was x < α/2+ k−n. Node vk must know that
there are at least k − 1 other nodes that are counting,
otherwise it cannot output a count of k. Since vk’s
latency is x, the farthest of these nodes cannot be at a

distance of greater than x. There are totally n nodes,
and k of them (including vk itself) are at a distance of
no more than x from vk. This implies that there is is no
node at a distance greater than x+n−k from vk. Thus,
G’s diameter can be no more than 2(x + n − k) < α,
which is a contradiction.

Thus vk’s latency is at least α/2 + k − n. For k =
(n − α/2 + 1) . . . n, the lower bound on vk’s latency
ranges from 1 . . . α/2. Hence, CC(G) ≥ α/2 + α/2 −
1 + . . . + 1 = Ω(α2)

Theorem 3.6 shows that the counting complexity
of the list on n nodes is Ω(n2), and on the two-
dimensional mesh is Ω(n

√
n).

4. Upper Bound on Queuing

We now focus on deriving an upper bound on the
concurrent cost of a queuing algorithm, which also
yields an upper bound on the queuing complexity. We
use a specific queuing algorithm, the arrow protocol
to derive the upper bound. The arrow protocol was
invented by Raymond [10], and is based on path re-
versal on a spanning tree of the network. We give a
brief description here and refer to [10, 4] for detailed
descriptions.

During the initialization step, the protocol chooses
T , a spanning tree of the network G = (V, E). The tail
of the queue initially resides at some node, say t. Each
node v ∈ V has a ”pointer” (or an arrow), denoted
by link(v), which always points to a neighbor in the
spanning tree, or to v itself. The arrows are initialized
so that following the arrows from any node leads to the
tail, t. Informally, every node except for the tail itself
only knows the ”direction” in which the tail lies, and
not the exact location. Each node v also has a variable
id(v) which is the identifier of the previous operation
originating from v. The protocol is based on the idea
of path reversal, and is described in the following steps.

1. If node v issues a queuing operation whose identi-
fier is a, it sets id(v) to a, and sends out a queue(a)
message to u1 = link(v), and ”flips” link(v) to
point back to v.

2. Suppose a node ui receives a queue(a) message
from ui−1, a neighbor in the spanning tree, and
say ui+1 = link(ui) currently. If ui+1 �= ui then
ui flips link(ui) back to ui−1, and forwards the
queue(a) message to ui+1. If ui+1 = ui, then op-
eration a has been queued behind id(ui).

Concurrent queue() messages may arrive in the same
time step from neighbors in the tree. A node may re-
ceive up to deg queue() messages in a time step where



deg is its degree in the tree. As long as the maxi-
mum degree of the tree T is a constant, this algorithm
can be executed in the model where each node can
send and receive only one message per time step. The
node can handle a constant number of messages by
synchronously proceeding by an “expanded” time step
during which a constant number of messages are sent or
received during each such step. Note that this will not
change the asymptotics. For our analysis, we assume
that concurrent queue() messages are processed in the
same “expanded” time step, thus we will use spanning
trees which have a constant degree.

The one-shot concurrent complexity of the arrow
protocol has been studied by Herlihy, Tirthapura and
Wattenhofer [7], which shows a connection to the cost
of the nearest neighbor traveling salesperson tour (re-
ferred to as “nearest neighbor TSP” from here on-
wards) on an appropriately defined graph.

Consider a one-shot execution where a set R of nodes
have issued queuing requests at time zero. For span-
ning tree T and a set of requesting nodes R, define
the nearest neighbor TSP visiting all nodes in R in the
following order. Start from t as the origin (t is the
location of the first element in the queue), and visit
all vertices in R in the following order: next visit a
previously unvisited vertex in R that is closest to the
current position, distances being measured along the
tree T . The cost of the nearest neighbor TSP is the
total distance traveled on T in visiting all nodes of R.

Theorem 4.1 From [7]. If the maximum degree of T
is bounded by a constant, then the concurrent queuing
complexity of the arrow protocol over the request set R
is no more than twice the cost of a nearest neighbor
TSP on T visiting all nodes in R.

Rosenkrantz, Stearns and Lewis [11] have shown
that the nearest neighbor algorithm is a log k approxi-
mation algorithm for the TSP on any graph on k ver-
tices whose edge weights satisfy the triangle inequality.
Since the metric of the shortest distance on a tree sat-
isfies the triangle inequality, this yields that the cost of
a nearest neighbor TSP on tree T visiting request set
R is O(n log n) where n is the number of nodes in the
tree. When used in conjunction with Theorem 4.1, we
obtain the following corollary.

Corollary 4.2 If graph G has a spanning tree whose
maximum degree is bounded by a constant, then
CQ(G) = O(n log n), where n is the number of vertices
in G.

For specific graphs, it might be possible to find bet-
ter bounds than O(n log n) on the cost of the nearest

neighbor TSP. An example is the list; a nearest neigh-
bor TSP on a list of n nodes costs only O(n). We omit
the proof here, and only state the result; the proof can
be found in [12].

Lemma 4.3 If tree T is a list on n vertices, then for
any vertex set R ⊂ V , the cost of a nearest neighbor
TSP on tree T visiting request set R is O(n).

4.1. Complete Graph, Mesh, Hypercube

Theorem 4.4 If G has a Hamilton path, then
CQ(G) = o(CC(G)).

Proof: Choose the Hamilton path of G as the span-
ning tree T , and execute the arrow protocol on this
tree. From Lemma 4.3 and Theorem 4.1, it follows
that CQ = O(n). From Theorem 3.5, we have CC(G) =
Ω(n log∗ n). The lemma follows.

The above theorem states that counting is an in-
herently harder problem than queuing on any graph
which has a Hamilton path. This theorem has useful
implications for the following popular interconnection
networks.

Lemma 4.5 For all the following graphs, counting
is inherently harder than queuing, i.e. CQ(G) =
o(CC(G)).

• Kn: the complete graph on n vertices

• The d-dimensional mesh for any positive integer d

• The hypercube of dimension d

Proof: The lemma follows since each of the above
graphs has a Hamilton path. For Kn, the proof is obvi-
ous. For the d-dimensional mesh, we sketch a proof by
induction. Assume that a (d−1)-dimensional mesh has
a Hamilton path. A d-dimensional mesh can be viewed
as many (d−1)-dimensional meshes stacked one on top
of the other. A Hamilton path for the d-dimensional
mesh can be constructed by visiting the vertices in the
individual (d − 1)-dimensional meshes in order. The
proof that a hypercube of dimension d has a Hamilton
path is similar, and can be shown through induction.

4.2. Perfect Binary Trees

Thus far, our upper bound on the cost of the arrow
protocol has used the list as a spanning tree. We now
turn to another type of spanning tree, the perfect bi-
nary tree. The perfect binary tree T on n vertices has



depth d = �log2 n�, and all the leaves are at a distance
of either d − 1 or d from the root.

Using Corollary 4.2 yields an upper bound of
O(n log n) on the cost of the nearest neighbor TSP on
the perfect binary tree. However, this bound is not
tight enough for our purposes, since the lower bound
on the counting complexity is only Ω(n log∗ n). Hence
we look for a tighter upper bound for the queuing com-
plexity on the perfect binary tree. We now show that
the cost of the nearest neighbor TSP on the perfect bi-
nary tree with n vertices is O(n). Our analysis can be
extended to any perfect m-ary tree in a straightforward
manner.

Theorem 4.6 If T is a perfect binary tree on n ver-
tices, then the cost of the nearest neighbor TSP visiting
any subset of vertices R starting from the root is O(n).

Proof: For each node v ∈ R, let cost(v) denote the
distance from v to its successor in the nearest neighbor
TSP on T . The cost of the nearest neighbor TSP is
cost(T ) =

∑
v∈R cost(v). For a node u, let depth(u)

denote its depth in T . Let d = �log2 n� denote the
depth of T . For each level of the tree l = 0 . . . d, define

cost(l) =
∑

(v∈R)∧(depth(v)=l)

cost(v)

In Lemma 4.7 we show that for any level l, cost(l) =
O(n/2d−l + d). Taking this sum over all levels l =
0 . . . d, we get:

cost(T ) =
d∑

l=0

cost(l)

= O(d2) +
d∑

l=0

O(n/2d−l)

= O(d2) + O(n) = O(n)

Lemma 4.7 For any level l ∈ {0 . . . d},

cost(l) = O(
n

2d−l
) + 2d

Proof: We first add dummy nodes (which do not be-
long to R) to fill level d of T . This does not change the
cost of the TSP, but will simplify the presentation of
the proof. Let Tl denote the subtree of T restricted to
all vertices at level l or lesser. For any vertex v in Tl, let
Tv denote the subtree of Tl that is rooted at v, nv the
number of vertices in Tv, and dv the depth of Tv. Define

c′(v) as: c′(v) =
∑

(u∈ leaves of Tv)∧(u∈R) cost(u).
We want to compute cost(l) = c′(root).

We will show that we can write c′(v) as the sum
of two terms: c′(v) = f(nv) + cost(w), where f is a
function which we will describe below, which depends
only on the size of Tv, and w is some leaf in Tv which
belongs to R. Informally, the cost due to the leaves in
Tv depends only on the size of Tv, except for one node
w. We now inductively show that c′() can be written
as shown above, and determine the function f(). There
are two cases.

u2

w1’s successor

w2’s successor

u1

u

Tu1

w1 w2

Tu2

Figure 2. Proof of Lemma 4.7

(1)Suppose u is a leaf of Tv. If u ∈ R then c′(u) =
cost(u), else if u �∈ R then c′(u) = 0. Either way,
we can write this as c′(u) ≤ f(nu) + cost(u), where
f(nu) = f(1) = 0.

(2)Suppose u is not a leaf of Tv. Then the sub-
tree Tu is composed of two smaller subtrees of equal
size, rooted at u1 and u2, as shown in Figure 4.2. In-
ductively, c′(u1) can be written as c′(u1) = f(nu1) +
cost(w1) where w1 is a leaf in Tu1 , and similarly
c′(u2) = f(nu2) + cost(w2) where w2 is a leaf in
Tu2 . In this case, we have: c′(u) = c′(u1) + c′(u2) =
f(nv1) + f(nv2) + cost(w1) + cost(w2)

Here is the key point. Among w1 and w2, (without
loss of generality) suppose w2 was visited later by the
nearest neighbor TSP. Then, cost(w1) must be lesser
than the distance between w1 and w2 on the tree, which
is 2du.

Thus, c′(u) ≤ f(nu1) + f(nu2) + 2dv + cost(w2),
which can be rewritten as c′(u) = f(nu) + cost(w2)
where w2 is a leaf in Tu, and f() satisfies the following
equation: f(nu) ≤ f(nu1) + f(nu2) + 2du. Since Tu1

and Tu2 are of equal size, nu1 = nu2 = (nu − 1)/2, and
du = log nu, and the recurrence relation for f becomes:
f(x) ≤ 2f(x−1

2 )+2 logx and f(1) = 0, which yields
the solution f(x) = O(x). Putting this back in c′(u),
we get: c′(u) = O(nu) + cost(w) ≤ O(nu) + 2d. Thus,



cost(l) = c′(root) = O(n/2d−l) + 2d, and the proof is
complete.

Theorem 4.6 shows that the cost of a nearest neigh-
bor TSP on the perfect binary tree is O(n). Because
of Theorem 4.1, this yields the same upper bound on
the concurrent queuing complexity of the arrow proto-
col. Thus, we have CQ(G) = O(n) if G has a perfect
binary tree as a spanning tree. Combining this with
Theorem 3.5, we get:

Lemma 4.8 If G has a perfect binary tree as a span-
ning tree, then CQ(G) = o(CC(G)).

The analysis of the perfect binary tree can easily
be extended to any perfect m-ary tree, where m is a
constant (we omit this proof since it is similar to the
proof of the binary case). Thus, we have the following
more general result.

Theorem 4.9 If G has a perfect m-ary tree as a
spanning tree, where m is a constant, then CQ(G) =
o(CC(G)).

4.3. High Diameter Graphs

Theorem 4.10 If graph G satisfies the following:

• G’s diameter is Ω(n1/2+δ) where δ > 0 is a con-
stant independent of n

• G has a spanning tree whose maximum degree is
bounded by a constant

then CQ(G) = o(CC(G).

Proof: From Theorem 3.6, we know CC(G) =
Ω(n1+2δ), and from Corollary 4.2, we have CQ(G) =
O(n log n), hence CC(G) is asymptotically greater.

5. Conclusions

Queuing and counting are both important coordina-
tion problems, and there are occasions where one could
use either of them in solving the task on hand. Given
such an option, it is often better to use queuing. We
have shown that for a variety of graphs, including the
complete graph, perfect m-ary tree, list, hypercube and
the mesh, the counting delay complexity is asymptoti-
cally greater than the queuing delay complexity.

A natural question is whether this is true for all
topologies. The answer is negative. Consider S, the
star on n vertices. Since all messages will get se-
rialized at the central vertex, CC(S) = Θ(n2), and
CQ(S) = Θ(n2), so that counting is (asymptotically)

no harder than queuing. On such graphs, the delay
due to contention dominates, and overshadows other
factors.

An open question is as follows. There are other co-
ordination problems that require the formation of a
total order, such as distributed addition [5]. It would
be interesting to compare the inherent delays imposed
by different coordination problems. In a related work,
Busch et al. [2] show that for a class of mathemati-
cal operations, any distributed implementation must
be linearizable. This condition imposes a fundamental
limit on the efficiency of such a distributed implemen-
tation.
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